• Aucun résultat trouvé

SET ERIS

N/A
N/A
Protected

Academic year: 2022

Partager "SET ERIS"

Copied!
169
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

EFFECTOF CLEAR-C UTT ING ON TIJE DIVEIlSrrYAND IlISTIUIIUTIONOFCO LL EMIIOLAIN WESTEIlNNEWFO UNDLANDIIALSAM FIIl-DRYOPTERIS

ANDEQUISETUM-RUBUSFORESTS

By DaisyChnndelkaArlllnayag;''11

A thesissubmitted totbe Schcnl ofGrad uateStudies in par1ialfullilmcntof the requi rementsforthedegreeof

MasterofScience

Dep artment of Biology MemcrialUnlvcrsltyofNewfuand land

August1995

St ..Iolm 's Newfo undland Canada

(6)

. +.

Nalionallibrary 01Canada

~uisitions and Bibliographicsevces Branch 395Welingb1S/lee1

~Onlaro

:~~~enal:male Oirectiondes acqusi!ionsli!

oesservic~bibliographiClues 395,...WelliroijlD'l Oll8wI(Ontaro) K1A!JN.4

TIIEAUnJOR HASGRANTED AN IRREVOCABLENON·EXCLUSlVE UCENCE ALLOWING TrlENATIONAL LmRARYOFCANADA TO REPRODUCE., LOAN,DISTRIBUTEOR SELLCOPIESOF HISIHER1lIESISBY ANY MEANS ANDINANYFOR..\.f OR FORMAT.MAKING THISTHESIS AVAILABLETO INTERESTED PERSONS.

TIlEAUTHOR RETAINSOWNERSHIP OFTHECOPYRIGHTIN Hl$IHER THESIS.NEITHERTHE THESISNOR SUBSTANTIAL EXTRACTS FROMIT MAYBE PRINTED OROTHERWISE REPRODUCED\\'ITHOUl mS!HER PERMISSION.

ISBN0·612- 06102- 7

Canad~

L'AUTEURA ACCORDEUNELICENCE IRREVOCABLE ET NONEXCLUSIVE PERMETfANTA LABIBLIOTHEQUE NATIONALEDUCANADADE REPRODUIRE, PRETER,D1STRIBUER OUVENDRE DESCOPIESDE SA TIlESEDE QUELQUEMANIEREET SOUSQUELQUEFORMEQUECE SOIT POURMETrREDES EXEMPLAIRESDE CEliE THESEALA DISPOSITIONDES PERSONNE INTERESSEES.

L'AUTEURCONSERVELA PROPRIETE DU DROIT D'AUTEURQUIPROTEGE SATHESE.N1LATHESi!.Nr DES EXTRAITS SUBSTANTIELSDE(ELLE·

crNEDOIVENT ETREIMPRIMESOU AUTREMENT REPRODUITSSANSSON AUTORISATION.

(7)

AnSTRACT

The diversityand distributionofCollcrnbola in western Newfoundlandbulsemfir forestswerestudiedtodetermineiftheseforestsreturn rothcir origjnnl conditions inrespect totheirbiota,especiallythe collcmbolunC01l111111nity.whentheyrcgcncnncnfl...-r clear-cutting. Thestudywascarriedcut intwodiffe rent balsamfir forestsofthreediffe rentages. They includedbalsamfirIJ/,)Y'IJfI.'l'i.\'(FD) andbalsamfir/::qlli.l'.'IIIIII-Rllhll.l'(FE) fo rest(If40 yenr oldregro wth,60 yearoldregro wthandolduncutfor ests.wttnlneachtype orrorcst rwo replicatesites ofeachof the threedifferentages wereselected .Three types of'smnplcs,pitlill1 trapsamples,microhabitatsamples,andsoilsamples,were collectednomthe!"Dforest.Soil sampleswerecollectedfromtheFE forest.

Pitfalltra ps wereusedintheI'Dforestin sunuucr1992.Mostufthcspeciescollected inpittalltrapswerelarge, surfacedwellingcollcmbolnns.Flflccn species were collectedinthe oldforest and14and 19specieswerecollectedin40and60yearoldforests , respectively TO/l/(/cer/lsjllll'Uw.:llll.l;7:mil/ fJr,1;;1I1(J/J/ohr>~1nllll fifiIS(:i ll lll,Ore/lllS!!I!"I..-'i//c·f,fuudNeanum

I11I1.R '/J1"II1IIwerethedominant speciesinallsites.Pitfalltraps didnotrevealdifferencesin

collcmb olancommunitiesbetw eenthedifferentaged forests

VariousmicrohabitatsweresampledintheFOforestinsummer199] ,ineludingrouen wood,tree holes,deciduousleaves,moss fromliveanddeadlice,lichenfro mliveanddead tree,andbarkfrom liveanddead tree.Thirty-livespecies of Collernbolawerecollected from allmicrohabitatsinthe old forest. Twenty-sevenand]2specieswer ecollectedill 40 yearlind

(8)

60yearoldforests respectively.Vol.I'O/IIilllll:Jliclllaand!so/(J/Ilie/Iamil/orwerethe dominant species intilemicrohabitatsontheground.One species,Usettasettfera.wascollected only inthe microhnhitat sontrees

Soilsamples were collectedinsummers1992,1993andJune1994 in theFe. forest and insummer 1994intheFEforest.Ten samples,eacha cubeof surfacelitterand soil,IOem xIncmx teemdeep,werecollectedfrom eachsiteon each samplingdale. Eachsample was cutintotwohorizontal halves,and each halfwas extracted separately in modifiedBerlcse funnel.Atotal ofS3species representing29 genera ofCollembolawerecollectedfrom the soil samrlcs,Themeandensitiesanddiversity of the Collembola collected intheupper halves oflhesoil&lmpJcswerehigherthan those of the lower halveson eachsampling dale, except li,1II11,'IK;a Krl11l11laf(/wasmoreabundantin the lowerhalves.Mean densitiesofCallembola ill the FD forestvariedbetween174.4to 34',l,2/1000crnland inthe FE forest 209.0to 572.0I1OOO<:n1",Seasonalpatternswereobserved in the proportion of Coilembola occurring in thelowerhalfofthe samples andin the totalnumberofCollembolacollected inthe FD forest.In the latesummertheproportion of'Collerroolain thelowerhalfofthe sampleswas higherthan that of'tbcearlysummer,and thetotalabundancewas higherinJuneand August thaninJuly,

In both FD andFE forests,old siteshadthe highestspeciesdiversityandabundance.

In the roD forest .the 40 yearoldsitehadthelowest species diversity andthe60 year old forest had thelowestdensity.Inthe FE forest,40 yearoldsiteshadbothlowest species

(9)

diversityanddensity.Twospecies.Fot...nmia!,('uk-1I1"andf.w#fJlll id la mi!IfJrwerethe dominantspeciesinbothforesttypes,compr islng about50-70'1.ortbctrotalml1Ul;ll'f" of Collcmbola.TOIII{){."l.nl.~.fk(ln'q."l.·'1'i.SI':f1f1J..'WJI1,tn 1Ii(·"'I.I/i."nod1.'iI#,II,,,'(Ih',..,.,.;',)!>t'/flwere collectedonlyinthe old forest.1:mi,. .•andWil/IJ1I·."idhu.\·!;wererestricted10thereg rowth forests./.'iOII" ,lIIntff'l'hulmld..-s;N.:d"., II/imltll.fandN\·..·III,f;'H.'1·r lll.fwerecollectedonlyin theFEforest.

Thisstudyindicatesthat clear-culling docshave11longtermeffectonthenlnmdnnce and diversityof Collembola. Forty year old forestsholdtheIC,lSIdivcrsity,,U1dspecies diversitylncrcascdwithforestage.OldforestscontainedthrccCollembolaspeciesthatWCI'C notcollectedfromregrowthforests.

iii

(10)

ACKNOWL.EDGEME NTS

I am grcnrfhltoDr.DavidLarson, myGraduatesupervisor,forfinancial support, and for his guidance,continuedencouragement,advice and especiallyhis help in statistical analysis.Iwish tothank mySupervisoryCommitteemembers Drs.Keith Egger and Faye Murrinfurtheir helpfuldiscussion andkind advicethroughout the course ofthis project.I alsothankDr.Jan Addison,ForestPestManagementInstitute, Sault Ste.Marie,Ontario,for her assistanceinidentificationoftheColtembolaspecies.

Iwouldlike to thankForestry Canadafor the financial support for this study, espccially toDrs.WadeBowers,!lillMendesand[an Thompson.Iwouldliketo expressmy appreciation10allthestaffmembersortbe PasadenaField StationandthosefromForestry C,lIIadawhohelpedmein variouswaysinthe field station as welt as inthe field.Special thanks arc due10 "illCurran,John Marshall,andBrucePike.

Mythanksalso goesto Illycolleagues,EileenDwyer andMeganDavisfortheirhelp andvery goodcompanythroughout the studyperiod.IthankMr.RoyFicken forhis :lssistancc in photographyandalltechnical and administrativestaffoftheBiologyDepartment fortheir helpnnd friendship over the years.Finally,I wouldlike to thankmy family, my htls'.>mulPuvancedrnnanddaughterNivetha, andmy mother-in-lawandfather-in-lawfor their love, continuedsupport andencouragementduring thestudy period.

(11)

TARLEOF CONTENTS ABSTRACT ...

ACKNOW LEUGMENTS . TA RLE OIl CONTENTS . ListofTahles..

Listof Figures ....

1.INTRO DUCTtON...

1.1Historical Review...

1.2Importanceof Coliembolain Forest Soils...

1.3Biologyof'Collernbola. 104 ResearchObjectives . 2.MATERIALSANI>I\1ETIIOOS...

2.1Study Sites...

2.2HabitatCharacteristics..

2.3SamplingMethods...

2.3.1Pitfall TrapSamples. 2.3.2 Microhabitat Samples. 2.3.3SoilSamples...

z.a

Idcmif lcation.... 2.5StatisticalAnalysls...

3.RESULT S...

3.1Habitat Characteristics...

3. 1.1SoilCharacteristics...

3.1.2VegetationCharacteristics...

3.2Col1cmbolafauna...

3.3PitfallTrap Samples. 3.4Microhabitat Samples. 3.5 SoilSamples...

3.5.1FDSites....

Page

iv

viii xi

10 10 12 13

"

19 19 22 21 25 25 25 29 H 14 41 44 44

(12)

Page 3,5.1.1VerticalDistributionof Coliembola.. 44 3.5.1.2TotalNumbersof Coliembola.... 44

3.5.1.3Faunal Composition... 49

3.5.1.4 lJiversityIndices andEvenness... 52

3.5.1.5 Rarefaction" 52

3.5.1.6Principal ComponentsAnalysis.... 59 3.5,1.7DiscriminantFunctio ns Anatysis; 59

3.5.2FE Shcs.. 63

3.5.2.1VerticalDistributionofColJembola.. 63 3,5.2.2Total Numbersof Coilembola... 63

3.5.2.3Faunal Composition.. 65

3.5.2.4DiversityIndicesand Evenness.. 65

3.5.2.5Rarefaction .." 6S

3.5.2.6Principal ComponentsAnalysis . 67 3.5.2.7DiscriminantFunctionsAnalysis 67 3.5.3Comparison and ClassificationofSoilSamples... 71

3.5.3.1Clustcr Analysis.... 71

3.5.3.2Two WayIndicator Species Analysis... 75 3.6Relationship net weenCol'ernbolaCommunityandEcological

Factors.. 75

3.7CoucmbolaCommunity StructureinBalsamFirForest.. 77

4. J)ISCUSSION.. 92

4.1 Habitat CharacteristicsWith Different Ages ofForests. n 4.2CollcmboluCommunityStruc tureinBalsam FirForests .. 93 4.2.1CollembolaFauna inDifferentMicrohabitats; 93 4.2.2 CollembolaIauna in Different Forests.. 9S

4.2.2.1 Vertical Distribution.. 95

4.2.2.2 Total Abundance.. 97

vi

(13)

. 14 1 Pugc 4.2.2.3Diversity of Coilembola .. 100 4.3.EffectofClear-Cuttingon The Diversity andDistributionof

Collembola:. IOJ

5.LITERATURECITED.. ..110

6.APPENDICES .... us

AppendixAMeanDensities(IOOO/cm) ofCoilembolaSpeciesCollected

From EachSiteFromEach SamplingDate 119

AppendixB.Shannon-weiner DiversityIndicesfor Col1embola in TheUpper AndLowerHalves ofTheSoilSamplesCollected From 3Different AgedFD Forest. Summer1992-1994....

AppendixC.Two WayIndicatorSpeciesAnalysis Table ShowingThe Classificationof ForestswithIndicatorSpeciesofColiembola...143

vii

(14)

Listof Tables

TableI. Characteristicsof'firIJryojJll!ri,\'(FD)and fir/\+qlli.\·<!11I1II(FE) forestsin western Newfoundland balsamfirforests

Page

(aft erMcedcsand Mores1989),.. . 14

Table2. Sitedescriptions

cruc

threedifferent aged FD forests in western Newfoundland.Detailsof soils,vegetationandtree

densityarc givenin Tables3-5 15

'rableJ. Mellnsoilcbamctcristicsof 1.., F and Hlayersof FD study sites(twosamples/site were analysed,dataprovided by Forestry Cnnada).. ... ... .26 'l'nblc4. Loadings ofthe soil characteristicson the tirsttwo factors

extracted byPrincipal ComponentsAnalysisof FDstudyslrcs 27 Tublc5. Classificationresults ofthe DiscriminantFunctions Analysis

lor the soileharacteristicsoftheVD study sites... .. 30

.. 32 TableG. Summarytableof tile soil characteristicsshowinghighest

significantcorrelation on DiscriminantFunctionsIand 2of

Ill) studysircs.. ...30

Tublc7 Meanvaluesof vegetalion characteristics(n=50)oftheFD studysites.expressed as percentageofsoilcovered (several characteristicsmay overlap so thatthe total percentcover exceeds 100%,Data providedby Dr.JanThompson.Forestry

Cnnadn) 3\

'lnblcR. Mean tree density (number/ml)and diversity(Brillouin'sdiversity index) ofFD studysites(dataprovided byDr.JanThompson, Fotcstry Carmdn)..,.

Table9 Loadingsof'vcgctationcharacteristicsonthefirst twofactors extractedbyPrincipal ComponentsAnalysisofFDstudysites 33 Classificationresults of theDiscriminant FunctionsAnalysis li.lrthe vegetationcharacteristicsof FDstudy sites... . . 36

viii

(15)

TableII. Summarytableor tncvegetationcharacteristicsshowing highestsignificantcorrelationonDiscriminant FunctionsI

and2ofFDstudysiles... .. .. J6

Table12. Specieslist ofCo llcmbolacollected fromFIJ HndFEforests, summers1992to1994. (SpeciesorderfollowsChritianscn

and Bcllingncr1980)... . .17

Table 13 Collcmbola TaxaCollectedin PitfalltrapsfromtheFDfore st sill'S,Summer1992 (Rank:morcthnnl n spccimcusv'w ", abundant"; 5-10 spccimcnc-'ee,common':1-5 spo-imcns-

·'- rare')...

Table14. CoucrnbolaTaxaCollected in Microhabitat Samples from the FDOforest.Summer1993(Microhabitats:A-roltellwood, D-treehole, C-ded duolIsleaves,D-IIIOSSfromfivetree. E- ruoss from dead tree, r-nchcnfromlivetree.rf-licncnfrom dead tree,H-barkfromlive tree. l-barkfromdcnd tree.Rank:

follow captionofTable13)...

TableIS. CollembolaTaxaCollectedinMicrohabitat Samples fromthe FD40 forest, Slimmer1993(Microhabitatsandrnnks:fllllllw

40

eaption ofTable 15)... . 41

....42 Table 16. CollcmbolaTaxa Collected inMicrohabitat Samples fromthe

FDGOforest,Summer1993(Microhabitatsamiranks:follow captionof Table15)...

Table17. Loadings of Coilembola specieson thefirst factor extracted ByPrincipal ComponentsAnalysisof FDstudy sitcs... .. ...()I Table18. Classification results oftheDiscriminantFunctionsAnalysis

from theFO forest..

Tnblc19. Summarytableof10 Collembolaspeciesshowing highest CorrelationonDiscriminantFunctions 1and2of1'1)study

..62

(16)

Tllble21

Page sites (significant valuefor 95% confidence level in FD

forest is 0.32whenn=36)... 62

Table 20. Shannon-weinerdiversityindicesfor Collembola inthe upper andlowerhalves of tile soilsamplescollectedfrom three

differentagedFE forests,summer 1994 66

Loadings

or

Collcmbolaspecieson the first factorextracted byPrincipal ComponentsAnalysisofFEstudy sitcs.,; . 69 Table22. Classificat ion resultsof theDiscriminant FunctionsAnalysis

from FE forest sites... ... 70

Tahlc 24

Table 23. Summarytable of Coilernbola speciesshowinghighest correlationon DiscriminantFunctionsI and 2 ofFE studysites(significantvaluefor 95% confidencelevel inFE

forestis O.53whenn==12)... . 70

Density of CollemboJa collectedin differentforestsoils from publishedrecordsand the presentstudy.... .. 98

(17)

listoffi~ ures I'a~c FigureI. Map of Newfoundlandindicating locationOflhcthree

Sampling ereescrwesternNewfoundlandbalsamfir Forests (Age offorestin eacharea:80+yearold..uncul;40+- 40+year Old regrowth:60+-6G+yearoldregrowthTwo fir-/Jryl1pll'ri.{

(FD)lrtdtwofir-Hq ll i.'rel/l",(FE)sireslocated ineacharea II Figure2. Photographshowing thetrees and undcrstorcyofn balsam lir-

Dl")'OJwri.r(FD)forest -siteFDO-2... . III

Figure3.

Figure4.

Figure 5.

Photographshowingtheunderstorey vegetationofaFD forest- site FDO- 1...

Photographshowing thetrees andcndcrsrorcyofa balsamfir- Eqlli.w!/ltll1(FE)forest -siteFED-S....

Photographshowing theunderstorcyvegetationofa FEforest- 17

site FEO-S... . . 17

Figure6.

Figure 7.

Figure 8.

Photograph ofasetof'Bcrlesefunnels. top viewusedtn extractCollembolafromsoil and microhabitat samples 21 Photograph ora set ofSerlesefunnels.lalerala!lf'Cct,usedto extract Collembolafrom soiland microhabitatsamples.... 21 Princi~alComponentordinationofthesixFDsites based on soil characteristics.Soil eharactedstlcsandfactorlouding

scoresarepresentedinTable 4 . .. 2K

Discriminantfunctionordinationofthe FD sitesbasedon soil characters.Soilcharacters andfunctioncorrelations

aregiveninTable 6... .. 2K

Figure 10. PrincipalComponentordinationofthesixFDsitesbusedon vegetation characteristics.Vegetationcharacteristicsand factor loading scoresarcpresentedin Table9... .3S FigureII. Discriminantfunctionordinationcr theFDsltesbased on

vegetationcharacteristics.Vegetationcharacteristicsand xi

(18)

Page

functioncorrelationsarcgiveninTableII 35

Figure12. Percentage of thetotalnumber of Collembolacollectedin theupperand lowerhalves of soil samplesin theFD forest, summer1992 to 1994(A. FDO;B-FD40; C-F060)... ...46 Figure[3. Meanandstandard error of the numberof specimensof

Collembolaper samplecollected in theFOforest,summer1992 to1994(A-FOO;B.F040;C-FOGO)... ....48 Figure 14 Bar graphsof meandensities ofthe fivemostabundantspecies

andtheremaining Collcmbolaspeciescollectedfromthe

FOforest, summer1992... .. 50

FigureIS Bar graphsof meandensities of tilefivemost abundantspecies and theremaining CollemholaspeciescollectedfromtheFO

forcst,summer1993... .. . 50

Figure16 Bar graphsofmeandensitiesoftilefive most abundantspecies andtheremaining Collemhola speciescollectedfromtheFO

forest,June 1994... .. 51

Figure17. Bar graphsofmeandensitiesofthelivemost abundantspecies andtho remainingCo!tembolaspeciescollectedfromthe FE

forcst,summer1994.... .. 51

Figure 18 Shannon-WeinerdiversityindicesforCollernbola in the upperhalfof soilsamplescollectedfromthethreedifferent agedFO forests, 1992to1994...

Figure19. Shannon-Wcinerdiversityindices forCollemholainthe lowerhalf of soilsamplescollected fromthe three different

... 54

agedFDforests,1992to1994...

Figure 20 Rarefactioncurvesfor expectednumberof Coliemhola speciesinsamplesof varioussize collected fromFD forests,summer1992...

xii

. 54

. 56

(19)

Figure21. Rare faction curvesfor expected numberofCollclllbllla speciesin samplesof varioussizecollecte d fromFD forests, summer199] .

Figure22. Rarefaction curves for expected number of Coliembola speciesinsamplesof varioussizecollecte dfromFD

Page

. ...56

forestsinJune1994... . 5R

Figure 2]. Rarefactioncurvesforexpectednumberof Collcmbola speciesin samplesof'varioussizecollectedfromFE

forests,1994... . 5~

Figure 24. PrincipalComponentordinationorthesix FDsiresbased on themeanabundanceof Callembolaover allsampling(hiles (n=6).Collembolaspeciesandthe factor loading scoresarc

giveninTable17 60

Figure25. Discriminant functionsordinatio nofFDforestsitesbased on the mean abundance ofCollcmbolaineachsitealleachdate Each pointrepresents meansam plevalues ona givensampling date.Collemhola speciesamifu nctioncorrcluionsarcgiven

inTable19... ..(lO

Figure26. Percentage

or

the totalnumber of Collcmboh collected in theupperandlower halves ofsamplesin theFEforest,

Slimmer1994... .. 64

Figure27. Mean and standard errorofthe numberof specimensof Collembola per samplecollectedin FEforest, summer

1994 64

Figure28. Principal Component ordinationofthe sixFEsitesbased on the mean abundanceofCollembola overallsamplingdates (n=2). Ccllembolaspecies and the facto r loading scoresarc

giveninTable21.... 68

xiii

(20)

...68 Page Figure29. DiscriminantfunctionordinationofFEforest sites basedon

the meanabundanceofCollembolain eachsite oneachdate.

Each pointrepresents meansamplevalues onagivensampling date.Cotlcmbola speciesandfunction correlationsare given inTable 23....

Figure30. Dcndogram of ClusterAnalysisof quantitativedata of Collembolaspeciesabundancein soil samplesfromFD and FE forests. SquaredEuclideandistancecoefficientand Group AverageLinkageclusteringmethods were used.(Samplenames:

lirst3/4Iettersindicatesi tena me;next3 Letters indicate samplingmonth:Jun-June,Jul-July, and Aug-August;last 2 numbersindicateyear92-1992,93~1993,and 94-1994) 72 Figure31. Dendogram of ClusterAnalysisofpresence/absence data of

CollembolacollectedCromsoil samples,pitfalltraps. and microhabitatSamplesfromFDforests.SquaredEuclidean distancecoefficientlindGroup AverageLinkageclustering methodwereused (EIlJthe soilsamples:first3/4letters indicate site name.The next3 leitersindicate the samplingmonth:Jun- June.Jul-July, andAug- Augustandlastnumber indicateyear 92·1992,93.1993.and 94-1994) Em the microhabitat samples:

Thelirst3/4 lettersindicatethesiteandtherestindicate the typeof'microhabitat:Lichen-Lichen from deadand livetrees, Tbnrk-Barks fromdead lindlivetrees, Moss-mossfromdead andlivetrees. Rwood-rotten wood.Thole- tree hole,Dleave- deciduousleaves.pilfa!!Irap samplesareindicatedbythe

site nnmc followingPITFALL).. . 74

Figure 32 Flow chartof tile resultsof TwoWayIndicator Species Analysisof theCol1embolaspeciescollected from bothFD

xiv

(21)

andFE forests.199210 1994...

Page

. 76

Figure 33. Principal Componentsordinationofthe3 dillcrentaged FDforestsbasedonvegetation.soil characte ristics and the

abundanceof Collcmbola 7(,

(22)

I.INTRODl1CTlON

1.llIisto ricul Review

Therate ofmovementofessentialnutrientsbydccc rnpcsuicn isanimportant regulator of forestproductivity(Anderson at al. 1981).Soilanimalsplayamajor role in decomposition andnutrientcyclingthroughthefragmentation of dead organicmatter,which enhancesleaching ofsoluble materialsandincreasesthe surface areaavailablefor microbial colonization.They graze onmicrobes on organicsubstrates and thusstimulatemicrobial activity, influencemicrobialcommunitystructu re,andreleasenutrientsimmobilizedbythe microflora . Soilanimalsarcalso areservoirofnutrientswhichbecome availableto plants whenthey die(Scnstedt and Tate1981)andtheycontributeto soilfertilitybydepositing faec esandimproving soilporosity (Berg andPawluk1984).

Clear-cutting,11forestmanagementpracticethat has beenrecognized ascreating many mpid andlong-lasting changes (Chandlerand Peck1992),isacommonoperational forestry practicein NonhAmerica.Allhoughclear-cutforestharvestingincreasesthe yieldof fibre per unitarc." itslong-term effectonsiteproductivity isunknown. Since soilanimalsare intimatelyinvolved in decompositionand nutrientcycling,a betterunderstandingof the influence ofclear-CUllingofforeston soil animalsmay provideinsight intotheeffect ofthis practice onlong-term sireproductivity.

Therehavebeen fewstudiesonthe effectofclear-cuttingonsoilanimals, especially soilmicroarthropodsinNorth America.Most studies onthe effectsoff orestharvesting on

(23)

soil mlcroarthropcds have been conducted in Europe. Huhtaet(//(1967,1969)andHuhta (1976) studied theimpactofclear-culling on microarthropods densities. Theyreported temporaryincreases indensitiesof mostmicroarthropodtaxafollowedby declinesoverthe followingsevenyears.Huhta (1976)attributedthis response10 increasedamountsof'food resources, representedby organic matterin soilallerclear-cutting,followed by subsequent declinesin organicmatter in clear-cur areas.A similarstudy was carriedoutons\lil microarthropodsina tropicalrain forestin Nigeria(Lascbikan 1975).The overall results suggestedthat clearingreduced both thenumber of speciesandthe number of'individnnls of certainsoilfaunalgroupsintheshortterm.

Therehave been onlythree NorthAmericanstudiespublishedonIheeffectsofclear- cutti ngonmlcroarmropodpopulations. Vlug andBorden (1973) studiedsoilAcnri and Col1embolapopulations affectedbyloggingandslashburningin acoastalBritishColumbia coniferous fo rest.They reportedthatthe abundanceofCollc mbolafellto halfthe original value soon aller clear-cutting,withthefaunalcompositionlind proportionof species unchanged.ScastedtandCrossley(1981)attributeda decreaseinmicroarthropodpopulations in theforest floorfollowing cablelogging and clear-cuulnginthe southernAppalachian of NorthCarolina tohighertemperatures (>40°C).However, they reportedthat Ccllcmbota densities showcd no change.

Bird andChatarpaul(1986)studied the effect of whole-tree andconventional forest harvestonsoilmicroarthropodsin Ontario,Canada.Theirresults showedthatCollemholll

(24)

exhibited a slight increase inabundanceon the cutforestin comparisonwith theuncut forest.

They alsoreported thatthedensity of Collembola inthemlncrellayer (0-5 em)was not affectedbyclear-culling,All of the North American studies were carried out soon after harvestingor clcar-cutring It-ayears)ofthe forestsites,No studiesonthe longtermeffect of forestharvestingonsoilmicroarthropodshave beenconducted inNorth America.

1.2 1l11 porlllllceofColiembolainFo r estSoils

Collembolaare among themost abundantofsoilart hropodsandplay an important roleinsoil formationthroughlitter decompositionand nutrient recyclingespeciallyin forest soils (Takeda 1973). Theyaregloballydistributed,occurr ingevenintheAntarctic,and colonizea varietyof biotopeswherethey often oecurinhighpopulatio n densities (Eisenbeis and Wichan11(87).Over6000 collembolanspeciesin about500 generahavebeen described world-wide(Greenslade19( 1) of whichatleast520 speciesarc estimatedto occurin Canada (Marshalle( a l.1990).

TIletaxonomyof theHolarc ticCollembolanspeciesis fairlywellknown(Christiansen

&Bellinger1980).Collcmbolancommunitiesorvarlc usforestsoilshavebeen studied(Usher 1970, Nijima1971,Perssonetal. 1980,Peterson&Luxto n 1982,Bird andChaptarpaul 19R6,lluhtaet(II.1986,Marshallerai.19(0) andtheecologyof variousspeciesdescribed (Poole1961, MacLean l" I/I. 1977,Vegterl!/al. 1988).

Collerubola werechosenforthis study becausetheyarethecommonest soilinsects.

(25)

Because of their large numbers and highdiversity in the soil. theycould possiblyheused as indicatorsofsoilcon ditions(Marshall1967).Forexample.coilcrnbolan populations do respond tohabitatchanges suchaschangesin humidity ofsoilsurfacesand changesinsoil temperature(MitraI,?/011977.Kaczmarek1975,TcubcnandSmidt 19(2 ).They alsocan be usedasindicators ofsoilfertilityas theyarc usually foundin high numberswhere theirmain foods, fungianddecayingmaterial,are abundantlyavailable.

1.3 nlologyofColiembola

Collernbolacanbedividedintotwo ecologicalgroups,those which liveonorncar the surfaceand those whichliveinthe soil. These are canedepedaphic (suhordcr Syl1lllhyplcnna and familiesPoduridac.,Ealomobryidaeand lsotornidne)andeucdaphic(familiesOnyehiuridae and Hypcg as.rurldae) lifeforms respectively (Eisenbeis and Wichard 1911 7).

Surfacedwelling speciespossesswell developed springingorgans,eyes,andelongate antennae. Somebreathebymeans of tracheae;the majoritythroughthe skin. No Ccltcmbeta arcmorethana few millimcrres inlengthbut thosenormallyinhibiting thedeeperlayers tend tobe evensmaller thansurface dwelling species,a characteristicassociatedwith the sizeof the soilpo respacesinwhichthey rive andmove about. Euednphicformshavenotracheae andhavereduced springingorg ans, a permeablebodycovering.shortantennae, and simple ocelli.All col1embolans possess a ventral tube onabdominalsegment I, whichcanbe everted or retractedand can beusedtoattachtheanimalto thesubstratum (Christiansen1964)

(26)

In collembolansthatlack a trachealsystem,theventrallubeandthe generalbody surface areusedfor gaseousexchange.The discontinuouswax layerof the cuticleandthe hydrofugehairs confersome degree of protectionagainstdesiccationas well as against rJooding,for!hehairs trapa filmorli r andlhis pennils cuticularrespirationto continueeven urxlcrsubmerged conditions.Theevolutionoratrachealsystem inthemore advancedspecies allows fora greaterwaterproofingsystemandthereforepermitsa degree ofindependence frommoist soilmakingpossiblethecolonizationof moreexposed habitats withoutthedanger ofdesic:cationor suffocation(Brown 1978).

Collemboia show varyingdegreesof toleranc:cto differentenvironmentalfactors such as soilstructureand type,the presenceofmicro-flora andmoisture.Indeed, the presence or absenceof a species could bean indicationof micro-habitatconditions.So faras soil micro-floraMeconcerned,itisfairlycertainthatsomespecies liveinthe gutofcollembolans as symbicnts, probablyassisting inthe digestion ofplant material(Brown1978).The distn'butionof fungiuponwhichmostCol1embolafeed,must also be a controllingfactorin their distribution.Fungiand collembolan populations may alsocompete foravailable moisture(Brown 1918).

Since coltcmbolansare unableto burrowtheymustperforce use soilporesin order tomovethroughsoils. Thesespaces aregenerally smaller Inregions where decompositionis lakingplaceandwherefoodismore abundant (Brown1978).Also.where greateramounts ofvegetable matter is present,the soilislessprone to dry out.verticaldistributionis

(27)

therefore governed by several factors. the size of the speciesand porespace.moisture content, and availablefood(Brown1978).

The ability to movevenicallyinsurfacelayersof thesoilisof'ndvantagctothe smaller specieswhich.althoughusually associatedwithdeeperlevelswithinthe soil.maynevertheless range throughthe soilprofile.These vertical migrations mean thattheanimalscanmove upwards whentheupper soil layers aremoistin springand autumnandavoiddroughtand extremesof temperaturebymoving downwards insummer andwinter.In this waytheycan takeadvantageofoptimalconditions of temperatureandmoisture(Christiansen1964).

Themouthpartsof cottenbo tansvaryfromone group to anomer.Broadlyspeaking thosewhichchewtheir food{a widevarietyofgenerasuchasFol.wlII/iu,()1I)'d/iIlTlI.~,ami Hypogasfmra)possess well-developedmandiblesand a molarplate capableofmspinyliard plantmaterial,Bitingforms(mostofthesminthurids)have strong.toothed mandibles butnn molarplatewhilein SLIckingforms (mostNeanuridae,Brachystome llidae,Odontcllidac)the mandibles are reduced to styletsfor piercingandsuckingjuices (Christiansen(964).Some specialistcarnivorous specie s (genusFrlf!sea)fcedon rotifcrs,prolurans, andtardign dcs whereasphytophagousformsmayselect onespecies ofplant astheir food./SII{rlll/(l grandlcepsfeedsupon othercollembolnns(Christiansen1964) .Althoughacorrelation of mouthpartswiththe typeoffo od selectedwouldmakeatidy classificationortypes,inpoint offact manyspeciesconsumeawidevariety oforganicfood accordingtowl1.11isavailable (Brown1978).

(28)

Amongthepredators of Collembola,mitesarcclearlyof greatestimpo rtance.Second inimporta nceto mitesarc pscudoscorpions,staphylinidandcarabidbeetles,andyoung or smallcentipedes.In additiontothese, quite a wide varietyof animalsfeeduponCollembola eitherunde rspecialconditionsorin unusual habitats.These includespiders,fish, frogs, predaciousHemiptera,ants, and snails (Christiansen1964).Themajority of parasitesof Collemholaarc grcgarincsandnematodes.Eggs appearsusceptibleto fungusattack, and fungi maycausescveredamage to juvenileforms(Christiansen 1964 ).

Most Col1embola arcunivoltincdevelopingfromegg to adultwithinone year.Some arcbi-ormuhivcltine, producingtwo or moregenerationswithinthat time.Spermisusually transferred indirectlyfrommaleto femalebythemaledepositingeithera spermatophoreor afree dropleton the substratum which is latertaken upby thefemale.Development and halching ofthceggs dependson the speciesandonthe temperatureofthe soil. lnstnrIlarvae uponhatchingfromeggs aresix-legged andresembleadultsinallbut size,pigmentation and sexualuxuurhy,Thereafter, tileyoungmoult severaltimes givingriseto successivelylarger, morc dnrklycolouredindividualsuntilthe adultinstarwhich is deemedto bc thatatwhich mnxinurnsizeandsexualmatur ityis auciocd.Adultsmaycontinueto moult.Thenumber of larval instarsvaries according10 species(Christiansen1964).The productionoflarge numbers of'juvcniles givesliseto populationpeaksat certain timesofthe year.Thesepeaks arclnllucnccdbylocal environmentalfactors,particularly temperature . Declinesin population. nlrcmatingwithpeaks.havebeenobservedto occur mainlyin JanuaryandJuly innorthernlatitudes and havebeen attributedlargelyto predation by mescstlgmatidmites

(29)

(Brown1978).

1.4ResearchObjt flin's

Harvesting anddearing of commercialforestshave made an imp.1d on Ihet'arth's environmentincludingetr«ls onstructuresofplant andanimal communities.longterm impacts onecologicalprocesses and biologicalresources ami especiallychangesin k.caland regionalbiodivmi ty. Because ofthe biodiversitycrisis inforest environments.fears havebccu expressedthata large portionofearth'sspeciescouldbe lostwithinashortperiml uftilllc (Wilsonand Peter1988),The ratesand natureof recent humanimpacts nnthese environmentshaveraisedconcernsaboutthelong termhealth and integrityllfl he~systems (Bonan and ShUgM'1989), Toevaluateand10 take necessary stepsttlsolvethisproblem.

ForestryCanada hasstartedaprogramto undertake studiesoncUllllllerciallyimporlantfUfl'St types.Theiraimisto comparethe degree of communityc1l<mgcs amongsite.~wilhtlinc rcllt histories(cgharvesting anddisturbances).TheOJITen! studyis includedwithinlhi~program toco mparethe collcmbolancommunitiesofanold forest withno history of disturbanceto those forests growingunder similarenvironmentalconditionsbutwilhknownhistories uf disturbancesinwestern Newfoundland.The emphasiswasplaced on comparing oldIhr est with regrowthforcslthatwasapproachingharvcstablcsize againinordertodetermineif the collembolanfaunaof regrowth faunareturns10preharvestedconditions beforethenext harvesting cyclebegins.

Thereis verylittleinformationavailableonthecollcmbolanfaunauf Newfoundland

(30)

Theonlyprevious studywas that of Stach(1966) whoreported on the Coltembolaspecies collected byPolishzoologistsProf S.Feliksiak and Prof.T.Jaczewskiduring their zo ogeographical studieson Newfoundland and Nova Scotia.in1938.Heide ntified 7 genera and 7speciesofColiembola inNewfoundland,allofwhichwere newtothis island.There hasbeen nostudydone ontheimpact offorestharvesting onsoilmicrcarthropodsin Newfoundland forcnts,

Theobjectives orthisstudyare to;

characterizethecollcmbolancommunitiesfrom differenttypesofcommercial forests of westernNewfoundland

2. determinelong-termeffects of forestharvesting on ColJembolacommunity structure.

(31)

2 MATERIALAND METIlOnS

2.1StudySttes

The studysiteswereloc ated in western Newfoundland south of ComerBroo kal elev ations of arproximateiy75 10 450metresinthe Long RangeMou ntains.Thesites includedthree differentaged stands oftwobalsam fir foresttypes:a rnoist, fertility rich balsam fir-Dr)'OfJirris(FD)forestandawet.moderatelyrichbalsamfir-Eqlli.'if."I"m-RlIll/I.~

(FE)forest(McedcsandMoores1989).Tworeplicate sitesofeachforesttypeand of'cach, threedilferentages were selected.Explanation uft ermlnulcgyisfollows:forest~foresttype i.e.FD or FE;Area -portionofaforestofa give nage withinwhichsampling sites were located;Site-specific location from whichsamples werecollected

TheSludysitesare designated asfollowed.Locationsofsludysites,andabbrcvia1lOns (orforesttypes,agesandsires are as re nows.Study siteloc alion!arc alsoindicatedonnlIlap (Fig1.) ,

A.Control-Oldgrowthforr!l,nevercui.Muimun.treeage80+ytan I.Balsamfir-DryOfJll!ri,fforest(FDO)

a,SiteI,2kmEa~lMartin Po ndnear lillie Grand Lake(Foo-I ) b.Site 2,Bake appleBrook nearLittleGrand Lake (FI>O·2) 2.Balsamfir -Equisemmforest (FED)

a.Site7,2 km EastMartin PondnearLittleGrand Lake(FEO.7 ) b.Site S,Bakcap pleBrooknearLittle GrandLake (FED·S)

10

(32)

L ---'

FigureI.Mal)ofNewfo undland indicatingIDeationsofthethree differellt snnJlllingareas of westernNewfou ndland balsam firforests (Ageofrcresrin each nn-n:old~80+ ytn r old uncut;40+ -40+ yearold regrowth;60+_60+year oldregrowth.Two fir·IJry opt l!Tif(FD)nndtwofir_Equisetum(FE) sill's IOclltedIn ench arcro).

\I

(33)

D.40-yenr -oldfor est J.Balsamfir-Dryopterisforest (FD40)

a. Site3. Cooks Pond near Stag Lake(uphillfromaccess road) (FD.JO-J) b.Site4.CooksPond near StagLake(downhill fromaccessroad)(FD40-4) 2.Balsamfir-.f~"qJli.~l!11I1I1forest(FE40)

a.Site9.CooksPondnear Stag Lake(downhillfromaccessroad) (FE40-9) b.Site 10. CooksPond ncarStagLake (downhillfromaccessroa~,(FE40-IO)

C.60-yenr-old fnresl

I.Balsam fir-Dryoptedsforest (FD60)

R.Site 5. NearLoggers school roadon TransCanadaHighway (Tell)10kill south from CornerBrook(uphillfrom TCH)(FD60-5)

b. Site 6.NearLoggers schoolroadon TeJ-lIO kmsouth fromCorner Brook (downhillfrom TCI-I)(FD60-6)

2.Balsam fir-Eqlli.w:11I1IIforest(FE60)

a. SiteII.NearLoggers schoolroadon TCII10 kmsouth fromCorner Brook (downhillfromTnl) (FE60-11)

b.Site12.NearLoggers schoolroad on TCli 10km south from CornerBrook (downhillfromTCH)(FE60-12)

2.21labi1atdHlracterislics 2.2.1Climate

The studyareahas a temperate,maritime-borealclimateof coolSlimmeranti mild winter.The average surfacesoiltemperature inJulyis 18.5°C andinJanuaryis 0.2°e . Precipitationisevenly distributedover the yearwith anaveragetotal of364 mmfromJanuary to Apriland394mm from MaytoSeptember.Theground is generallysnowcoveredfrom DecembertoMay (Banfield1983).

12

(34)

2.2.2Vegetat ionandSoil

BothFDand FEforestshavebeencharacterizedbyMeades and Moors (1989)asone inwhich balsam fir.theprincipalsoftwoodspecies. growsinassociationwith black(Picell 1!I(/ /,i c/lJa )andwhite(lJitWI;:/(l/f/:,,)spruce. andyellowbirch(Belt da II/lea)andmountain maple(A cl.'r.\1JiCllfum)occuras minorspecies.In FDforest.Dryoptertssptnntosa,afern, isthedominant understorcyspecies(75-90% cover).TheFE forest ischaracterized by Hqlli:il.'fll lJl(horsetails) andRubus,whichoccurrarely intheFD forest.Habitat descriptions ofFI}andFE forests andsitedescriptionsof FDforestare givenin Tables1&2respectively.

Photographs ofdistributionof treesandunderstoreyvegetationofF Dand FE foresthabitats lire given inFigures2-5.Dataonprincipalvegetationtypesanddensitiesof trees(number/m~

wereprovidedbyDr. railThompson,ForestryCanada.Thesedatawere collectedusing a2 metre?qundmtewithinwhich the percentageofthe soilsurfacecoveredbythe principal vegetationtypeswas estimated.The dataof characteristicsof themineralsoilwere also provided byForestryCanada.Two samplesfromeachsitewerecollectedin spring 1993for the soilanalysis.

2.3SallllllillgMethods

Three typesofsampleswere collected fromeachFD forest,namely pit-fall trap samples.microhabitatsamplesandsoilsamples.Pit-falltrapscollected epedaphicspeciesfrom thesoilsurfaceandmicrohabitat samplescollectedspecies from specifichabitattypes. The soilsamples provideda quantitative estimate of collembolanpopulationswithinthesoil (cucdaphicforms).Thepit-falltrap sampleswerecollectedonlyinsummer 1992and

13

(35)

Tabl eI.Ch ara cter isticsof fir-/)rJ'(JfJteri,~(FD)and fir-Cff"i,\'C'/IIIIl(FE)foruts in westernNewfound l:mdblllsamfirfon' sls (lifter Meed esand /\lorI'S19119)

Site characteristics Slope Moisture Soil Type

pH

Fertility Principalshrub and understorey vegetation

Forest type li r- D ryopfL'ri,\'

midto upperslopes somewhatmoist siltloam tosandy loam;

Orthic podzolsoil;

seepage 40 ern;organic horizon10-20 em;

rooting50cm 5.0-5,5 richto veryrich Dryap/crisSflill/l/OSI.I(75-95%) Acorsptcamm Vlburnumedule SaN/hl/cl/.\·fmhe/ls RllhusiduCllS Ribes glmllillfo.mm Rhy/idjaddplllls Iorem Hylocomtmn nmbrutmn Slrepfoplism.\·eIIS Solidago lIIt1cmphyl/a

14

lir·t.ffl1i.\·t'/lflll

lowerconcaveslopes somewhatwet to wet loamtosandy loam;

gteycd rcgosolsoil;

muck surface:

shallowrooting

4.5-4.7 mediumtorich Carex Ieptonervin J)ryopft'l'i,l'JlheJ:(lp/l'fi,~

1£lflli,\'l!III/1/.ryll'tllit'/l1II 11/11idilllll/'t'coKlliflllll Mllilll1lfl/l/ll:la/11II1 Alh)'l"iulI/filix-fi:milltl Circ1Iel.ll.llflil lll As/erp"llic('/ls Ge/lmriVf./h:

,\jJhUWIIIIII,\'qlfarm.I'/Is R"y/idi(fjle[plJll,~'Wfll('rm,~IU Rl/hll,~p/lhe,I't'I!"s Gl.llim n trij1ol"ll lll Cilllmfafijol;a Cornll,\'.I'/ofouijer,I' Rhytidi"delflllll.~/ri(//ll!fl"ll,~

Vio/tliJll!o}fllil"

Milcl/l.ll1l1dl/

/(ihlls/ri.l'fe Hibe,\'I/lclI,~/re IJryop/eri.\,uisj/l/lc/a

(36)

Table2. Sitedl'stri plions er thethreedifferentagedFD forestsfrom wester n New roumJlllmJ.Details ofsoiJ,vegetation andtree density an.give nillTables3-5.

Sites

FDO FD40 FD60

Age inYears old (80+) 40+ 60+

Latitude, 48°38'N 48°52'N 48°52'N

Longitude 57°4TW 58°05'W 57°56'W

Elevation 400-450m 75-100m 300-3S0 m

Mo isture somewhatmoist slightlyless moremoist than

moistthan old other two areas

GroundCover moss layer insmall moderatemoss littlemoss cover, patchcs.a fewsmall coverwithlots of heavy shrubs and shrub,loisoffcrn fern,litter and overgrown

lichen vegetation

TreeDensity tatl maturetrees, big, wellbranched sameasFD40, less well spaced,fair trees,fairlyclose amountof shading, amountof'shading, together,less little deadwood lois of oldman's shading andlittle

beardand dead dead wood wood

15

(37)

Figur e2. Photogra phshowing the treesand understor eyor abalsamfir- Dry opteris(FD) Ior est,site FDO-2.

Figure 3.Photograph showing theunderstor eyvegetat ion ora FD for est-site FDO- l.

16

(38)

Figure4.Phologn ph showingth~trees andund ~rs( or~yo(a balsa m fir-Equisnum(FE) forese - sitefE0-8.

Figure 5. Photograph showingtheund~rstor~yvt'gdationofa FE forest- aiteFEO-8.

17

(39)

microhabitat sampleswerecollectedonlyin summer1993. Onlysoil sampleswere collected from FE forest.

2.3.1Pit-fallTrapSamples

MegnnDavis kindlyallowedinsectsshe collectedin pitfalltrapsduringher study(11'

forest Coleoptera to be analysedfor thepresenceoflarge. active.surfacedwelling Collembola. Atrap was made up oftwo differentsizedplasticpots. a small potll. ~cm diameterand 6.8cm deep and alargerflower-pot 12.8em diameterandIO. ~emdeep.The smallpot, placedinsidethelarger. containedpropyleneglycolandcollectedanimalslilliing into the trap whereas the larger pot supportedthe small potin the ground and allowedthe smallpotto beremovedforemptying withoutdisturbingthetrap selling.Traps wereSl:1out by diggingaholein the groundinwhichthe larger flower pot was set with the rim Ilush with thesoilsurface.The small pot was placedtightlyinsidethe largepol sothatanimalsfellinto it.A wirehandlefixedtothe smallpotalloweditto be removedeasilyfrom theIlewcrpol.

A 20 em x 20 emwoodenplatesupported abovethetrap onlegs madeofnails formed arain- cap to prevent flooding.

In eachsitetwentypit-Iall rrapswereplaced 3IIIapart paralleltotheline fromwhich soilsamples werecollected. Traps were emptiedfourtimes overthe summer.Animal.~were sieved fromthe collectingagent and transferredinto alcoholbottles inthefield.They were thentaken10the lab, sortedundera dissectingmicroscope.and stored in 70% ethanolfor identificationandcounting.Collembola species wereranked in terms oftherelative

IS

(40)

abundanceofspccimenscollectedinthetraps.Theserankings wereabundant(morethan10 specimens);common(5.10specimens)and rare(1.5specimens).

2.3.2Microllllbila tSamples

Variousmicrohabitats weresampledin 199] .once in July andonce in August.The ninemicrohabitat'>wererottenwood,tree holes,deciduous leaves. mossfrom livetrees,moss fromdead trees,lichenfromlivetrees,lichen fromdeadtrees,barkfromlive treesand bark fromdeadtrees.Apaperbag(16emx7.5cmx30em)full of materialfrom eachtype of microhabitatwas collectedfromeach site.Samplesweretakento thelabandextractedin Bcrlcscfunnels.Theinsectsfromthe Iree bark and lichenswerecollectedby afloatation method.Firstthesampleswere broken intosmallpieces and transferred10alargebowl with 70% ethanol.Thenby stirringthe liquidgentlytheinsects wereseparatedfrom thesamples andnomcdtothesurface.Thefloatinginsectswerethen sieved fromthesuspensionand transferredintobottlesofalcohol.

2,3,3SoilSllllll,l('s

Eachsoilsample was a cube of surfacelitterandsoil 10 emx10em x 10 em deep.

Thiswascollectedby placinga woodentemplate (I0 emx 10 em)on theground andcutting the soilalong each sideof thetemplate to a depthof10 emusing aknife.Thesoil cubewas then carefullyremovedwascut inhnlf'horizontly.Each halfsamplewas storedinapaper bag, placedin a coolerand taken to the field stationfor immediate extraction. Ten samples were collectedfromeachsiteoneachsampling period (20 samples werecollected in July1992).

19

(41)

Theyweretaken3 mapartalonga straightlineperpendicular totheaccess roadand starting farenough into the forest to avoidanyedgeeffectsoftheroad.Sampling wasdone twicein 1992( 15&23July and29August),three timesin1993(I&7June, 6&13July lind17 &

27August) andonce(Juoe 22&23) in1994 in the FDforest,and twice(5&6July and22 August1994)intheFEforest.

ModifiedBerlese funnels housedinanunhealed building,inwhichtemperature averagedabout 15.20°C.were usedtoextractthe animals. The sampleswereextractedilla 20°Cclosed room in1992.Thelimited ventilationintbatroomincreasedthetemperature andhumidity insidethe roomandmayhave affectedthe extractioncfflcicncy. In1993and 1994, sampleswere extractedina largeroomwith open windows wheretheroom temperaturefollowedthe outside temperature whichseldom exceeded 20°Cthroughout the extraction.

EachBe-leserunnel contained asievemade from 15 em inside diameter PVCpiping cutinto 5 cm high rings with2 rnmmeshnylon screengluedtothebouorn of a ring.A doublelayer of cheeseclothwas placedoverthe meshto reducetheamountofdebrisfilllillg through the screen.Thesieve wasplaced insidethelipofa plasticfunnel(17.5em diameter and 20ernlong).Eschsievewas separated by about 2.5 mmfromtheedgeof thefunnelfor ventilationwith3 screws placedarounditsloweredge. A60 mlplasticboulecontaining70%

ethanolwasattachedtothe bottomofthe funnel tocollectorganisms (Figs. 6 and 7). Thetop ofthecollectionbottlehadseveralholesdrilled inittoproduceair circulation inside the

20

(42)

Figure 6.Photograph of a set of Berlesefunnels, top view,used to extract Collembolafrom soiland microh abit atsamples.

Figur e 7. Photogr aph ofa set of Berlese funnels,lateral aspect, used toextr actCollembola from soiland microhabitat samples.

21

(43)

funnelinordertoreduce condensation.

Agroupof Beriesefunnels was mndc byplacingQflmnelstogether(each in a15em diameterhole)011abristle boardplatesupported bya701'111:<55 I'm rectangularwooden frame.Thisframewas fixedonandsupportedby50ernhighwoodenpole s.A 7.5\Vlight bulb was usedasalightsourceaboveeach funnel. Bulbs wereconnected in paralleland fixed ona70I'm x40 I'm rectangularwoodenframewhichwasfixed to thewoodenpolesml(~

adjusted topositionlights15emabovethe funnels. Altogcther120funnels were used.Em:h samplewasextracted overaperiodof 7days.Animalsleavingthe samplewerecollecte d nml storedin 70"10ethanol.Collcmboleandotheranimalswerepicked outlaterand stored inglass vials untilidentifiedandcounted.

z.atdenunenuon

Collembolawereclearedby leaving them in lactic acid for 5• 7dllYSmillthen complete specimens were temporarilymountedin glycerine on depression slides Identification wasdone usinga compoundmicroscope.Allcollcmbolans wereidcnuticdttl species levelorasfaras possible.Identifications of'reprcsentntive specimensnfnlltaxnwere confirmedbyDr. Jan Addison (Forest PestManfl.gementlnslitutc,SaultStc. Marie.Ontllfio) Taxonomicnames were accordingtothe followingauthors:Maynard195[,Scnll19:, 1, Christiansonand Bellinger1980, Christianson1990.

22

(44)

2.5SllltiSliclllll lllllysis

Thespec ies list was examinedtodeterminethetaxono miccomposition andthe dominantspecies at each site. Bothqualitative andquantitativedata fileswereused forthe statistical analysis.Total numbers of specimens/sample/samplingdate we re usedfor the diversit yindicesandANDY A and totalnumbers of specimens/spe cies/yea r wereused for rarefact ion curves.Taxameans/samplingdatewereused for PrincipalCo mpo nent Analysis (PCA), DiscriminantFunctionAnalysis (OFI\ ),Two Way Indicato r Species Analysisand Cluster analysis.Qualitativedata wereusedto comparesitesthroug hsimilarity indices and cluster analysis.

Shanno n-Wcinerdiversityindicesand evenness values were calculated byusing DIVER S prog ramofKrebs (1991). Therarefaction curves forthe expe cted number of specie sin a sample ofagivennumber of Collernbolawere calculated byusingthe RAREFACTprogramof Krebs (1991) butmodifiedby Ms. R.Tho mpson to accommodate samplesi7.cSup to10.000individuals.One-waylindtwo-way ANOYA wasused totestfor thesigniflcanccof spatialand seasonal differences(a=0.05)byusing MINIT AB(Ryanet (/1976) .

PCA wasuscdto compare thethree different aged forests in bothFD andFE habitats onthebasis of theircollcmbolanfauna.The relationshipbetween theCollemboladiversity and theecological characteristics (vegetati on andsoil)ofthe FD habitatwasalsoanalysedusing

Ile A.Meanvalues of all measured ecological (soilandvegetat ion)characteristicsand

23

(45)

abundan ceofCollembotaspeciesfor each sitewereincludedinthePCA.DiscrimiMnl function Analysis WISusedto identify characte ristics dii,enngbetweentheJdifferent ages offorestsinboth habitals.BoththePCAandDiscriminantFunctionAnalysis wereperformed inSPSS.

Cluster analysis. anagglonativeclassificationmethod.Wascarriedootto identify associationsofspecies within the study area.ThemeanabundanceofCollembolaspecies for eachsampling date(forquantitative analysis) and the presence-absencedata(forthe qualitativeanalysis)wereused.and theanalyseswererun usingprocedureCLASSIFYin SPSS.Euclideandistancewas usedtomeasure associationbetween sites and siteswere clusteredusinggroupaverageclustcr ing.TwoWayIndicator Species Analysis,a divisive classificationtechnique.wascarriedout toidentifypatterns within the speciesdistribution dataand toidentifytheindicatorspeciesfor groupsdefined by thisclassification.Three pseodospeciescutlevels(20. 60,&100) were used todcfine tilecrude scaleofthespecies abundanceandtheprogramTWINSPAN(Hill1979;Carllon1985)wasusedto runthis analysis.Pseudospeciesrefertodifferentabundancelevelsofa speciesand arctreatedas separateentitiesinjheanalysis.

24

(46)

3.RES ULTS

3.lllabitlllCharacrertstlcs 3.1.1 SoilChllr nclcrislics

Thirteen soilvariableswere measured inFD forestsites in1993, includingparticle size,quantitiesofselectedorganicandinorganic substancesandpH

or

thesoil (Table 3).

Organicmailerand carbon,ash,sodium,phosphorusand pHwere in lowquantities whereas theother6 inorganicsubstanceswererelatively abundantinall J ages offorests.FDQand FD6Dareashadrelativelyhigh concentrations of calciumandphosphoru sintheirsoilwherea s FDOand FD40areashad highamountsof nitrogenintheirsoil. High amountsof aluminium, and ironwere foundin regrowth sites.The amountsofcarbon,potassium,organic matter, and magnesiumwerehigherinFOG than in FD40 and FD60areas.The othersix variablesdid not showmuch differencebetweendifferentages afforests.

Results ofPCA analysisof the FDforest onthe basisof soilcharacteristicsarc presentedin Table 4 andFig 8.Thefirst factor extractedfromthis analysisaccoun ted for 62.9%ofthe variation,whereasthe secondfactor explained196/0 ofthevariation. Potassium, magnesium.nitrogen. phosphorus.organicmatterand carbonhadhlghpositive loadings and iron. aluminiumandash had highnegative loadings on the first factor.whereascalcium and sodiumhad highpositivelandingsandparticles<2mmhadhigh negativeloadingon Factor 2.pHhadlow valueson both factors.FD60-6and FD40-3 wereseparatedfromothersites Oilthebasis of'factorIand the other4 siteswere clusteredtogether(Fig 8).

25

(47)

Table3.MUI1soilchauctcrislinofL.FIl1dIIb)'trsorFD rereststud y sites(1Slmplcsl silCWCrc Inalystd;dallprov idedbyForrslryCanida),

FOfCSIA.-e Soilcharnctcrislics

FDO FI>I. FIX,O

Aluminium(ppm) 587.7 1(.S7,6 1377.9

Ash(pp m) 14.2 44.9 26.1

CDlcium(ppm) 1370.8 (,64.9 1774.2

lron( ppm ) 938.7 40111.8 2256.4

Potnssiumfppm} 7111.1 S71l,3 (,42.1

Mngncsiun:(ppm) 553.1 526.5 461.7

Nitrogen(PP.11) 111.9 102.5 54.4

Sodium(ppmi 97.5 51.0 2KK.3

Phosphorus (ppm) 7K.1 4-1.2 611.1

C"",",(%) 45.6 30.0 40.2

OrganicMalleT(%) RO.7 51.11 69.3

pH 3.' '.1 3'

POIf1idcs< 2mm 9.5 15.9 10.0

,.

26

(48)

Tnble4.Loadings ofthe soilcharac teristics on thefirsl tworaetors eXlratl edbyPrindplilComponentsAnnlysis ofFDstudysites.

Soil Factor1 Fador2

Characteristics

Potassium .98631 .086S9

Iron -.% 0 19 -.2IS25

Aluminium -.91460 -.30677

Magnesium .87111 -.15205

Nitrogen .lI5759 -.19655

Phosphorus .85158 -.06938

Ash ·.82319 -.52966

Drganicmattcr .1\2221 .52823

Carbon .80959 ,56415

Calciem .31235 .92494

Sodium -.33812 .86426

Pnnlclcsejmm -,52513 -,70386

pH -.03865 .11135

%Vari 3 nc<: c~ plained 62.9% 19.0%

27

(49)

20

I.'

FJTj'"

1.0

'" B

FJi"l

J:

00 Hil-5

F1i!"'

-.S IIli04

·1.0

F TJ

-I.S

-20 -1.5 -1.0 -.S 0.0 LO

Factor 1

Figure8.PrindpalCompQnent ordinationurthesill;FDsill'sbased011soil eh aeactees.Soilchaucteristicslindrll.ct orloading seeresare presenletl in Table6.

..

o o

..

-a Function 1

Figure9.Distr iminant Functionordinat ionurtheFDsitesbasedonsoil cha racters .Soilcharactersandfundioncorrelatio nsaregiveninTable7.

28

(50)

TileDiscriminantFunction Analysis forthesoilvariablesseparated the sitesof the threeages of forestwithonehundredpercent success (Fig9,Table5).Function1had four variableswithsignificantcorrelation(sodium,pHandcalcium positively and particles<2 nunnegatively)and Function2had nine variableswithsignificantcorrelations (iron, aluminium lindashnegatively and restof the variablespo sitive ly)(Table6)

3.1.2Vrgelll lionChllraclerislics

Twcntyfour vegetationcharacteristicsof theFDforestwere analysed. These characteristics includedthe percentage ofthegroundcovered orshadedbyvarioustypesof plants or debris(16 variables.Table 7).and plant diversityand meandensitiesofshrubsand trees (8 variables, Table 8). Most of these characteristics didnot significantlydifferamong areas. Deciduouslillcr(38%) wasabundantinareaF060 whereassphagnum(5.5%), feather moss (49.7). lowfern(30%) and logs(7.4%)weremoreabundant inareaFDD.Fern litter inarea FD40,andlow and mediumshrubsinarea FOG werelowrespectivelycompared to theother twoareas. Conifer fitter,taU fernandlow shrubs weremoreabundantinFD40 and FD60 thanin theFOOarea.

PCAof the24 vegetation characteristicsresultedinthe extraction ofthe firsttwo principalcomponentfactors whichaccountedfor 384% and26.8% of variation (Table9).

Fivecharacteristicshad highpositive loadingson Factor1.namelyFoliage height diversity low,smalltree density,shrubdensity,deciduouslitter and tall fern.Fourvariables, fcnthcrmoss.sphagnum, logdiameterand logshadhig h negativeloadings.Poorseparation

29

(51)

Table5.Classifita lio nresuusof the DiscriminantFunctionAnalysis for thesoilch ara clcr istics uftheFDstudy situ .

Actual Group No. of PredictedGroup Membership

Cases 1 2 3

Group1 2 0 0

(FDO) 10O.O"IG .0% .0010

Group2 0 2 0

(FD4 0) .0% 100.0010 .00/0

Group 3 0 0 2

(FD60) .0% .0% 100.00/.

Percentof"grouped "casescorrectlyclassified:100.00%

Table6. Sum marytableof the soil characteristics SllOWillg highest sign ificant correlalionon Discr iminantFunctions 1and 2in FDstudy sites.

Soil Function 1 Function2

characteristics

Sodium .99081" .12682

pH .68675" -.15863

Calsium .62364" -.41228 Particles<2mm -.48769* .33441 Magnesium .00003 -.97225"

Nitorgen .01819 -.87181"

Phosphorus -.54726 -.83696"

Ash -.09127 .80835"

Organicmatte r .09355 -.80521*

Potassium -.27059 -.80078"

Iron .23477 .79437*

Aluminium -.02824 .75562*

Carbon .08934 -.71581"

*denoteslargestabsolutecorrelationLetwecneach variable andanydiscriminant function.

30

(52)

Table 7.Meanvalues orvegeeatloncharacter- istiu(n==SO)of theFD study siles. u:pressed as percentag eofsoil cover ed(severalcharactersmay overlap sothat the totalpercentcover exceeds 100-1••Data provided byDr Jan Thompson.ForestryCanada).

Forest Age Vege tation

characteristics FDD FD40 FDGO

Dcclduous Htter 12.7 17.5 38.0

Fern litter 4.8 0.2 3.8

Coniferlitter 11.0 17.2 18,2

Slash 8.6 6.9 9.6

Sphagnum 5.5 0.3 0.6

Feather moss 49.7 28.6 29.0

Lichen 0.1 0.1 0.1

Lycopodium 0.1 0.0 0.0

Gram 0.1 0.1 0.0

Forbs 20.1 23.7 18.4

Low shrub 5.0 18.6 28.1

Medium shrub 0.6 1.9 3.2

Low fern 21.5 18.6 28.1

Tnllfcm 6.4 11.4 10.9

Logs 7.4 4.8 2.5

31

(53)

Table8.Mun treedens ity(Dumber/Dtl)andtliversit y (Rr ill<mill'stliversity index)

or

FD st udysites (data prevldedby Dr.InnThompson,Forcslry Cana da).

ForestAge Vegetation

characteristics FDa FD40 FD60

Foliageheightdiversity(FDH)

Low 0.' 1.2 [4

Medium 1.2 0.' 1.2

Top 1.2 0.[ 1.1

Shrub density 0.10 0.16 0.37

Shrubdiversity 2.63 2.30 3.32

Small tree density 0.04 0.12 0.18

Tree density 0.11 0.27 0.15

Deadtreedensity 0.12 0.17 0.14

J2

(54)

Table9.Loadingsof the vegetation character islicson thefirst two fad o rse~lra ctedbyPrincipa lComponentsAnalysisorFD studysite s.

vcgctatlon Factor I Faclor2

Ch~mclcris ties

FDfl[ow .98434 -.15661

Smalltreedensity .94987 .0 3803

Fcatbc rmo ss _.91573 .38939

Shrubden sity .87R84 .0 7892

Legdiameter -.KGI91 -.0 2282

Logs -,85492 -.3 1749

Deciduous liner .779 26 -.11237

Sphagnum -.76203 .2272G

Tallfcm .72 549 -.44709

Dcadsma ll tree .14378 -.96 266

FDllmcdium -.21561 .91406

Lowfcm .30410 .9 1047

Slash .04617 .89123

Femlittcr _,317[8 .8 2817

Mediumshrub .22M 7 .0 4031

Lcwshrub .00282 .36230

Ccnifcrousliucr .,03258 .24048

FDHlop .137 11 -.46 141

Treedensity .30465 -.25809

Shrubdivers ily .29979 -.26310

Forb .24373 -.37225

Lycopodium -.338';6 .59540

Gmrn -.22 568 .40478

%variance explained JE.4% 26.8%

33

(55)

ofdifferentagesof forests wasobtainedinthis analysisand the sites withinftlfcsts of each ageweremoreor less equallyseparatedfromeachothcr(Fig10).

FunctionI ofthc:DiscriminantFunctionAnalysisseparatedFDOareasfromFl) ·mand FD60 areas. bnsitesof thelau enwowereclustered togclh cr (FigII),Approxim:ltcly1I~1e classification wasachievedforI~3areasofFDforesthabitat(Table10).Th:Vt:g clatioo characteristics showing high e st correla tiononDiscriminantFlinCli Ol~Iand2nrcgivenin TableII.Twelvevariableshad highcorrclnionson DiscriminantFunc tionI.withthe highest correlationbeingfor log diameter,logs,andsphagnum(negatively)andIhrhs.endlowshmhs (positively).

3.2Collr mbola Faull li

A total of 61 species represenung 29generaandsix l'illn ilics:ofCollcmhn la was collectedinaggregate fromalltypes ofsamplesandbothforest b.,bit<lls[fable 12).Forty-six ta'O.:awereidentified tospcciesantionetexcecoeldbeidcntiflCdonly10family.Amongtbec.

27gCllCfaand53speciesoccum:dinthesoiIqJadrale sampl~thirtee ngeneraand22spcci.:s ofCoIlembola were COllC1:ICd in pitr., l1traps (TableIl);and22gen eraand 38SIIt,:cic:Iwl.:re recoveredfrommicrohabitat samples (Table14- 16).

3.3PitflillTrapSUIIIIlies

Most ofthe Col1embola collected inthepitfalltrapswere cpcdaphicforms.and the abundanceoflhe specieswereloy;inpitfantraps comparedtosoilandmicrohabitat samples.

34

(56)

I.S

FI.fI.

1.0

''lj''

.s

N no

'T'

~

J!

-.S

i'Ji"

.1.0

-1.S ~3

-20

-20 -1.5 ·1.0 -.s 0.0

FactorI 10

F 'lf"

I.,

'0

Figur e10.Princjp al Compo nentcr-dinatiunor the sillFD siles ba sed on vegetation characters,Vegetatlen charac:erist icsandractorloadingsIrcpresentedinTable9.

1.,,-- -- -- - -- - - ,

1.0

no

o

oo

.u -4 -2

- . ,

OFDGO

OF!>lO

.1.l1._~.--;--=---;---.".---,---:--:---!6•FDO

Funcfkm1

.igu re11,Discrim inant functionordinationortheFDsitesbase d onvegetatlon dlllraciers.Vegetaliollcha ra cterist icsandrunctionco r relationsaregiven in Tabl e10.

35

(57)

Tab"10.Clan lr,nl'onfenlllotlheDlscrlmlnanlFllnctlon Anlll,'lIoturlh~

vr~d.llo n ~huactrrillksotlhe FDolud yIlIr..

AcllllllGroup Noof I'r~icll.'llOroupM~,nkrship

Cases I 2

G~p I 2 0 0

(FDO) 100.0% .0% 0%

G~p 2 0 I 1

(FD40) 0% 50.0% 50.0%

G~p 3 0 0 2

(FD6O) 0% 0% IOO,O"tI>

Table6.Summarytah ~ orth c\ltj\clll.t1onChH:Iot"It"rl'licoo",,,.lns:

hlghr ot .Ignlr",. nl C(' rrrillUnnonDl.r ri n.; nonlFunction. 111.", 1 2 inFD'ludYlil r ..

Vcgrlalion Funetionl ~'lIncl i<ln2 chllJQClcristics

Logdiamclcr '.87801' .4014 3

Forb! .11243 1' -.15013

L,~ ,.7070 9' 1040 1

Lowshrub .634 97" .33051

Shegnum -.533 04' .123(;3

McdiwnshlUb .528 04'

.4_

FcmliUc r .4554 5" -,31010 Shrubdcnsily .41303' -.16916

FI ID lop -.34857' .232114

Tsllfcrn -.34 157' -.091192

fo'calbcrrn<m -.273 79' 11388 Coniferlitter .07487" .02221

a,~ .35899 _.91685"

Dcad.m111ll11~~ .08351 88359"

Lowlcm -.03370 -.711515"

Shrubd iwrsl ly .354 17 129 11' Lycopo<lium .35417 .12911"

Lichen •.34799 -.711%"

Trcedcnsuy -.42595 _.702%"

Smalltrcc<lcn~ily _.40 534 -.53652"

ShIsh ,488 45 -.52932"

FOllm cdium .09043 -.4526 4"

FOillow .14 4 22 -.30654 "

Dccidacuslincr -.09469 -0982 5"

•denotes largestabsolutecorrelationbetweeneachvariable andanydiscriminant function.

J6

(58)

Table 11.Specieslisl of Collembolacollected from FD andFE forest habitat s. summer 1991to 1994 (speciesorderfollowsChristiansenandBellinger 1980).

ORDER· COLLEMBOLA SUBORDER· ARTHROPLEONA DIVISION· Poduromorpha FAMILY· Hypogaslruidac

lIypo£tlslrora(Milehe/lania)toncota Yosii Hypogastrura(Hypogas/nlra)hrlmi(Folsom) SlenogastrorahtemattsChristiansen WiIlcmiadcnisiMills Wil/cmiainlrrmediaMills Frieseasl/blimlsMacnamara Frteseanlaskrlla Fjellbcrg

Pseudaelloro/es(l'selldaehonltes)subcrassoidesMills l'seudachoro/es(p.~elldaehonttes)arlreo/aeiailis (Harvey) An/lrlda(Mieral'lllrida) pygtlmea(BOmer) Anllrida(Mleranllrida) furctfera (Mills) Noanura(Neamlra)mllseonlm(Templeton) FAMILY.Onychiuridac

Onychillrlls(prolaphorllm)simi/is Folsom Onycllillnls(Onychirmts) paro Christiansen Onycnturus(Arehaphontra)affinis Agrcn 7itllbergla(flil/bergia) granulataMills

DIVISION·Entomobryomorphu FAMILY-lsctomidac

Uze/iaseli/eraAbsolon

Amlrophorlls(l'selldoamlrophont.f) binoculala (Kscneman) Folsomiapentcula Bagnall

Mensotomagrandtceps(Reuter) MtcnsotomaachromataBellinger IsolOmiella minor (SchJlfTcr) lsotomnrus(ls%m/lros)sp Iuno mums pulustroidesFolsom lsotoma (Drsoria)ekmani Fjcllbcrg lsotoma (Desoria)notobtts SchiifTer lsotoma (Desorlo)snsptnata M<lcGi1Iivray tsotoma (Desoria)manilobaePlcllbcrg lsatoma (Dcsorlo)hir:mo!is Schott lsotomo (Desoria)spI lsotama (1Jcsaria) sp2 lsotomo (Dcsoria)sp 3 tsotoma (Desoria)sp 4

37

(59)

TableI2Collt....

1s00oma(lJcsoria)spS /soloma(Dr:sorlo)sp6 /soloma(Desorio)sp1 lsotama(Dcsoril1) sp8 /soloma(ls%ma) virtdis Bourlcl

•/sn/oma(Ve/ogoprls) betaChristiansen FAMILY·Entcmobryidac

Orcheseiiaaneta (Linnacus)

Entomohtya (/'.n/omobyra)mlil/ijOscJa/o (Tullbcrg) Entomobryo(f~/omobrya)nivalts (Linnecus) Enlomobrya(Enlomobrya) camparo/aFolsom Willows/a busH (Lubbock)

Lepttocyma cyanousTullbcrg

Tomocerus(l'ogonognalhel/wi)flavescensTuUbcrg Tomocerus(TomoceTlls) minor(Lubbock) Tomocerus(TomoccTlI.r)sp

SUBORDER · SYMPlIYPLEONA FAMILY·Ncclidac

Neclrls(Mega/o/horax) minimlls(Folsom) Nerlrls(Nee/ldt',r)minutus(Folsom) Nee/lis(Mega/o/horar) tncenus (Bomer) FAMILY .Sminthundac

SmlntfllIrldes (Sminthurides) lepwrMills Arrhopalitcsh/rws Ebristianscn Arrhopa/jles bentms (Folsom) Arrhopallfesd/versusMills

Smimhurinus(Smln/hurinrls)quodrimaeu/a/lu(Ryder) Smin/hurinllS (Smimhurinus) hcnshawi(Folsom) SmlnlhunlsspI

Smlnthunlss p2 Dicyrtomafusca (Lubbock) Dicyrtoma(pleno/hrix)spI Dicyrtoma(prenOlhrfx)sp 2 Dtcyrtoma(Pleno/hr/x)sp3

J8

(60)

Tabl e13. Coltembola taxa ecllected in pilfaUtr aps from lheFD forest.summer 1992(rank- morethan10specimens u*-abundan t. S-IO specimens *"· w 01mon. l -Sspecimens s-rar e}

SITES SPECIES

Uypoga.tlruratoncata H)IOgas/ntra huml Pesudachorutsalln:o!acialllS Ncannm mnscomm Mel/solomagrandiceps i.l"otnnl1lrtl.\·sp lsotom o virtdis IS(lwmaspG Iso/Omasp7 1.I"%maspR Orchesellocincto Entomobryanivall s I:"mo/llobryamliltiftl.~ciata EntomabryaCO/llpnrata Willows/a bus ki If!pido~yriliscyancus Tomocerns flovescens Tomocerusmmor Smintll/lrinll,rqlllldrimacli/ailis IJIcyrtoma (/'tl!/lOlhr/x)spI Dtcynomo (1'lrnalllrix)sp2 Dtcynoma(/'/f!nOlllr ix)sp3

FOO

39

FD40 FOOD

Références

Documents relatifs

according to species requirements, have two strategies at their disposal to face environmental hazards, 6.. called ‘move’ or

control sides of Petri dishes were tested by paired t test after check for the

Species assemblages and diets of Collembola in the organic matter accumulated over an old tar deposit... We investigated the food diets and species assemblages of Collembolan

Abstract: The trophic attractiveness of different stages of development and decomposition of holm oak leaves and the influence of their nutritional quality on the

A first RLQ analysis was applied to climate (temperature and rainfall), altitude, vertical stratification, habitat closure, soil moisture, and traits (Figs.. Axis

A–D Habitus E–F Two morphological types of cave Coecobrya in Thailand E Coecobrya phanthuratensis Zhang &amp; Jantarit, 2018; normal form with short antennae, append- ages and

Thus both direct and indirect effects of heavy metals on soil animal communities could be suspected to occur along a gradient of metal pollution (Bruus Pedersen et al., 1999). In the

Five groups of species, each associated with a given habitat, were determined: above the ground surface a distinction is evident between light species (open sites),