• Aucun résultat trouvé

VECTOR BIOLOGY

N/A
N/A
Protected

Academic year: 2022

Partager "VECTOR BIOLOGY "

Copied!
3
0
0

Texte intégral

(1)

V E C T O R B I O L O G Y

P o l y a m i n e a n a l o g u e s , e . g . fc^XbenzyDpolyamine ( M D L 2 7 6 9 5 ) , a l t h o u g h s h o w n t o i n t e r f e r e s t r o n g l y w i t h b o t h p o l y a m i n e u p t a k e s y s t e m s o f filarial w o r m s , p r o b a b l y e x h i ­ bit their filaricidal effects by c o m p e t i n g a n d interacting with p o l y a m i n e b i n d i n g sites s u c h as n u c l e i c a c i d s a n d structural m a c r o m o l e c u l e s .

Inhibition o f S - a d e n o s y l m e t h i o n i n e d e c a r b o x y l a s e , a regula­

tory a n d rate-limiting s t e p in the b i o s y n t h e s i s o f p o l y a m i n e s w h i c h p r o v i d e s the a m i n o p r o p y l g r o u p for the synthesis o f s p e r m i d i n e a n d s p e r m i n e , r e s u l t s in d e p l e t i o n o f p o l y ­ a m i n e s . MDL 7 3 8 1 1 , an irreversible inhibitor o f S-adenosyl­

m e t h i o n i n e d e c a r b o x y l a s e , affects b o t h p o l y a m i n e synthesis a n d the viability o f n e m a t o d e s m a i n t a i n e d in vitro.

T h e strategy p r o p o s e d h e r e is d i r e c t e d t o the i n t e r c o n v e r - s i o n a n d d e g r a d a t i o n p a t h w a y f o r p o l y a m i n e s . T h i s is b a s e d o n t h e findings that t h e p o l y a m i n e o x i d a s e is t h e rate-limiting s t e p for t h e b a c k c o n v e r s i o n o f s p e r m i n e t o s p e r m i d i n e a n d p u t r e s c i n e a n d that e l e v a t e d levels o f sper­

m i n e a r e lethal for Brugia w o r m s m a i n t a i n e d in vitro. T h e potential o f p o l y a m i n e o x i d a s e as a target for c h e m o t h e ­ rapy has b e e n a s s e s s e d by treatment o f Brugia a n d Ascaris w o r m s with MDL 7 2 1 4 5 , an irreversible inhibitor o f n e m a ­

T O D E p o l y a m i n e o x i d a s e , which resulted in e n z y m e inactiva- t i o n a n d a s u b s e q u e n t a c c u m u l a t i o n o f s p e r m i n e . B y structural analysis o f the filarial p o l y a m i n e o x i d a s e a n d the isofunctional m a m m a l i a n e n z y m e , differences m a y b e iden­

tified a n d e x p l o i t e d for the synthesis o f drugs w h i c h react selectively with the parasite e n z y m e .

Figure 1.

VECTOR BIOLOGY

H U M O R A L D E F E N S E MOLECULES I N VEC­

T O R S O F F I L A R I A S I S

HAM P.J.*, HAGEN H.E.*, SMITHIES B.M.*, CHALK R. AND A L B U Q U E R Q U E C.M.R.*

KEYWORDS : insect immunity, defense. Onchocerca, humoral proteins.

I N T R O D U C T I O N

T

h e relationship b e t w e e n the definitive host, man, a n d filarial parasites, has for l o n g b e e n a subject o f i n t e n s e study, a n d as this n e t w o r k attests, still is today. H o w e v e r , the interactions b e t w e e n v e c t o r s o f l y m p h a t i c filariasis a n d o n c h o c e r c i a s i s a n d t h e s e n e m a t o d e s , is l e s s w e l l u n d e r ­ s t o o d . T h e r e is n o w a c o n s i d e r a b l e b o d y o f data d e s c r i b i n g the i n n a t e a n d a c q u i r e d r e s i s t a n c e o f v e c t o r s t o the para­

sites they carry ( e g . r e v i e w e d b y T o w n s o n a n d C h a i t h o n g , 1 9 9 3 ; C h r i s t e n s e n a n d S e v e r s o n 1 9 9 3 ; H a m , 1 9 9 2 ) . B l a c k f l i e s a n d m o s q u i t o e s p o s s e s s c o m p l e x i m m u n e s y s ­ t e m s , c o m p r i s i n g inter-related cellular a n d h u m o r a l c o m p o ­ n e n t s . Not o n l y is immunity e x p r e s s e d in the h a e m o c o e l , but m e c h a n i s m s o f refractoriness a l s o a p p e a r t o b e l i n k e d

* Centre for Applied Entomology and Parasitology. Department of Biological Sciences, Keele University, Staffordshire, S T 5 5 B G , U.K.

t o gut l u m e n c o m p o n e n t s ( s e e r e v i e w Ham, 1 9 9 2 ) a n d t h o ­ racic tissues ( W a t t a m & Christensen, 1 9 9 2 ) .

R E S P O N S E S T O I N F E C T I O N

T

h r e e g e n e r a l i s e d r e s p o n s e s a p p e a r to t a k e p l a c e follo­

w i n g infection o f insects : ( 1 ) an alteration in m e t a b o l i c activity, including protein synthesis, ( 2 ) induction o f s p e c i ­ fic i m m u n e p e p t i d e s a n d p r o t e i n s s o m e o f w h i c h h a v e pro­

t e c t i v e f u n c t i o n a l a n t i b i o t i c a c t i v i t y , a n d ( 3 ) e n h a n c e d h a e m o c y t i c proliferation. T h i s proliferation m a y b e a s s o c i a ­ t e d with i n c r e a s e d s e c r e t i o n o f m o l e c u l e s in ( 2 ) ( F i g u r e 1 ) . As w e l l as r e s p o n s e s to infection, insects, including v e c t o r s o f filariasis m a y e x h i b i t r e s p o n s e s to others forms o f stress s u c h as c o l d , o v e r c r o w d i n g a n d p h y s i c a l t r a u m a s u c h as injury ( e g K o m a n o et al., 1 9 8 0 ) .

H U M O R A L D E F E N S E M O L E C U L E S

^ n u m b e r o f d e f e n s e p e p t i d e s h a v e b e e n o b s e r v e d in 1 1 insects, a n d m a n y o f t h e s e are k n o w n to b e induced by bacterial p a t h o g e n s s u c h as Escherichia coli, as well as filariae ( s e e Figure 2 w h i c h s h o w s i m m u n e and n o n i m m u n e

Parasite, 1994, I , I S

(»1

Article available athttp://www.parasite-journal.orgorhttp://dx.doi.org/10.1051/parasite/199401s1061

(2)

VECTOR BIOLOGY

blackfly h a e m o l y m p h protein profiles, a r r o w e d b a n d s may represent s o m e o f the m o l e c u l e s d e s c r i b e d b e l o w ) . Included in t h e s e are the bacteriolytic c e c r o p i n s ( ~ 4 K D a ) ; an insect d e f e n s i n ( ~ 4 K D a ) ; the b a c t e r i o s t a t i c attacins ( 2 0 - 2 3 K D a ) , a n d digestive l y s o z y m e ( ~ 1 5 K D a ) . O f t h e s e , d e f e n s i n has b e e n found in Aedes aegypti (Chalk et al., 1 9 9 4 ) , a n d c e c r o - pin-like a n d lysozyme-like m o l e c u l e s h a v e b e e n o b s e r v e d in blackflies (Smithies, pers. c o m m . ) . O t h e r d e f e n s e m o l e c u l e s s u c h as inducible h a e m o l y m p h p r o t e a s e s are also k n o w n in blackflies (Ham, 1 9 9 2 ) . A n u m b e r o f t h e s e are activated in r e s p o n s e to infection, a n d c o m p r i s e b o t h serine a n d cysteine type s p e c i e s . It is b e l i e v e d that t h e s e m o l e c u l e s may play a role in activation o f other i m m u n e proteins such as p h e n o - l o x i d a s e s (the subject o f an additional abstract, H a g e n a n d Ham, in this series). In addition to activation, the p r o t e a s e s m a y also b e r e s p o n s i b l e for b r e a k d o w n o f e x c e s s i v e levels o f i m m u n e m o l e c u l e s , a n d i n d e e d m a y h a v e a d i r e c t i m m u n e killing effect in their o w n right (Ham, 1 9 9 2 ) . P h e n o l o x i d a s e ( ~ 6 6 K D a + / - ) is an e n z y m e that acts in a cas­

c a d e m e c h a n i s m , w h i c h is k n o w n to b e activated by serine p r o t e a s e s , b y c l e a v a g e o f the inactive larger p r o - e n z y m e . E v i d e n c e i n d i c a t e s that as w e l l as t h e m o r e w e l l k n o w n r e s u l t o f P O a c t i v i t y , t h a t o f f i l a r i a e m e l a n i s a t i o n , t h i s e n z y m e may also act as a n o n - s e l f recognition m o l e c u l e or an o p s o n i n , bridging the parasite a n d an effector m o l e c u l e . A further g r o u p o f h u m o r a l m o l e c u l e s , the i n s e c t l e c t i n s , are a l s o b e l i e v e d to carry out this role, b y b i n d i n g specifi­

c a l l y t o c a r b o h y d r a t e m o l e c u l e s o n t h e p a r a s i t e s u r f a c e . I n d e e d P O m a y p o s s i b l y act as a lectin. T h e r e is strong evi­

d e n c e t o s h o w that l e c t i n s a r e i n d u c e d by Onchocerca infections in blackflies (Smail a n d Ham, 1 9 8 9 ) a n d that car­

b o h y d r a t e r e s i d u e s exist o n the surface o f the filariae that are s p e c i f i c for s u c h lectins ( H a m et al., 1 9 8 8 ) .

P a t h o g e n i n d u c e d r e s p o n s e s

Figure 1. - Insect responses to infection and other forms of stress.

T h e r e a r e t h e r e f o r e a n u m b e r o f c a n d i d a t e m o l e c u l e s for the i m m u n e killing o f filariae w h i c h h a v e b e e n o b s e r v e d in v e c t o r s , b o t h in vivo a n d in vitro. T h i s killing h a s b e e n s h o w n by i n c u b a t i o n o f microfilariae in i m m u n e h a e m o ­ lymph, b y the passive transfer o f i m m u n e h a e m o l y m p h to n a i v e s u s c e p t i b l e r e c i p i e n t i n s e c t s r e n d e r i n g t h e m refrac­

tory, a n d b y r e s i s t a n c e during multiple c o n s e c u t i v e infec­

t i o n s w i t h i n t h e s a m e i n d i v i d u a l i n s e c t . E x p e r i m e n t s in British simuliids h a v e s h o w n a r e s i s t a n c e t o reinfection with Onchocerca lienalis, a b o v i n e filariae, as w e l l as r e d u c t i o n in the d e v e l o p m e n t o f the pre-existing infection following s e c o n d a r y infection. In C a m e r o o n , s e c o n d a r y infection with O. ochengi restilted in the r e d u c e d d e v e l o p m e n t o f a pri­

mary O. ochengi infection w h e n c o m p a r e d with flies g i v e n an h e t e r o l o g o u s primary infection with O. volvulus ( F i g u r e 3 ) . It a p p e a r s , therefore, that t h e i m m u n e d e f e n s e s o f the v e c t o r s are a b l e t o distinguish at s o m e level, b e t w e e n para­

sites o f different s p e c i e s , within the s a m e g e n u s .

T h e fundamental u n d e r s t a n d i n g o f i m m u n e s y s t e m s in the i n s e c t s , a n d h o w t h e y affect p a r a s i t e d e v e l o p m e n t , is o f i m p o r t a n c e in o u r d e v e l o p m e n t o f n o v e l as well as m o r e informed c o n t r o l strategies. T h e intermediate h o s t h a s r e c e i ­ v e d m u c h less r e s e a r c h attention in t e r m s o f b a s i c b i o l o g y , than the definitive host. W e a r e attempting to redress that b a l a n c e a little by targetting an area o f v e c t o r p h y s i o l o g y , that p l a y s an i m p o r t a n t part in d e t e r m i n i n g w h e t h e r a n insect is a v e c t o r o f filariasis o r not.

Figure 2. - Haemolymph protein profiles following SDS PAGE separation and staining of haemolymph from Simulium ornatum removed 4 days after infection with Onchocerca microfilariae (I), or non specific "sham" trauma (S) or no treatment (C). Gels are stai­

ned with Coomassie Blue or Silver reagent. Some of the molecules of interest are arrowed.

Figure 3. - Recoveries of third-stage larvae of a primary 0 . ochengi ( O o / O o ) or O. volvulus ( O v / O o ) infection from S. damnosum si, following a secondary infection with O. ochengi (Ov/cont) and (Oo/cont) are primary infection control groups.

62

Parasite, 1994, I , I S

(3)

O P E N S E S S I O N

ACKNOWLEDGEMENTS

O u r r e s e a r c h is s u p p o r t e d b y t h e W e l l c o m e T r u s t , t h e M e d i c a l R e s e a r c h C o u n c i l , t h e B r i t i s h C o u n c i l a n d t h e G e r m a n and Brazilian G o v e r n m e n t s .

REFERENCES

CHALK R., TOWNSON H . , NATORI S . , DESMOND H . & HAM P.J. :

Purification of an insect defensin from the mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 1994, in press.

CHRISTENSEN B.M., SEVERSON D.W. : Biochemical and molecular basis of mosquito susceptibility of Plasmodium and filarioid nema­

todes. In Parasites and Pathogens of Insects 1. Beckage N.E., Thompson S.N. and Frederici B.A. (eds), 1993.

HAGEN H.E., GRUNEWALD J . & HAM P.J. : Differential activation of pro- phenoloxidase by Onchocerca spp. in Simulium damnosum and S. ornatum. Annals of Tropical Medicine and Parasitology, 1993,

in p r e s s

HAM P.J. : Immunity in haematophagous vectors of parasitic infec­

tion. In Advances in Disease Vector Research, Harris K . (ed), 1992, 9, 101-149.

HAM P.J., ZULU M . B . & ZAHEDI M . B . : In vitro haemagglutination and attenuation of microfilaria! motility by haemolymph from individual blackflies (Simulium ornatum) infected with Onchocerca lienalis.

Medical and Veterinary Entomology, 1988b, 2, 7-18.

I It i.'i MARK D . , ENGSTROM A.. ANDERSSON K . , STEINER H., BENNICII H. &

BOMAN H. : Insect immunity. Attacins. a family o f antibacterial proteins from Hyalophora cecropia. EMBO journal, 1983, 2, 571- 576.

KOMANO H., MIZUNO D . & NATORI S. : Purification of a lectin induced in the haemolymph of Sarcophaga peregrina larvae on injury.

Journal of Biological Chemistry. 1980, 255, 2929-2934.

S.MAII. A.J. & HAM P.J. : Onchocerca induced haemolymph lectins in blackflies : Confirmation by sugar inhibition of erythrocyte agglu­

tination. Tropical Medicine and Parasitology, 1989, 39, 82-83.

TOWNSON H. & CHAITHONG U. : Mosquito host influence on develop­

ment of filariae. Annals of Tropical Medicine and Parasitology.

1991, 85, 149-163.

WAITAM A.R. & CHRISTENSEN B . M . : Induced polypeptides associated with filarial worm refractoriness in Aedes aegypti. Proceedings of the National Academy of Sciences, USA, 1992, 89, 6502-6505.

OPEN SESSION

PHENOLOXIDASE ACTIVITY I N SIMULIUM DAMNO­

SUM S . L . A N D 5. ORNATUM S . L . FOLLOWING A N ONCHOCERCA INFECTION

HAGEN H.E*. AND HAM P.J.*

KEYWORDS : Simulium. Onchocerca, immunity, phenoloxidase

INTRODUCTION

I

m m u n e r e a c t i o n s o f blackflies ( D i p t e r a : S i m u l i i d a e ) as in o t h e r i n s e c t s c a n b e d i v i d e d into i n n a t e a n d a c q u i r e d r e s i s t a n c e to fungal, bacterial as w e l l as parasitic infections.

As to a c q u i r e d immunity, h a e m o l y m p h transfer e x p e r i m e n t s s h o w e d that if n a i v e r e c i p i e n t b l a c k f l i e s r e c e i v e d h a e m o ­ l y m p h from i n f e c t e d s p e c i m e n s p r i o r t o an Onchocerca infection, the rates o f parasite d e v e l o p m e n t w e r e r e d u c e d ( H a m 1 9 8 6 ) . Similar effects c a n b e s e e n in s u p e r i n f e c t e d E u r o p e a n a n d African b l a c k f l i e s . R e p e a t e d i n f e c t i o n with Onchocerca s p p . ( N e m a t o d a : F i l a r i o i d e a ) h a d a s t r o n g limiting effect o n the d e v e l o p m e n t o f the parasites ( d i s c u s ­ s e d e l s e w h e r e in m o r e detail). Having s h o w n o v e r the past y e a r s that blackflies h a v e an efficient i m m u n e a p p a r a t u s the q u e s t i o n arises w h e t h e r o r not this i m m u n e system is a l s o contributing to the innate r e s i s t a n c e to filarial infections in blackflies. T h e different p o p u l a t i o n s a n d ( c y t o - ) s p e c i e s o f Simulium h a v e a v a r y i n g t r a n s m i s s i o n c a p a c i t y o f Onchocerca p a r a s i t e s a s h a s b e e n o b s e r v e d in e n d e m i c areas.

* Centre for Applied Entomology and Parasitology, Department of Biological Sciences, Keele University, Staffordshire ST5 5BG, U.K.

As there a r e n o laboratory strains o f blackflies featuring dif­

ferent d e g r e e s o f susceptibility t o w a r d s the parasite, 5 dam­

nosum s . l . c o l l e c t e d f r o m a b r e e d i n g s i t e in N o r t h - C a m e r o o n w a s i n f e c t e d w i t h s e v e r a l Onchocerca s p e c i e s , w h i c h are e i t h e r a d a p t e d to this v e c t o r s u c h as O.

volvulus ( B l a c k l o c k , 1 9 2 6 ) , o r like the b o v i n e s p e c i e s O.

ochengi a n d O. dukei, are not naturally transmitted by this v e c t o r s p e c i e s ( D e n k e & B a i n , 1 9 7 8 ; W a h l & R e n z , 1 9 9 1 ) . B y c o m p a r i n g the r e a c t i o n s o f S. damnosum s.l. to infec­

tions with t h e s e s p e c i e s it w a s h o p e d to l o o k for c a n d i d a t e m o l e c u l e s r e s p o n s i b l e for the regulation o f filarial infection in blackflies.

T h e flies w e r e infected b y intrathoracic injection ( N e l s o n , 1 9 6 2 ) . T h e microfilariae w e r e r e c o v e r e d from s k i n - b i o p s i e s o f o n c h o c e r c i a s i s patients in N o r t h - C a m e r o o n (O. volvulus) o r f r o m b o v i n e h i d e s c o l l e c t e d at t h e a b a t t o i r in N g a o u n d e r e , N o r t h - C a m e r o o n ( O . ochengi a n d O. dukei).

Additional infection e x p e r i m e n t s o n a E u r o p e a n m o d e l , S.

ornatum a n d O. lienalis, w e r e carried out 2 4 h o u r s post infection the h a e m o l y m p h o f the infected, s h a m i n o c u l a t e d ( o n l y m e d i u m i n j e c t e d ) a n d untreated c o n t r o l w a s t a k e n , stored in liquid nitrogen, a n d s u b s e q u e n t l y analysed.

RESULTS

S. damnosum s.l. : T h e h a e m o l y m p h o f infected blackflies s h o w e d a 6 6 k D a b a n d . T h e a m o u n t o f t h i s m o l e c u l e varied a c c o r d i n g to the Onchocerca s p e c i e s injected. W h i l e t h e O. ochengi a n d O. volvulus i n f e c t e d b l a c k f l i e s had a strong 6 6 k D a b a n d (Fig. 1, l a n e 1 ) O. dukei infected s p e c i ­ m e n s s h o w e d a d e c r e a s e d intensity ( F i g . l , l a n e 4 ) . S h a m

Parasite, 1994, /, I S

(.3

Références

Documents relatifs

The results demonstrated that networks of functionally interacting proteins represented in both infected and uninfected cells can describe the complete set of host cell processes

This study focused on determining whether there are induced proteins in an infected snail haemolymph and to determine the cross reactivity of the proteins with

Differential Unfolded Protein Response in skeletal muscle from non-diabetic glucose tolerant or intolerant patients with obesity before and after bariatric surgery.. Camille

Haemolymph micropuncture samples were obtained and kept under water-saturated paraffin oil (on account of their very high protein content i t was not possible to prepare samples of

This lower microfilaria uptake coincided with a drop in dermal microfilaria density of the animal bait dur- ing the same period (Tab. ochengi microfilariae were identi- fied in a

The urine electrophoretic pattern in the sick dogs was classified as mixed (proteins with high and low molecular weights) because low molecular weight proteins made up 57.9% and

2D-DIGE proteomic analysis reveals changes in haemolymph proteome of 1-day-old honey bee (Apis mellifera) workers in response to infection with Varroa destructor mites.1.

Two different experiments were carried out in order to assess i the distribution efficiency of the injection device as compared to the conventional method; and ii the stress