• Aucun résultat trouvé

Endomorphisms of finetely generated projective modules over a commutative ring

N/A
N/A
Protected

Academic year: 2022

Partager "Endomorphisms of finetely generated projective modules over a commutative ring "

Copied!
39
0
0

Texte intégral

(1)

Endomorphisms of finetely generated projective modules over a commutative ring

GERT ALMKVIST*

University of CaIifornia, Berkeley, U.S.A. and University of Ltmd, Sweden

Introduction

T h e origin o f this p a p e r is a m i s p r i n t (?) in B o u r b a k i ([4], p. 156, E x e r c i s e 13 d).

T h e r e it is s t a t e d t h a t i f f is a 2 • 2 - m a t r i x w i t h entries in a c o m m u t a t i v e ring a n d f 2 = 0 t h e n ( T r f ) 4 = 0 a n d 4 is t h e smallest i n t e g e r w i t h this p r o p e r t y . Using t h e C a y l e y - H a m i l t o n t h e o r e m we get f2 _ af ~- b l = 0 w h e r e a = T r f a n d b = d e t f . N o t i n g t h a t f 2 = 0 a n d t a k i n g t r a c e s we g e t a - T r f = a 2 = 2b.

M u l t i p l y i n g t h e f i r s t e q u a t i o n b y f gives bf = 0 w h i c h implies b 9 T r f = ba = O.

H e n c e a a = 2ab = 0 so 3 a n d n o t 4 is t h e smallest i n t e g e r a b o v e . E x p e r i m e n t i n g w i t h small m a n d n one soon m a k e s t h e c o n j e c t u r e : I f f is a n n •

w i t h f ~ + i = 0 t h e n ( T r f ) m"+l = 0. This is p r o v e d in a s o m e w h a t m o r e general s e t t i n g in 1.7 using e x t e r i o r algebra.

I n S e c t i o n 1 t h e c h a r a c t e r i s t i c p o l y n o m i a l 2t(f) is d e f i n e d for a n e n d o m o r p h i s m f : P - - ~ P w h e r e P is a f i n i t e l y g e n e r a t e d p r o j e c t i v e A - m o d u l e (A is a com- m u t a t i v e ring w i t h 1). I f P is free t h e n 2t(f) = d e t (1 ~- tf). T h e e x p o n e n t i a l t r a c e f o r m u l a (in case A contains Q)

~ Tr (f~) )

A,(f) = e x p - - ~ i ( - - t)~

c o n n e c t s At(f) w i t h t h e t r a c e s o f t h e powers o f f .

Various c o m p u t a t i o n s o f 2t(f) are m a d e in S e c t i o n 2. B y t h e i s o m o r p h i s m EndA (P) - - > P * @ A P w h e r e P * = t t o m A (P, A) e v e r y f: P---->P c o r r e s p o n d s t o a t e n s o r ~ x* @ x, w i t h x* e P * , x~ C P . L e t M ( f ) be t h e m a t r i x w i t h entries aq = <x*, xj>. T h e n At(f) = d e t (1 -~ tM(f)). E v e n t h e c o m p u t a t i o n o f ~t(1p)

* This research was partly supported by the Swedish Natural Science Foundation.

(2)

264 G E R T A L l V I K V I S T

where 1p is the identity map is not quite trivial. The result is 2t(lp) = ~ ] el(1 d- t) ~ where the e~:s are the idempotents given b y Ann A ~ P = (eo d- el -4- 9 9 9 d- e~_l)A.

I n Section 3 the behaviour of 2,(f) under change of rings and taking duals is studied. Some a t t e m p t s are made to connect the polynomials 2 , ( f ) , ~t(g) and 2,(f | g). I n the multiplicative group A = {1 ~- alt d- a2t 2 @ 9 9 .; a, e A } of formal power series with constant term 1 one can define a .-multiplication such t h a t 2,(f @ g) = 2,(f) 9 2t(g ). Then A becomes a ring (with ordinary multiplication as addition).

A formula for computing 2,(f) in terms of the minimal polynomial of f and some of t h e ' Tr (f~):s is given in Section 4.

I n Section 5 the definition of 2,(f) is extended to f: 21I--~ M where M is an A-module having a finite resolution of finitely generated projective modules.

Some of the results in Section 1 can be generalized to this case. Furthermore 2~(f) is defined for f = chain map of complexes (or map of graded A-modules).

Section 6 contains an a t t e m p t to classify all endomorphism of finitely generated projective A-modules, i.e. to compute the K-group K 0 (End ~(A)). The charac- teristic polynomial 2,(f) is sometimes a good enough invariant. This is the case if A i s a P I D o r A = K [ X , Y] where K i s a f i e l d o r A is a regular local ring of dimension at most two. Then K o (End ??(A)) is isomorphic (as a ring) with the direct product of K o ( A ) = Z and the ring of all ))rational functions))

1 + a l t @ . . . ~ - a m t'~

1 @ blt d- . . . -~ b~t ~

(under multiplication and ,-multiplication). This generalizes a result b y Kelley- Spanier ([8] p. 327) for A = field. The ring of ))rational functions)) is also isomorphic with a subring of the W i t t ring W ( A ) of A. Finally ))trace sequences~), (Tr (f~)~

are studied.

Finally I would like to t h a n k T. Farrell, G. Hochschild, M. Schlessinger and M. Sweedler for m a n y valuable discussions about this paper and mathematics in general.

1. The characteristic polynomial

First we fix some notation. A will always denote a commutative ring with u n i t y element 1. Spec A is the set of all prime ideals ~ of A. I f x C M where M is an A-module we denote b y x~ the image of x under the localization m a p M - ~ M ~ = M @ A A ~ for all p C S p e c A .

The category of all finitely generated projective A-modules will be denoted b y ~ ( A ) . I f P C ~ ( A ) then Po is a free Ao-module of finite rank --~ rk~P. We define r k P = max~ rk~P. This integer is equal to the minimal nmnber of generators of P . I f r k ~ P = r k P for all p E S p e e A we say t h a t P has c o n s t a n t r a n k . Let

(3)

E N D O M O R P I I I S M $ O F F I N I T E L Y G E N E R A T E D P R O J E C T I V E M O D U L E S 2 6 5

P * = HOmA ( P , A ) be the dual of P. Then for P E ~ ( A ) there are natural isomorphisms of A-modules

EndA (P*) -+ HomA (P* | P, A) --~ HomA (Enda P, A) (*) Let Tr be the image of 1~, under the composed map. We call Tr (f) the trace of f: P -+ P. This coincides with Bourbakis definition ([3] p. 112).

Definition 1.1:

L ( f ) = ~ Tr (A~f)t'

i = 0

Here t is an indeterminate, f : P - + P an endomorphism with P E ~ ( A ) , A~: A~P -+ A~P the induced endomorphism of the i:th exterior power of P and n = rkP. Observe t h a t A~P E ~ ( A ) ([4], p. 142).

R e m a r k 1.2. I f P is free thell Tr (f) is the usual trace of f and L(f) det ( 1 + tf) where 1 = identity of the free A[t]-module P @a A[t]. This is a well known formula ([9] p. 436).

PROPOSITION 1.3. Let f , g: P - + P with T h e n

(i)

(ii)

(iii) (iv)

P C ~ ( A ) and p E S p e c A be given.

(Trf)o -- Trf~

(2,(f)~ = 2,(L ), i.e. i f 2,(f) = 1 4- alt @ . . . @ a,,t" then

;t,(f) = 1 + alot + . . . + a.~t ~ L ( f o g) = 2,(9 o f )

L(h o f o h -1) = L ( f ) i f h: P --~ Q ks an isomorphism.

Proof.

(i) Localization commutes with everything in (,) since all modules involved (P*, E n d A (P*) etc.) are in ~ ( A ) ([4], p. 98).

(ii) Localization commutes with exterior powers, (A~)~ = A~f~, so (ii) follows from (i).

(iii) We have T r ( f o g ) = T r ( g o f ) ([3J, p. 112) and A ~ ( f o g ) = A ~ o A ~ g . (iv) B y (ii) it is sufficient to prove (iv) for P free (and hence Q is free), in

which ease it is well known.

CAYLEY-HAMILTON THEOREM 1.4. L e t ),,(f) = 1 + alt + . . . + a~t n and define qf(t) = t" - - alt ~-~ + . . . + ( - - 1)'%. Then qf(f) = O.

Proof. I t suffices to show

n _ _ a ~ n - 1 ~ 9 ~ - 0

(qf(f))~ = f~ l~j~ + . . . + ( - - 1) a., 1~

for all p E Spec A. B u t this follows from the ordinary Cayley-Hamilton theorem j o r f,: P ~ - + P ~ with P~ free since

(4)

266 G E I ~ T A L M K V I S T

t "~ - - alot ~ - i JF . . . d- ( - - 1)~a~ ---- t'-'i(%~)qf~(t).

BI~OYOSITION 1.5..Let

be a c o m m u t a t i v e d i a g r a m w i t h exact row a n d all

d d

( - - 1)i T r f~ = 0 a n d ]'-[

0 0

0 - - + P a - + . . . - + P i --+Po - ~ 0

0 - - > P d - - > 9 9 9 - - > P 1 - - > P o - - > 0

P~ r ~ ( A ) . T h e n

~,(L)(-~)" = i

P r o o f . Since localization is a n e x a c t f u n c t o r it is (using 1.3 (i), (ii)) s u f f i c i e n t to p r o v e t h e p r o p o s i t i o n w h e n all P~ are free. B u t t h e n it is well k n o w n a t l e a s t for d ~-- 2 (see [9], p. 402) a n d t h e general case follows b y splitting u p t h e long e x a c t sequence i n t o s h o r t ones.

COROLLAR~ 1.6.

T r ( f @ g ) : T r f + T r g a n d ~ ( f O g) ~-- ~,(f) " ~(g).

T H ~ O R ~ 1.7. JLet f: P - - > P be given w i t h

P e ~ ( A ) , r k P = n a n d

),,(f)

= 1 + a~t + . . . + ant ~.

(i) A s s u m e that f is n i l p o t e n t w i t h f ~ + l = 0. T h e n a~'a[~.., a2, = O i f the weight vl + 2v: -~- . . . + nv~ ~ m n . T h e constant m n is best possible.

(ii) C o n v e r s e l y a s s u m e that a~l'a~ " . . . a: ~ = 0 w h e n rl d- 2v: -~- . . . d- n % > k.

T h e n f~+k = O. T h e integer n + k i s best possible.

P r o o f . (i) A f t e r localizing a n d using 1.3 (ii) we m a y a s s u m e t h a t P is free o f r a n k n (it is s u f f i c i e n t t o consider t h e case o f m a x i m a l r a n k ) . L e t P h a v e basis el, e2 . . . . , en. T h e n A n P is free w i t h basis el A e~ A . . . A e,,. N o w we claim t h a t a r e l A e ~ A . . . A e = ~ e l A . . . A f % A . . . A f % A . . . A f e i A . . . A e n (**)

il < i~ < : . . . < i r

B y d e f i n i t i o n we h a v e ar = T r (Art). L e t ell/~ el2/~ . . . A

eir

be a f i x e d basis e l e m e n t o f A r P (with i l < i 2 < . . . < i r ) . T h e n

A r f ( e ~ A . . . A e i , ) = f % A . . . A f e ~ r = Ci,, .... # % A . . . A e # + o t h e r terms.

H e n c e

a~ ---- T r ( A ' f ) = ~ C,1 , .... ,,

il < i~ ~ . . . ~ i r

(5)

E N D O M O R P H I S M S O F F I N I T E L Y G E N E R A T E D P R O J E C T I Y E M O D U L E S 267 E x p a n d i n g the right h a n d side in (**) one easily gets

( ~ C,,, .... # / e l A e 2 A . . . A e ~

i l < i~ < : : " " < i r ]

~nd the claim is proved.

Using (**) several times we get

v I v~ . . . =

al a2 9 9 9 a ~ ( e l A e2 A A e~) ~ f ' % A f ~ % A . . . A f'.e~

where the sum is t a k e n over all s ~ , s 2 , . . . , s ~ such t h a t s i W s 2 + . . . + s ~ = v~ + 2v~ + . . . + nv~ which by assumption is larger t h a n ran. Hence each term contains an s~ > m a n d f f = 0. Therefore the right h a n d side is zero a n d the first p a r t of (i) is proved.

To see t h a t m n is best possible let A be the commutative ring generated b y 1,

~1 . . . . , ~ with the only relations ~ T + I = a~ +~ . . . a : + l = 0. L e t f be the map given b y the diagonal matrix

I

~ 1 0 ~ 2

f = 0

Then f,~+l = 0 and

all sl, 8 2 , . . . . , 8 n

h + 2v2 + 9 9 9 + nv~ < m n hence a~ 1 . . . a ~ ~ # 0.

(ii) Assume t h a t a ~ ' . . . a : ~ = 0 if v l + 2 v 2 + . - - + n v ~ > k . H a m i l t o n theorem we have

= ~ ~2 ~ where the sum runs over

with S l + S ~ + . . . . + s n = v l + 2v~ + . . . + n v ~ . I f

f'~ = a l l ~-1 - - a 2 f "-2 + . . . ~ a n l , Multiplying by f and using Cayley-Hamilton again we get

f,~+l = a ~ f , , - 1 + . . . i ala,,1.

Repeating the procedure several times we get

f" : q,_~+lf n-1 + q r _ n + 2 f n-2 + . . . + q," 1

where q~ is a polynomial in al . . . . ,an of weight i. I f r : k + n then q , : q , - l : q , - ~ + l = O and we get f ' : O.

To show t h a t n + k is best possible let A : Z [ X 1 , X 2 . . . , X n ] / I where X1 . . . . , X~ are indeterminates and I is the ideal generated by all monomiMs in X1 . . . X~ of weight k + l . P u t

$1 s n

then there i s a t e r m ~1 . . . a n with all s ~ m and B y the Cayley-

(6)

2 6 8 G E R T ALIVII<VIST

f =

0 0 0 0 (-- 1) "-i a n l 1 0 0

0 1 0

0 -- a e

0 0 0 1 a i /

w h e r e at is t h e r e s i d u e o f X~. T h e n a c a l c u l a t i o n shows t h a t 2,(f) = 1 + alt -[- . . . + a.t"

a n d t h a t f,.+k-1 ~ O.

COROr~LiRV 1.8. f is nilpotent i f and only i f all coefficients ai(i ~ 1) of 2,(f) are nilpotent.

PROPOSlTIO~ 1.9. Given f: P --~ P with P C ~ ( A ) . I f f| = f @ f @ . . . | f = 0 t h e n i f = 0.

Proof. L o c a l i z i n g we m a y a s s u m e t h a t P is free o f r a n k n. L e t (%) b e t h e m a t r i x o f f in s o m e basis a n d I t h e ideal in A g e n e r a t e d b y t h e coefficients (%).

T h e e n t r i e s of t h e m a t r i x o f f| a r e j u s t all possible p r o d u c t s o f v o f t h e a~j:s.

Since f| = 0 we g e t I" = 0. T h e e n t r i e s (cij) of t h e m a t r i x o f f f are c e r t a i n s u m s o f p r o d u c t s o f v o f t h e %.:s. H e n c e c ; j 6 I " a n d % = 0 f o r all i, j a n d i f = 0 .

T~EOnnS~ 1.10 ( e x p o n e n t i a l t r a c e f o r m u l a ) . Let f: P - - > P P 6 ~ ( A ) . Then

d

- - t2,(f) -1 ~

2,(f) = ~

T r

(f')(--

t)'

1

be A-linear with

Proof. S e t t i n g b~ = T r ( - - f)~ a n d 2,(f) = 1 + alt + . . . -~- ant" we m u s t p r o v e - - (a~t + 2a2 t2 -~- . . . -~ na~t") --

(1 +

a~t @- . . . 4- a.t") ~ b~t ~

1

C o m p a r i n g t h e coefficients of t ~ on b o t h sides one f i n d s b~ = O~(al . . . . , a~) w h e r e t h e Oi:s a r e c e r t a i n p o l y n o m i a l s w i t h i n t e g e r coefficients. L o c a l i z i n g a t ~ 6 Spee A we h a v e t o s h o w b~ = Q~(alv .. . . , a~). H e n c e it is s u f f i c i e n t t o s h o w t h e f o r m u l a w h e n P is free a n d f is a m a t r i x . T h e n b~ = Q~(al, . . . , an) b e c o m e s a p o l y n o m i a l i d e n t i t y (over Z) in t h e coefficients of t h e m a t r i x f. T h e r e f o r e it is e n o u g h to c o n s i d e r t h e case A - - Z [ X i i , . . . , X~,] w h i c h is a d o m a i n of c h a r a c t e r i s t i c zero.

L e t K be t h e q u o t i e n t field o f K a n d R t h e a l g e b r a i c closure o f K . O v e r R t h e f o r m u l a is e a s y to p r o v e . I f 21 . . . 2, a r e t h e e i g e n v a l u e s o f f we h a v e

(7)

E N D O N O R P t t I S I ~ I S O F F I N I T E L Y G E N E R A T E D P I 1 , O J E C T I V E N O D U L E S 269 2,(f) ---- ]-[]=1 (1 4- ~t). T a k i n g t h e l o g a r i t h m i c d e r i v a t i v e , e x p a n d i n g 2~(1 4- 2~t) -1 into p o w e r series a n d using T r (fl) = ~ = 1 2~ we get t h e desired f o r m u l a . ~

Remark 1.11. I n t h e t h e o r y o f d i f f e r e n t i a l e q u a t i o n s t h e r e is a )>eontinuous~>

a n a l o g u e o f t h e f o r m u l a above: L e t U(t) a n d B(t) be n • w i t h real entries, d e p e n d i n g on a p a r a m e t e r t, satisfying

d

d~ U ( t ) = B(t)U(t) a n d T h e n

u ( 0 ) = 1.

t

d e t U(t) = e x p

f

T r B(s)ds.

0

I t is well k n o w n t h a t i f T r ( f l ) = 0 for i = 1 , 2 . . . n w h e r e f is a n n X n - m a t r i x o v e r a field o f c h a r a c t e r i s t i c zero t h e n f is n i l p o t e n t . O u r n e x t r e s u l t is a g e n e r a l i z a t i o n o f this.

W e will call t h e ring A torsion-free if it is torsion-free as a n abelian group, i.e. n a = 0 w i t h n E Z a n d a C A implies n = 0 or a = 0 .

PRO~OSITIO~ 1.12. Assume that A is torsion-free. Let f: P - ~ P be A-linear where P C ~ ( A ) has rank n. I f T r ( f i ) = 0 for n consecutive i:s then f is nilpotent.

Proof. A s s u m e t h a t T r (if) = T r (fl+r) __ . . . = T r ( i f + " - ' ) = 0. M u l t i p l y i n g C a y l e y - H a m i l t o n b y f r we get

- - a r

ff+~ alf "+r-1

a2f "§ 4- . . . ~ nf

T a k i n g t r a c e s on b o t h sides we get T r (if+r) = 0. R e p e a t i n g t h e p r o c e d u r e we get T r ( f f ) = 0 for all v > r . P u t g = f r . T h e n T r ( g ~ ) = 0 for v = 1 , 2 . . . Using t h e e x p o n e n t i a l t r a c e f o r m u l a for g we f i n d -dr 2,(g) d = 0 w h i c h implies 2,(g) = 1 since A h a s no torsion. C a y l e y - H a m i l t o n a p p l i e d to g gives g n = 0, i.e. f n r = O .

Remark 1.13. T h e p r o p o s i t i o n is t r u e i f A has no s-torsion for s < r k P . Remark 1.14. I f A is a field o f c h a r a c t e r i s t i c 2 t h e n T r l ~ = 0 for P free o f r a n k 2.

Remark 1.15. I f we a s s u m e t h a t A is torsion-free we can give a n o t h e r p r o o f of t h e f a c t t h a t f| = 0 ~ f n i l p o t e n t ( c o m p a r e 1.9). P u t b; = T r (f~). T h e n (ff)| = ( f | implies T r ( ( f ~ ) | ( T r ( f ~ ) ) ~ = b ~ = 0 for i = 1 , 2 , . . . . C o m p a r i n g coefficients in t h e e x p o n e n t i a l t r a c e f o r m u l a we get a 1 = hi, 2a 2 = b~ - - b 2 , . . . . Since A has no t o r s i o n all a~:s are n i l p o t e n t . T h e n f is also n i l p o t e n t b y 1.8.

(8)

2 7 0 G E R T A L M K V I S T

2. Some computations

First a generalization 1.3 (iii):

PROPOSITION 2.1. Given f: P -+ Q and g: Q --+ P with P, Q 6 ~ ( A ) . Then T r ( f o g ) - - - - T r ( g o f ) and At(f o g) -~ A,(g o f )

Proof. After localization we m a y assume t h a t P and Q are flee. The formula for the trace is t h e n easily proved and

Wr A~(f o g) --~ Tr (A~f o A~g) = Tr (A~g o A~f) = Tr A~(g o f ) finishes the prooL

We continue with describing a m e t h o d for computing 2,(f). P denotes always module in ~ ( A ) of rank n.

THEOREhl 2.2. We have EndA (P) ~ P* | P. Let f: P --+ P correspond to

~ = 1 xi* @ xl in P* @A P. Let M ( f ) be the re• with entries (xi*, xj}

at place (i, j). Then

2,(f) ---- det (1 + tM(f))

I n particular the right hand side is independent of the choice of representatives for the tensor. The x~:s can be chosen as a minimal generator set of P.

Proof. First we reduce to the case when P is free. L e t p be a prime ideal in A.

Localizing at p we get a commutative diagram

%

P* @A P ~ EndA P

P~ | ~ ~ EndA~P~

where the star in the south west corner means HomA~ (., Av). Hence if f: P -+ P corresponds to ~ T xi* Q xl t h e n f~: P , -+ P~ corresponds to ~ T (x~*)~ | x~, and by using 1.3 (ii) we m a y ~ssume t h a t P is free. L e t now Y l , - - - , Y~ be a basis for P and h I . . . h. a d u a l b a s i s for P*, i.e. (h~,yj}~--(5fj. Given f : P - + P let it correspond to

| yj) = ( 5 aj,h,) 0 = | Yj

i,j j = l i = l j = l

Hence the (j, k):th entry in the matrix is

in i.e.

i = 1

n

i = l

(9)

E N D O M O R P H I S M S O F F I N I T E L Y G E N E R i T E D P R O J E C T I V E M O D U L E S 2 7 1

Now u: P * | P --> EndA P is given b y x * | so f : u ( ~ ai,h , @ Yi) means f(xk) = ~. ai,<h,, xk>y~ --- ~ aiky r

i,i ~,j j

I t follows t h a t f has the matrix (ajk) in the basis Yl . . . . , y~. Thus the formula is true if the x~:s form a basis for P .

Let now ~ l x l | x~ be another representation of f. Assume t h a t m

Then

x , = ~ cliy i and x * = ~ d , k h k

j = l k = l

X ~ @ X i : ~ CJ id i k h k @ YJ --- E Cj idlk h k ~ Y j

i = 1 i : 1 j,k j,k i

where

( a i k ) = C D with C = (c~i) and D = ( d ~ k )

= ~ a j A

| yj

j,k

(here C and D are n X m - and m X n - m a t r i c e s respectively). The (i, k):th entry of the matrix in the formula is

~.i j=l

Thus this matrix is D C and we are done since X,(f) = det (1 + tCD)) b y the first part of the proof and det (1 + tCD) = det (1 + tDC) b y 2.1.

N e x t we compute 2t(lr) where ]e is the identity map of P 6 ~ ( A ) .

T~EO~E~ 2.2 (Goldman). (i) Tr (lp) = ~ i e , and i,(1~) = ~.~e,(1 + t)' where eo, q . . . e. are orthogonal idempotents with e o + e 1 ~ - . . . - @ e n ~ 1.

(ii) Ann ( A ~ P ) = (e 0 + q + . . . + e~_l)A. Furthermore the ei:s are uniquely determined by P .

.Remark. Some of the ei:s might be zero, e.g. if P is constant rank n, then

e 0 ~ e 1 ~ . . . = e n _ 1 = O.

Proof. (i) L e t Z have the discrete topology. Then rk: Spec A --~ Z given b y p --> rkvP is a continuous function. Hence Xi = (p 6 Spee A0; rk~P = i} is b o t h open and closed. I t follows t h a t Spec A ~ X o U X 1 U . . . U X . where the union is disjoint. B u t to this covering of Spec A corresponds a unique ))partition of u n i t p l = e o + q + . . . - 4 - e , where e,(x)={10 i f x E X ,

otherwise i.e. 1 - - e i E p for all O E X ~ and el 6 p for all p ~X~: (see Swan [12] p. 140). This means t h a t the ei:s are orthogonal idempotents.

N o w we claim t h a t i,(lp) = ~ el(1 + t / .

(10)

272 al~t~T ALltlKVIST

F i x a prime p C X , T h e n t h e localization a t 13 of t h e left h a n d side is (2t(lp))~ = 2t(lp~) = (1 + t) ~ since P , is free of r a n k i. To c o m p u t e t h e localization of t h e r i g h t h a n d side we need ekv. B u t e l e j = O w i t h e ~ p implies e j ~ = 0 in A~ for j # i . F u r t h e r m o r e e ~ ( 1 - - e ~ ) = 0 w i t h e ~ p implies % = 1 in A~.

T h u s ~ o ej(1 ~- t)i)~ (1 + t) ~ (2~(le))~ a n d we are done since p C Spee A was a r b i t r a r y .

(ii) A~P is in ~ ( A ) a n d t h u s A n n ( A i p ) = e A where e is a u n i q u e l y d e t e r m i n e d i d e m p o t e n t (Goldman [6] p. 33). N o w (A~P)v = 0 i f a n d o n l y if r k ~ P < i if a n d o n l y if ~ C X o U X 1 U . . . U X I _ 1. This is t h e case if a n d o n l y i f eA = A n n ( A ~ P ) q k p if a n d o n l y i f e ~ p . T h u s e ( x ) = 0 if a n d o n l y if x C X i U . . . U X ~ (and hence e ( x ) - - 1 otherwise). B u t e 0 ~ e l ~ - . . . @ e i _ l is a c a n d i d a t e satisfying these conditions. B y uniqueness we get

e = e o @ e 1 @ . . . @ ei_l.

P u t t i n g i = 1 we get e 0 uniquely. Sinee e 0 @ e 1 is u n i q u e e~ is unique etc.

D e f i n i t i o n 2.3: W e define t h e determinant of f b y d e t f = 2 ~ ( f - - l e ) for f : P - + P w i t h P ~ ( A ) .

F i r s t we note t h a t det 1 e = hi(0 ) = 1. I f P is free t h e n det (f) coincides w i t h the usual d e t e r m i n a n t of a m a t r i x for f. I f r k P = n t h e n there exists Q such t h a t P | Q = F where F is free of r a n k n. Clearly Q ~ ~ ( A ) . Localizing a t

;3 ~ Spec A we get P , | Q~ = F~ where P~, Q~, F~ are free A~-modules of r a n k r --- rk~P, n - - r a n d n, respectively. W e get (det ( f | 10))~ = det (f~ | 1o~) = d e t f v , det le~ = d e t f ~ = (detf)~. H e n c e we could also h a v e d e f i n e d d e t f as det (f @ 1~) where t h e last det is t h e o r d i n a r y d e t e r m i n a n t of a m a t r i x for f | 1 o.

Thus d e t f is t h e same as Goldman.s d e t e r m i n a n t ([6] p. 29). W e s t a t e some properties of d e t (f).

Pt~OPOSITIOI~ 2.4. (i) d e t ( f o g) -- d e t f d e t g.

(ii) f is an i s m o r p h i s m i f a n d only i f d e t f is invertible i n A .

W e now collect some formulas for L ( f ) = 1 + alt -~- . . . @ a~t n where f: P --> P w i t h P C ~ ( A ) a n d r k P = n .

n - - 1 n

P~oPosITIosr 2.5. (i) 2,t(Akf) = 1 ~- akt ~ . . . @ a~(k-i)t (k). I n particular (ii) 2,(A'[f) = 1 + ant.

( i i i ) ) , , ( A ~ - l f ) = 1 + a~_lt -~- an_2a~t 2 ~- a~_3a2~t 3 ~- . . . -~- ala:-2t ~-1 @ a"~-lt ~.

(iv) 2,(f2) = 1 + (a~ -- 2az)t -t- (2a4 -- 2axa3 -~- a~)t 2 -~ . . . + a2nt ~.

P r o @ Since ~, a n d A ~ c o m m u t e w i t h localization we m a y assume t h a t P is free. Using t h e t e c h n i q u e e m p l o y e d in proving t h e e x p o n e n t i a l trace f o r m u l a 1.10 we m a y even assume t h a t A is an algebraically d o s e d field. I f

(11)

E N D O M O I ~ P H I S M S O F F I N I T E L ~ x r G E N E R A T E D I ~ I ~ O J E C T I V E M O D U L E S 2 7 3

m n

;t,(f) = I l( 1 + 2,t) = 1 +

a~t +

. . . -}- a.t"

1

we h a v e

2,(A~f) = ] - [ (1 + ~ @ . . .

~,~t).

1 _ < i 1 < 1 2 < . . . < i k < n

The first t w o formulas n o w follow easily.

rt

(iii) W e m a y assume t h a t a~ = ]--[2~ 4= O. T h e n we h a v e

1

(iv)

2 t ( A " - l f ) = 1 @ ~ t = c~,t" 1 + " 4,

1

= a . ~ l + a~. ~ t + a z - ~ + . . . @ . - L . - t @ =

~ n t a n

---- 1 -}- a,~_lt + a , ~ _ 2 % t 2 + . . . + a l a ~ , - 2 t + a,"-l"~ .

Set t ~ - - s 2. T h e n

L ( f 2) = d e t (1 -- serf) --- det (1 -- i f ) . d e t (1 + i f ) = 2_,(f)}~,(f) =

= (1 - - a~s @ a2s ~ - - + . . . d - ( - - 1 ) ~ a ~ s ~ ) ( 1 + a l s + a2s ~ + 9 . . 4 - a~s") =

= 1 + (2a~ - a~)a ~ + (2c~ -

2a~a~ +

c~)~ ,~ + . . . + ~ , ~ ( - a~) '~

W e keep t h e n o t a t i o n f r o m above a n d f u r t h e r m o r e % e ~ , . . . , e~ are t h e i d e m p o t e n t s in t h e o r e m 2.2.

n C ~

PROPOSITION 2.6. (i) d e t f = ~ o ~e~ where a o = 1.

(ii) I f f is invertible then d e t f is a u n i t i n A a n d L ( f -1) = ~ d k t k where

~ - 1 ~ ( i . e . i f 0

& = ~$=kC,_ke, w i t h c, given by ( d e t f ) -* = (E0 a,e3 = E,=0 e~e~ e, 4=

t h e n c~e~ is t h e inverse o f afe~ in t h e subring Aei).

P r o o f . (i) Localization a t p C Xi (for t h e n o t a t i o n see t h e p r o o f of 2.2) gives ( ~ ajei) ~ = ai~ej, = aj~ since ej, = dq.

0 0

B u t (detf)~ = (21(f-- 1p)~ ~ 21(f~ - - lp~) = det (f~) since P~ is free. F u r t h e r m o r e P~ has r a n k i (since ~ E X ~ ) a n d hence ( L ( f ) ) ~ - - - - L ( f ~ ) = 1 + . . . + d e t f ~ . t i a n d a~ = detf~: This proves (i).

(ii) I t is sufficient to show t h e f o r m u l a locally. F i x a ~0 E X~. T h e n P~ is free o f r a n k v a n d we get

(12)

274 G E l ~ T & L I ~ I K V I S T

(2,(f-1),

= 2,(f~ ) = a c t (1 +

-1 tf2 ~)

= (aerie) -~ d e t (t- 1,~) d e t (1 +

t-~f~) = 9 " = a j ~-j

since

ejl 3

= (5#.

= %t-J %

0 j = O j = 0

On the other h a n d

(~, dktk)o = 4or ~ --- (~. %aq_k)l~)t k = GO%_oot = % ~ aiS-~

with j = v - -

o o ~=o ~=~ ~=o j=o

H e n c e the localizations of b o t h sides agree.

3. The behaviour of 2t under change ot rings, taking duals and forming of tensor products

1)t~oPoslTIO~ 3.1.

Let

r

A---> B be a ringhomomorphism (with

r = 1)

and f : P - - + P an A-linear map with P E ~ ( A ) . Then P | is in ~(B) and

~ ( f Q 1B) = r

Proof.

The first s t a t e m e n t is well known. Since

A~(P | B)

is n a t u r a l l y isomorphic as B - m o d u l e to

(A~P) @A B

it is sufficient to p r o v e Tr~ ( f @ 1B) = r ) which is well known.

P~OPOSITION 3.2.

Every f : P - - ~ P with P in ~ ( A ) where

P * = HomA

(P, A) is in ~(A). Furthermore

T r f * = T r f

and 2~(f*) = 2,(f).

induces

f*: P * - + P *

Proof.

F o r e v e r y p C Spec (A) we get a n a t u r a l A~-isomorphism (P*)o = ( I t o m a (P, A))o ~ , h tIomAo (Po, A~) = (P~)*

a n d we h a v e a c o m m u t a t i v e diagram h

(P*)~ ~ (P~)*

l(f*)v h l(f~)*

(P*)~ ~ * (P~)*

H e n c e (f*)~ = h -1 o (f~)* o h. I t follows

(2,(f*))v = 2,((f*)~) = 2,(h -1 o (fv)* ~ h) --- 2,((f~)*) b y 1.3 (iv). B u t (P,)* is free a n d

(13)

E N D 0 1 ~ O R P I I I S M S O F F I N I T E L Y G E N E R A T E D P R O J E C T I V E M O D U L E S 275 2,((fv)*) = det (1 d- (fv)*) = det (1 d-fo) = t,(fo) = (l,(f))v.

This proves the formula for i, and taking the coefficient of t we get the formula for the trace.

N e x t we t u r n to the tensor product of two A-linear maps f: P - - > P and g: Q--> Q with P , Q in ~ ( A ) . F o r completeness we quote

PROPOSITmN 3.3. Tr (f | g) ---- T r f . Tr g.

There is a corresponding formula for i, b u t it is more complicated. I t is convenient to introduce some notation:

L e t A denote the set of all formal power series 1 d- ait -d- a2t ~ -4- 9 9 9 over A with constant term 1. Then A is an abelian group under multiplication. We define

~)*-mult@lication~) in A such t h a t the following formula is valid

1,(f | g) =

1,(f) 9 t,(g).

This defines 9 for all polynomials in .4- since 1 + ait + . . . + a~t ~ = I t ( f ) where f: An--> A n is given b y the matrix

o o . . . o• \ 1 0 T a , _ l ~

f = o 1 . . . + ~ " - ~ /

o . . . o ' ~ ~,

PROPOSITION 3.4. I f I t ( f ) = 1 d- air -4- . . . -4- a . t ~ a n d It(g) = 1 -4- bit d- 9 9 9 d - brat m t h e n

it(f @ g) = (1 -~- ait -4- 9 9 9 -~- ant n) * (1 + bit + . . . -{- b,~t m) ---- 1 -4- dlt - 4 - . . . + d,,nt'"

w h e r e dl = ~b~

d2 = a~b2 -4- a2b~ - - 2a2b~

d a = a~b3 + asb~ --~ aza2bzb2 - - 3aza2b a - - 3aablb~ + 3aaba

cla = a~a2blbs -[- a~aab~b~ - - alaab~bs + a~ba -4- a4b~ d - 4axaab4 + 4a4b~ba - - 2a~aab~ - - - - 2a2blba d- 2a22b4 -4- 2a4b~ - - 4aaba - - 4a~a2b4 - - 4aab2b2 d- a~b~

dmn i = a ' ~ - l a -- n n - - I b ' - l b m m - - I d,~, = a'~b:.

(14)

2 7 6 GEI~T A L ~ K V I S T

P r o o f . J u s t a s in t h e p r o o f o f 1.10 w e m a y a s s u m e t h a t A is a n a l g e b r a i c a l l y c l o s e d f i e l d o f c h a r a c t e r i s t i c z e r o . T h e n

n

= ]7 (1 + = (-[ (1 + jt)

1 1

a n d

s | g) = ~ (1 +

~,~jt) i,j

U s i n g f o r m u l a s f o r s y m m e t r i c f u n c t i o n s (see [1] p. 258) i t is p o s s i b l e t o c o m p u t e d v d2, d 3 . . . . A b e t t e r w a y is t o u s e t h e e x p o n e n t i a l t r a c e f o r m u l ~ 1.10.

P u t p~ = T r f ~, q~ : T r gl a n d r~ : T r ( f | g)~. T h e n r~ : plq~ since T r ( f @ g)~ : T r ( f i | g~) : T r f l T r g*. T h e e x p o n e n t i a l t r a c e f o r m u l a a p p l i e d t o f g i v e s c h t + 2 a 2 s n : (1 + a l t + . . . + a ~ t n ) ( p l t - - p 2 t 2 + p a t 3 - . . . )

a n d h e n c e

a 1 : ~91

2a2 = a i P i - - 1o2 3a3 = a2Pi -- alP2 + ~3 4aa = a 3 p l - - a2P2 ~ - all~ - - P4

, 9 9

S o l v i n g f o r t h e pi:s w e g e t

I01 = a i

P2 ---- a ~ - - 2a2

3 3 a l a 2 + 3a a l~ --- (~i - -

4 4a~a 2 + 4 a l a a + 2a~ ~ 4a a P4 = ai --

9 ~ 9

T h e r e a r e s i m i l a r f o r m u l a s c o n n e c t i n g t h e bi:s a n d qi:s (dim a n d rim). T h e l a t t e r g i v e

di - - ri : Piqi : aibi

: 2 2 2 2

2d 2 d~r~ - - r 2 = a~b~ - - i02q2 = a~b~ - - (a~ - - 2a2)(b ~ - - 2b2) = 2(a262 -~- a2b~ - - 2a2b2) 3da : d2ri - - dir2 + r3 = d2Piqi - - dlp2q~ + I03q3 : albi(a~b2 + a2b~ - - 2a2b2) - -

- - a~bx(a ~ - - 2a2)(b ~ - - 2b2) + (a~ - - 3aia2

+ 3a3)(b~

- - 3b~b~

+ 3b3)

= : 3(a~b a + aab~ - - 3aia2b a - - 3aablb 2 + 3aaba + aia2bib~)

W e o m i t t h e c a l c u l a t i o n o f d 4.

(15)

E N D O M O R P B I S M S O F F I N I T E L Y G E I ~ E I % A T E D P R O J E C T I V E M O D U L E S 277 3 a a~blb2 w o u l d be missing W e could i m m e d i a t e l y h a v e seen t h a t t h e t e r m s a l b l ,

in d a since t h e y w o u l d o c c u r in (1 ~ % t ) 9 (1 + bit + b2t~) w h i c h o n l y has degree 1 9 2 = 2. S i m i l a r l y alb2b ~ will n o t occur.

T o get t h e last t e r m s one can use

( 1 ~ % t + . . . + a n t n) * ( l + blt + . . . -~ b.~t m) - -

(

%-~- t - l + ~ t-2 -~- . . . 9 1 + - ~ + --b-~- t-2 -[- . . .

)

= a'~b~t mn 1 + an an

I n p a r t i c u l a r t h e n u m b e r o f m o n o m i a l s occurring in d~,_~ is t h e same as in dl. L e t sk d e n o t e t h e n u m b e r o f m o n o m i a l s in dk for large m, n (say m, n > k).

T h e c o m p u t a t i o n o f sk seems to be q u i t e a p r o b l e m . B y f o r m a l l y f a c t o r i n g

1 + alt + % t 2 + . . . + ant" = (1 + ~t)(1 + fit)(1 + 7 t ) ( t + St) . . . b4b~, o f

we f i n d t h a t t h e t e r m containing, s a y 2 2

(1 + a / - ~ - . . . ) , ( 1 + b l t + b ~ t 2 - 4 - . . . ) =

= (1 + bx~t + b~fl2t ~ ~- . . . )(1 + b~flt + b2fi2t ~ + . . . ) . . .

is - - ~ f l a ~ . Using t h e large f o l d - o u t t a b l e s of F a a de B r u n o : T h e o r i e des f o r m e s binaires, T u r i n 1876, we f i n d t h e following results s 1 = 1, s2 = 3, s a = 6, s 4 = 15,

% = 28, s 6 = 64, 8 7 = 116, a s = 234, s 9 ~ 373, s l 0 = 814, s 1 1 = 1508.

T h e m e t h o d b a s e d on couning zeroes in tables c a n n o t be g e n e r a l i z e d t o k larger t h a n 11.

N o w b a c k t o defining . - m u l t i p l i c a t i o n in A. B y t h e c o m p u t a t i o n s a b o v e it is clear t h a t i f we cut o f f t h e p o w e r series in t h e left h a n d side o f

( l + a ~ t + . . . ) . ( l + b ~ t + . . . ) = 1 + d~t + . . . + dkt ~ + . . .

a n d t a k e . o f t h e r e m a i n i n g p o l y n o m i a l s of degree n a n d m r e s p e c t i v e l y , t h e n d k = t h e coefficient o f t k will n o t d e p e n d on n a n d m if n , m ~ ] c , t t e n c e w e c a n d e f i n e dk in this w a y . T h e n z] b e c o m e s a c o m m u t a t i v e ring w i t h o r d i n a r y m u l t i p l i c a t i o n as a d d i t i o n a n d . - m u l t i p l i c a t i o n as m u l t i p l i c a t i o n . T h e u n i t y e l e m e n t is 1 ~ t. Clearly A is t o r s i o n f r e e (as a b e l i a n group). F u r t h e r m o r e 2~(f) ~-> 2 t ( A k f ) induces a 2-ring s t r u c t u r e on A (it is e v e n a special 2-ring, see [1], p. 257).

W e d e n o t e b y ~V(A) = {a ~ A0; a is n i l p o t e n t } t h e nilradical o f a ring A.

:PRoPosITION 3.5. (i) I f A i s t o r s i o n f r e e t h e n _N(A) c N ( A ) = {1 + a l t + % t ~ + . . .;

(ii) I f A i s n o e t h e r i a n t h e n X ( A ) c N ( A ) .

a, c

(16)

2 7 8 GElZT A L M K V I S T

Proof. (i) A s s u m e t h a t (1 + alt +

a2t2@...).k

1. T h e left h a n d side is 1 + cat -[- c2t ~ + . . . w i t h ca = a~ a n d in general c, ~ m~a~ -r a p o l y n o m i a l o f w e i g h t n/c c o n t a i n i n g a t least one o f a 1, a 2 .. . . . a~_t. H e r e m~ is a n integer.

W e p r o c e e d b y i n d u c t i o n o v e r n. W e t h a t a 1 , a ~ , . . . , a n _ l E N ( A ) . Since c~

since A is t o r s i o n free.

(ii) I f A is n o e t h e r i a n t h e n 2V(A) p r o d u c t o f a n y k e l e m e n t s o f 2V(A) t h a t all m o n o m i a l s o c c u r r i n g in cn

a 1, . . . , an E N ( A ) . I t follows t h a t (1 + alt -t- 9 9 .),k W e will r e t u r n t o t h e ring A in S e c t i o n 6.

h a v e a~ = 0 so a 1 E N ( A ) . A s s u m e n o w

= 0 we get m n a ~ E N ( A ) a n d a ~ E N ( A ) is n i l p o t e n t , s a y N ( A ) k ---- 0. H e n c e t h e

is zero. T h e c o m p u t a t i o n a b o v e shows c o n t a i n a t least k f a c t o r s a m o n g t h e

1 .

PROI'OSITIO~I 3.6. Given f'. P ---> P , g:

an induced map

H o m ( f i g ) : HomA (P, Q) - + H o m ~ defined by u ~ g o u o f . Then

T r H o m (f, g) = T r f - T r g

Q -+ Q with P , Q E ~ ( A ) . Then we have (P, Q) where H o r n A (P, Q) E W(A)

and )l,(Hom (f, g)) = ~df) * ~,(g).

Proof. W e h a v e a n a t u r a l i s o m o r p h i s m Q =~_ Q** w h i c h induces n a t u r a l i s o m o r p h i s m s

HomA (P, Q) ~ HomA (P, Q**) ~ HomA ( P | Q*, A) = ( P | Q*)*

H e n c e we get T r (Horn (f, g) =- T r ( f | g*)* a n d 2,(Horn (f, g)) ---- ~,(f | g*)*).

Using 3.2 twice a n d t h e d e f i n i t i o n o f . - m u l t i p l i c a t i o n we g e t t h e desired formulas.

4. Relations between 2,(f) and minimal polynomials of f

PROPOSITION 4.1. Let f: M-->M be A-linear with M a finitely generated A-module.

Then there is a m o n i c polynomial q 6 A[t] of m i n i m a l degree such that q(f) = O.

(q will be called a m i n i m a l p o l y n o m i a l o f f ) . The degree of q is at most equal to the m i n i m a l number of generators of M .

s u r j e e t i o n A n s u c h t h a t

Proof. L e t n b e t h e m i n i m a l n u m b e r o f g e n e r a t o r s o f M .

M v 0 . Since A n is free we c a n f i n d g : A n An U ) - M ~ 0

Yg

I f

A n > M ~'0

T h e n we h a v e a ). A n

(17)

E N D O M O I ~ F H I S M S O F F I N I T E L Y G E N E I ~ A T E D P I ~ 0 J E C T I V E I ~ I O D U L E S 279 commutes. N o w g satisfies a monic p o l y n o m i a l qi

H a m i l t o n theorem. Using this in t h e d i a g r a m gives A . 7~ ~ M ) ' 0 0 - - qi(g) 9 ~ q~(f)

A " ~ ' M ~ 0

; g

f r o m which it follows t h a t q i ( f ) = O.

of degree n b y t h e Cayley-

l ~ e m a r k 4.2. The p o l y n o m i a l q is n o t unique in general. I f A = Z/(4) f = (20~) satisfies b o t h f 2 = 0 a n d f z + 2f = 0.

t h e n

PROPOSITIO~ 4.3. G i v e n f : P --> P w i t h P i n ~ ( A ) . A s s u m e t h a t f h a s m i n i m a l 2 o o l y n o m i a l q a n d ? u t ~(t) ~ ( - - t)~q(-- t -i) w h e r e v = degree o f q. T h e n L ( f ) s a t i s f i e s the f o l l o w i n g d i f f e r e n t i a l e q u a t i o n i n A [ t ]

d ~ . ~f (rood t ~+1) t2'(f)-I ~ ) " ( f ) = ~l

w h e r e ~v(t) = blt - - b2t 2 + bat s . . . w i t h b~ = T r f ( I f q(O) = 0 w e m a y t a k e (mod t ~) i n the f o r m u l a above.

P r o o f . Assume t h a t q(t) = t ~ + clt ~-1 + . . . + ekt "-k. T a k i n g t h e trace of O = f~ + e i f ~ - l + . . . + ckk ~-k w e get O = by + clb~_l + . . . + ckk~_k where in case k = v we p u t b o = T r 1p. Multiplying b y f a n d t a k i n g traces again gives b ~ + 1 - 4 - c l b ~ + . . . + e k b v _ k + x = O etc. N o w ~ ( t ) = 1 - - c l t + c 2 t 2 - . . . • k a n d

q ( t ) ~ ( t ) = (1 -- clt -+- c~t 2 - - . . . • ckt~)(blt - - b~t ~ + b a t 3 . . . ) =

= (terms of degree < v) • (bv + Clb~_ I + . . . + ckb~_k)t j - (b~+ l + q b + . . . + ckb~_k+~)t ~ + 1 + . . .

H e r e all t e r m s of degree higher t h a n v vanish a n d t h e coefficient of V is zero unless k = v in which case it is (-- 1)"-lck Tr 1p. T h e e x p o n e n t i a l t r a c e f o r m u l a gives

d

t 2 ' ( f ) - x dt L ( f ) ~ ~v(t) a n d m u l t i p l y i n g b y q(t) finishes t h e proof.

B e m a r k 4.4. I f A contains t h e r a t i o n a l n u m b e r s Q t h e n 2,(f) is d e t e r m i n e d b y a m i n i m a l p o l y n o m i a l q of f a n d b~, b 2 . . . . b~_ 1 where v = degree of q.

E x a m p l e 4.5. A s s u m e t h a t A ~ Q. L e t f: P - + P h a v e m i n i m a l p o l y n o m i a l q(t) = t~ - - t, i.e., f is a non-trivial i d e m p o t e n t in E n d A P . T h e n ~(t) = 1 + t a n d i f we a p p l y 4.3 we get (since q(0) = 0)

(18)

2 8 0 G E R T A L 1VIKVIST

d ((1 + t)(bit - - b 2 t 2 . . . ) ) ( r o o d t 2) b,t

t2t(f)-* -~ 2,(f) = 1 -~- t -- 1 + t

which implies %(f) = (1 + t) b* = (1 + t) vrf.

I f f8 = f, i.e. q(t) ---- t 3 - - t one finds similarly

b~+b, b2--b,

% ( f ) = ( l + t ) 2 . ( l _ t ) 2

E x a m p l e 4.6. Let G be a finite group of order n and A[G] the group algebra.

Let f: A[G] --> A[G] b e given b y left multiplication with a E G. I f a has order k then the minimal polynomial of f is q(t) = t k - 1 and q(t)--- 1 + (-- 1)kt k.

Using 4.3 and the fact t h a t b 1 - - b ~ - - . . . = b ~ _ ~ = 0 and b k - ~ n we get

n

%(f) = (1 -- (-- l)ktk) k

5. Endomorphisms of modules having finite resolutions of finitely generated projective modules

L e t 9(~(A) denote the category of A-modules M such t h a t M has a finite resolution in ~ ( A ) . We want to define ~t(f) for f: M - + M when M E~)(~(A).

For this we need some preparations.

Definition 5.1. Let E n d ~ ( A ) denote the category of endomorphisms of modules in ~(A), i.e. the objects are endomorphism f: P - + P with P E ~ ( A ) and a morphism u from f to g: Q - ~ Q (where Q E (~(A)) is a commutative diagram

P ~ Q

P ~-Q

Then K o (End ~(A))

morphism classes of) the objects in b y all If] -- [f'] -- If"] where

0 ~ P '

+ f

0 + P '

is defined as the free abelian group generated b y (the iso- E n d ~ ( A ) modulo the subgroup generated

) P )~P" ~ 0

f f"

) P ~ P " ~ 0

is commutative with exact row. Similarly we define E n d 9(~(A) and K o (End ")C(A)).

PROrOSITION 5.2. The embedding E n d ~ ( A ) --> E n d 9(~(A) m o r p h i s m i: K o (End ~(A)) ~ K 0 (End ~)C(A)).

induces an iso-

(19)

E N D O M O R P H I S M S O F F I N I T E L Y G E N E R A T E D P R O J E C T I V E M O D U L E S 2 8 1

Proof. The usual proof does not apply since f: P - ~ P with P E ~ ( A ) is not a projective object in the abelian category of all endomorphisms (which is iso- morphic to the category of modules over A[t]). F o r t u n a t e l y Swan has formulated a theorem general enough for our purposes (see [12] p. 235. Theorem 16.12). P u t

= E n d ~ ( A ) and c)]Z = E n d ~)(~(A). Then the assumptions in 16.12 are fulfilled.

Indeed,

(1) Clearly E n d ~ ( A ) and ~(~(A) are closed under direct sums

(2)

I f 0 v P ' - % ~ ' P V ~'P" > 0

q~ "i" V

0 > P ' - ) - P ~ ' P " ~ 0

is exact and commutative then P , P " E C ~ ( A ) implies P ' E ~ ( A ) and P, P" E 9C(A) implies P ' E ~)C(A) (see Bass [2], p. 122, Proposition 6.3).

(3) Given a n y f: M ~ M with M E ~)(~(A) there exists a finite resolution in E n d ~CP(A), i.e.

O - - ~ P a > . . . . > /)1 ~'Po ~ M > O

O ~ - Pa ~" . . . ~ P1 ~ P o - - - ~ M > O is commutative with exact row and all P~ E ~ ( A ) . This is easily proved.

Now the inverse ~0 of i: K 0 (End ~(A)) - ~ K o (End ~ ( A ) ) is given b y

d

v([f]) = Z ( - 1)'[f,]

0

(*)

and it is shown in [12] t h a t the right hand side is independent of the choice of the resolution (.).

THEOaE~ 5.3. Given f: M ~ M with M E ccF(A). Consider the resolution (,) in End,CP(A) above. T h e n

d d

0 0

are indepe~dent of the choice of the resolutions and the liftings f~ of f.

Proof. For f: P - + P with P C ~ ( A ) , f~--~ )~,(f) is a map from (isomorphism classes in) E n d ~ ( A ) to A. I f O - - > ( P ' , f ' ) - - ~ ( P , f ) - - ~ ( P " , f " ) - - ~ O is exact in E n d W(A) we have (by (1.5) 2 , ( f ) = 2,(f'),~,(f").

Hence b y the universal p r o p e r t y of K o (End ~ ( A ) ) we have a factorization

(20)

282 G E R T A L M K V I S T

[]

E n d W(A) > K o (End W(A))

A Assume now t h a t (M,

f)

and

in E n d ~ ( A ) .

and thus

in E n d 9(~(A) has two resolutions 0 - + (Pd, f~) - + . . . ---> (Po, fo) - ~ , (M, f ) - + 0

0 -+ (P~,, ]j,) - + . . . -+ (P'o, fg)--~ (M, f ) --> 0 B y the proof of 5.2 we have

d d"

(-- 1)i[~] = ~ (-- ])i[f~] in K o (End ~ ( A )

0 0

d d"

2,(fj)(-1)J = i . d .

0 o

The statement about the trace follows from taking the coefficient of t in the formula for 2,.

Now we can safely make the

Definition 5.4. For f : M - + M with M in 9((A) we define

d d

x(f) = Z (-- 1)' T r f , and M f ) = ]-T

Mf,) (-1)'

where the fi:s are given in (,).

PROI'OSlTIO~ 5.5. Let

0 - - - M k - - - ~ . . . ---~ M1 ---~ M0 --~ 0

be a commutative diagram with exact row and all M~ in DC(A). Then

k k

~. (-- 1)'X(fi) = 0 and ~ ~ t ( ~ ) ( - 1 ) ' = 1

0 0

Proof. Consider the diagram (see the proof of 5.2) K o (End ~ ( A ) ) + - : ~ + K o (End 9((A)) i

(21)

ENDOI~IOI:tPHIS2r163 O F F I N I T E L Y G E N E I ~ A T E D I ~ O J E C T I V E :~IODITLES 283 where we denote ~, b y ~, on E n d g ~ ( A ) . The definition of ~ and ~,

exactly t h a t ~ = 2t o ~. Now given an exact sequence o -+ (M~, fk) - ~ . . . - ~ (3/0, fo) -> o

k

in E n d 9((A) we get ~ (-- 1)i[f~] ~- 0 in _R7 o (End ~9(~(A)) and hence

0

k

]7- 7t ,[/;](-1/---- 1

0

Taking the coefficien~ of t we get the formula for Z.

means

COROLLARY 5.6. z ( f O g) = z(f) + X(g) and 2,(f 9 g) = M f ) ' M g ) . N e x t we generalize the exponential trace f o r m u l a

PROPOSITION 5.7. I f f: M --> M with M 6 ~ ( A ) then d

_ t~,(f)-i ~ ~,(f) = ~ z ( f ) ( - t)' in d .

1

Proof. L e t 0--~ (Pa, fa) - + . . . ~ (Po,%) -*" ( M , f ) -+ 0 be a E n d ~(A). Taking logarithmic derivatives of

d

2,(f) = ] - [ 2,(fj) ( - #

j - 0

we get (using the exponential trace formula)

- t,W) -1 a,(f) = ~ ( - 1 / - tx,(L) -1 ~,(fj) =

)

-- 5 (-- 1 ) i ~ ( - - 1 ) i Tr (f~)t ~ -

-- -- (-- 1/ ( 1)J T r (f~)

j = 0 i = l i = l

since

0 -->- (Pd, f~) - - > . . . --> (Po, f~) --> (M, f ' ) -->- 0

r e s o l u t i o n in

= ~ (-- 1)~z(f')t '

i ~ l

is a resolution of (M, fi).

THEOREM 5.8. Let f: M --~ M with M E 9((A) be nilpotent, f,~+l = O. Then, there is a resolution

o --> (P~, f~) - - > . . . - ~ (Po, fo) --> ( M , f ) --> o in E n d ~ ( A ) such that all f,~+l ~_ O.

(22)

2 8 4 GERT ALMKVIST

A s s u m e t h a t r k P i = n~ a n d L ( f ) = 1 + ~ cl 9 T h e n all the ci:s are n i l p o t e n t t i

v v 2 v k

a n d clc~ . . . c~ = O i f the w e i g h t ~l ~- 2v~ + . . . + kvk > m ~ a o n . I t f o l l o w s t h a t L ( f ) i s a p o l y n o m i a l o f degree

na i f d is e v e n

<~ no + ran1 + n2 + tuna + " " " + tuna i f d is odd.

P r o o f . The existence of t h e projective resolution such t h a t f 7 +~ = 0 is precisely P r o p o s i t i o n 6.2, p. 653 in Bass [2]. N o w 2t(f) is a p r o d u c t of factors

L ( f , ) = 1 + aat -+- . . . ~- a.it"i

o r their inverses. B y 1.7 a n y m o n o m i a l in t h e aj:s vanishes p r o v i d e d its weight is larger t h a n mn~. I n v e r t i n g t h e p o l y n o m i a l L(f;) ~-- 1 + a l t + 9 9 9 + a.~t "~ we f i n d t h a t 2,(fl) -~ is a p o l y n o m i a l o f degree a t m o s t mn~ a n d t h e coefficient of t" is a p o l y n o m i a l in t h e aj:s where e v e r y t e r m has weight v. T a k i n g t h e a l t e r n a t i n g p r o d u c t of t h e L(fi):s we get L ( f ) = 1 - ? c l t + c p t 2 + . . . where c, is a s u m o f t e r m s of t h e t y p e

r l 9 a : ; 0 b~ 1 1) snd ( * * )

a 1 . . . . . . . . n d

i f 2t(fo) : 1 + alt + . . . + a % t % . . . , L ( f d ) : 1 -{- b~t + . . . + bo~t ~d.

F u r t h e r m o r e t h e weight of t h e m o n o m i a l (**) is

v : r 1 + 2r~ ~ . . . + n o r % + . . . + s 1 + 2s 2 + . . . + nas%.

v 1 v 2 V k

:Let n o w c = c ~ c ~ . . . c k be a m o n o m i a l i n t h e ci:s o f w e i g h t d

731 -~ 2V 2 -~ 9 9 9 -~ kvk > m ~ . n ~ .

i=0

T h e n c is a s u m of monomials o f t y p e (**) such t h a t t h e i r weight

d

0

H e n c e a t least one of t h e factors

(bl b2 . . . 9 . a~ ) . . . . bs"d~

- - n d !

h a s w e i g h t > m n ~ , . . . , m n ~ respectively a n d this factor is zero b y 1.7.

The e s t i m a t e of t h e degree of L(f) is clear f r o m t h e previous considerations.

COROLLARY 5.9. A s s u m e t h a t the r i n g A i s r e d u c e d, i.e. the n i l r a d i c a l N ( A ) = 0. T h e n L ( f ) ~ 1 f o r all n i l p o t e n t f : M - ~ M w i t h M E%V~(A).

(23)

E N D O I ~ O R P K I S M 8 O F F I N I T E L Y G E N E R A T E D P I ~ 0 J E C T I V E N O D U L E S 285 We denote the projective dimension of an A-module M with dhAM.

PI~OI'OSlTION 5.10. Let A be a local noetherian ring with maximal ideal m, residue field k = A / m , and M a finitely generated A-module. I f d = d h ~ M is finite then M 6 r and 2A(1M) = (1 + t)ZA(1M) where

d

ZA(1M) = ~ (-- 1)' dimk Tor~ (M, k)

i = 0

Proof. Choose a minimal free resolution

O-+ Pa--+. . . - ~ P1---~ Po--+ M - - ~ O

with nl = rkAPi = dim~ Tor~ (M, k) (see Serre [10] p. IV -- 47). Then

But

d

d d X ( - - 1 / , , i

),t(1M) = ~ 2t(1p,) ( ' / = ]--[ (1 + t) (-1~hi = (1 + t) ~

0 0

d d

Z(1M) = ~ (-- 1 / T r lv, = ~ (-- 1/%.

0 0

PROPOSlTIO~ 5.11. Let A be a regular local noetherian ring with residue field k.

Then k

6~-2(A)

and , ~ ( l k ) = 1.

Proof. P u t t i n g M = k in 5.10 we get

/ ( l k ) = ~ (-- 1 / d i m k Tor~ (k, k) = (-- 1/ = (1 -- 1) a = 0

0 0

d i m k T o r ~ ( k , k ) = ( d / where d = g l o b a l d i m e n s i o n o f A i f A i s a r e g u l a r since

local noetherian ring. V /

PRO:POSITI02~- 5.12. Let r A - + B be a f l a t ring homomorphism, i.e. B is flat as an A-module. I f f: M -+ M with M 6 ~ ( A ) , then M @A B E C~(B) and

2 ~ ( f Q IB) = 4 ( 2 { ( f ) ) . Proof. Let

0 - - + P a - - + . . . + P o - + M --+ 0

f~ fo f

"f "t" Y

O -+ P a--~ . . . -+ P o-+ M - - ~ O

(24)

286 G E : R T A L ] Y I K V I S T

be a projective resolution. T h e n t h e exactness is preserved after t a k i n g 9 @A B since B is A - f l a t . F u r t h e r m o r e each Pi @A B is B-projective a n d f i n i t e l y g e n e r a t e d as B-module. H e n c e M @A B e 9(~(B) a n d since r = 2B(f~ @ 1B ) b y 3.1 we finish t h e p r o o f b y t a k i n g a l t e r n a t i n g products.

COROLLARY 5.13..Let A be an integral domain and K

= ~, ( f | K l s ) Proof. The inclusion A - + K is flat.

its quotient field. Then

COI~OLLARY 5.14. Let A be an integral domain and f: M - + M where M is a torsion module in ~)C(A). Then ~,(f) = 1.

Proof. Since M is torsion we h a v e M @A K : 0 a n d hence

~ ( f ) = ~ ( f @ 1K) = ~ ( 0 ) = 1 b y 5.13.

COROLLARY 5.15. Let A be a Dedekind ring and f: M --~ M A-linear where M is finitely generated. Then M = T • P where T is a torsion module and P is projective and torsion free.

.Furthermore f ( T ) c T and ~t(f) = ~,(fv) where f~: P ~ P is the )>torsion free part)) of f .

Proof. F i r s t we n o t e t h a t M E 9((A) since A is n o e t h e r i a n a n d gl. dim A < 1.

T h e n M = T Q P is j u s t B o u r b a k i [5] p. 79, Corollaire. N o w Horn A (T, P) = 0 so we get t h e following d i a g r a m rising m a t r i x r e p r e s e n t a t i o n

O--->T--~T | P---.'-P--~O

f:(fTh [

O-+ T - + T | P - + P - ~ O.

(:)

F r o m 5.6 a n d 5.14 it follows t h a t

~,(f) = R,(fT)':',(fP) = 1 9 ~,(fp) = 2,(fp).

W e n o w e x t e n d t h e definitions of Z a n d )~t to e n d o m o r p h i s m s of g r a d e d modules a n d complexes.

(25)

E N D O 1 K O E P H I S M S O F F I N I T E L Y G E N E E A T E D 1 J B O J E C T I V E M O D U L E S 2 8 7

Definition 5.16. Let M = | Mi be a graded A-module with all Mi E 9d(A).

I f f: M -+ M is a hornomorphism of degree zero, i.e. f ( M i ) c Mf, we p u t f / = the restriction of f to M~ and define

d d

Z~'(f) = ~ (-- 1)'z(f, ) and 2,g'(f) = ]--[ 2,(fi) (-1/.

0 0

:Note t h a t Zg'(f) and ~,~(f) in general do not agree with z(f) and 2t(f) where M is considered just as an A-module.

Similarly if

0 ~" C a - C d _ 1-->- . . . --->- C 1 - C O ) 0

Y 8 Y (~1

0 ~Cd -d + C d _ I - - > . . . ~ C 1 > Co ~'0

for short f: C--->C is a chainmap of a finite complex C with all C i in <)g(A), we define

d d

Z(f) = ~ (-- 1) i T r f i and as(f) = T-[ 2,(fi) (-1)/.

0 0

P~OeOSITIO~ 5.17. Let f'. C --+ C be as above. A s s u m e that all homology modules Hi(C ) are in 9 ( ( A ) . Then

g ( f ) = Zg'(H.(f)) and 2t(f) = 2,g'(H.(f))

where H . ( f ) : H . ( C ) --* t I . ( C ) is the induced endomorphism of the graded homology module H . ( C ) = | ).

Proof. P u t K~ = Ker ~i and B~ = I m 51+1. Then we have exact sequences O --~ K ~ --~ C I ---~ B i_ I ---> O

O--* Bi--> K,--> H,(C ) -->0.

:Now B o = C o e g ( ( A ) and C l e g ( ( A ) so K 1 e g g ( A ) b y Bass [2] p. 122, Proposition 6.3. Since HI(C ) E 9 ( ( A )

B i, K i C 9 ( ( A ) . We get induced maps 0 - * Ki --* Ci - * B~_I --> 0

0 --~ K i ~ ff~ --~ B i _ l ~ 0,

we also get B 1 E c)((A). By induction all 0 --, Bi ---> K , --, HI(C) - * 0

,Hi(f)

0 ---> Bi --> K i "-~ HI(C) ---> O.

Using 5.5 several times and taking alternating products all 2,(gl) and 2,(hi) cancel and we get the w a n t e d formula for 2,(f).

Références

Documents relatifs

– We should perhaps remind the reader; the objects in the set T are bounded below chain complexes of finitely generated, projective left R-modules, and the complex P ∗ is the complex

The question arises as to when a semi-simple near-ring is strictly semi-simple (the converse clearly is always true). case a module M is injective iff it satisfies

The aim of this paper is to extend from ideals to modules over commutative rings some results of Fuchs, Heinzer, and Olberding [8], [9] concerning primal and com- pletely

A relaxation of that concept that is special to the ring I is that of quasi Type IV codes (QTIV), that is to say QSD codes with an even torsion code [3].. While the build

It is also shown that each indecomposable injective module over local Noetherian rings of Krull dimension one has finite Malcev rank.. The preservation of the finiteness of

For Z d -actions by automorphisms on connected compact abelian groups, in particular on tori, the method of moments can also be used, since the mixing property of all orders

[r]

In particular, every associated prime ideal of M is maximal if and only if M is locally of finite length, in the sense that every finitely generated submodule of M has finite