• Aucun résultat trouvé

Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

N/A
N/A
Protected

Academic year: 2021

Partager "Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV"

Copied!
27
0
0

Texte intégral

(1)

Differential cross section measurements for

the production of a W boson in association with

jets in proton–proton collisions at √s = 7 TeV

The MIT Faculty has made this article openly available.

Please share

how this access benefits you. Your story matters.

Citation

“Differential Cross Section Measurements for the Production of a W

Boson in Association with Jets in Proton–proton Collisions at √s = 7

TeV.” Physics Letters B 741 (February 2015): 12–37.

As Published

http://dx.doi.org/10.1016/j.physletb.2014.12.003

Publisher

Elsevier

Version

Final published version

Citable link

http://hdl.handle.net/1721.1/94562

Terms of Use

Creative Commons Attribution

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Differential

cross

section

measurements

for

the

production

of

a W boson

in

association

with

jets

in

proton–proton

collisions

at

s

=

7 TeV

.

CMS

Collaboration



CERN,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received29June2014

Receivedinrevisedform22November2014 Accepted2December2014

Availableonline5December2014 Editor: M.Doser Keywords: CMS Physics W+jets Vectorboson Jets Electroweak Standardmodel

Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse

momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon.

The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb−1. The measured cross sections are

compared to predictions from Monte Carlo generators, MadGraph+pythia and sherpa, and to next-to-leading-order calculations from BlackHat+sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pTdistributions of the leading jets at high pTvalues,

the distributions of the HTat high-HTand low jet multiplicity, and the distribution of the difference in

azimuthal angle between the leading jet and the muon at low values.

©2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Thisletter reportsmeasurements offiducial crosssections for W bosonproductioninassociationwithjetsattheLHC. Measure-mentsofthe productionofvector bosons inassociationwithjets are fundamental tests of perturbative quantum chromodynamics (pQCD).TheW

+

jets processesalsoprovidethemainbackground toother,muchrarer,standardmodel(SM)processes,suchast

¯

t[1] andsingle top-quarkproduction [2], andto Higgsboson produc-tionandavarietyofphysicsprocessesbeyondtheSM.Searchesfor phenomenabeyondtheSMareoftenlimitedbytheuncertaintyin thetheoreticalcrosssectionsforW(andZ)

+

jetsprocessesathigh momentumscalesandlargejet multiplicities.Therefore,it is cru-cialtoperformprecisionmeasurementsofW

+

jets productionat theLHC.

Leptonicdecaymodesofthevectorbosonareoftenusedinthe measurement of SM processes and in searches for new physics, because they provide clean signatures with relatively low back-ground. This letter focuses on the production of a W boson de-cayingintoamuon anda neutrino, aspartofa final-state topol-ogycharacterisedbyonehigh-transverse-momentum(pT)isolated

 E-mailaddress:cms-publication-committee-chair@cern.ch.

muon, significant missing transverse energy (Emiss

T ), and one or morejets.Thecrosssectionsaremeasuredasafunctionofthe in-clusiveandexclusivejetmultiplicitiesforuptosixjets.Differential crosssectionsaremeasuredfordifferentinclusivejetmultiplicities asa function ofthetransverse momentum andthe pseudorapid-ity (

η

) of the jets, where

η

= −

ln

[

tan

(θ/

2

)

]

, and

θ

is the polar anglemeasuredwithrespecttotheanticlockwisebeamdirection. The cross sectionsare also measured asa function of the differ-enceinazimuthalanglebetweenthedirectionofeachjetandthat of the muon, and of HT, which is defined as the scalar sum of the pT ofalljetswith pT

>

30 GeV and

|

η

|

<

2

.

4.Itisimportant to studythedistribution ofthejet pT andthe observable HT be-causetheyaresensitivetohigherordercorrections, andareoften usedtodiscriminateagainstbackgroundinsearchesforsignatures of physics beyond the SM. Additionally, HT is often used to set thescaleofthehardscatteringprocessintheoreticalcalculations. Finally, the

η

distributions of jets andthe azimuthal separations betweenthe jetsandthemuon are alsoimportant,becausethey aresensitivetothemodellingofpartonemission.

The measurements presented inthis letter useproton–proton (pp) collision data at a centre-of-mass energy of

s

=

7 TeV recordedwiththeCMSdetectorattheLHCin2011andcorrespond to anintegratedluminosity of5

.

0

±

0

.

1fb−1 [3].These measure-ments coverhigh jetmultiplicities andhigherjet pT thanearlier http://dx.doi.org/10.1016/j.physletb.2014.12.003

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(3)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 13 publicationsbecausethecentre-of-massenergyandtheintegrated

luminosityarehigher.Previousstudiesofleptonicdecaymodesof theWbosoninassociationwithjetsattheLHChavemeasuredthe crosssectionsandcrosssection ratiosforW bosonproductionin associationwithjetsinppcollisionswithanintegratedluminosity of36pb−1 at

s

=

7 TeV withtheATLAS[4]andCMS[5] detec-tors.Measurementshavealsobeen madewithpp collisions

¯

with theD0detector[6,7] atthe Tevatroncolliderforintegrated lumi-nositiesup to 4.2 fb−1, aswell aswiththe CDF detector[8] for anintegratedluminosityof320 pb−1.Recentmeasurementshave beenmadewiththeATLASdetectorwithacentre-of-massenergy of7 TeV andanintegratedluminosityof4.6 fb−1 [9].

InordertoperformadifferentialmeasurementoftheW

+

jets crosssection,ahigh-puritysample ofW

μν

eventsisselected andthekinematicdistributions arecorrected totheparticlelevel bymeansofregularisedunfolding [10].Thisprocedure correctsa measuredobservablefortheeffectsofdetectorresponse,finite ex-perimentalresolutions,acceptance,andefficiencies,andtherefore allowsfordirectcomparisonwiththeoreticalpredictions.The mea-sureddifferential crosssections are compared to the predictions ofgenerators suchas MadGraph 5.1.1 [11]interfacedwith pythia 6.426[12], sherpa 1.4.0[13–16],and BlackHat[17,18],interfaced to sherpa. The BlackHat

+

sherpa samples [19] provide parton-levelpredictionsof W

+

n (n

=

1–5)jetsatnext-to-leadingorder (NLO),whilethe MadGraph

+

pythiaand sherpa samplesprovide tree-levelcalculationsfollowedbyhadronisationtoproducethe fi-nalstates.

Theletterproceedsasfollows:Section2presentstheCMS de-tector.Section3describestheMonteCarlo(MC)eventgenerators, aswell asthe datasamples usedforthe analysis. The identifica-tion criteriaforthe final-state objects (leptonsand jets) andthe selectionoftheW

μν

+

jets eventsarepresentedinSection4. Section5describesthemodellingofinstrumentalbackgroundsand irreducible physics backgrounds. The procedure used for unfold-ingisdetailedinSection6,andSection7describesthesystematic uncertainties. Finally, the unfolded distributions are presented in Section 8andcompared to theoreticalpredictions, andSection 9 summarisestheresults.

2. TheCMSdetector

The CMS detector, presented in detail elsewhere [20],can be describedwithacylindricalcoordinatesystemwiththe

+

z axis di-rectedalongtheanticlockwisebeamaxis.Thedetectorconsistsof aninnertrackingsystemandcalorimeters(electromagnetic,ECAL, and hadron, HCAL) surrounded by a 3.8 T solenoid. The inner trackingsystem consistsof a silicon pixel andstrip tracker, pro-viding the required granularity and precision for the reconstruc-tion of vertices of chargedparticles in the range 0

≤ φ <

2

π

in azimuth and

|

η

|

<

2

.

5. The crystal ECAL and the brass/scintilla-torsamplingHCAL are usedto measure theenergies of photons, electrons, and hadrons within

|

η

|

<

3

.

0. The HCAL, when com-bined with the ECAL, measures jets with a resolution



E

/

E

100%

/

E

[

GeV

] ⊕

5% [21]. The three muon systems surrounding the solenoidcover a region

|

η

|

<

2

.

4 andare composed of drift tubes inthe barrel region

(

|

η

|

<

1

.

2

)

, cathode strip chambersin theendcaps

(

0

.

9

<

|

η

|

<

2

.

4

)

,andresistive-platechambersinboth thebarrelregionandtheendcaps

(

|

η

|

<

1

.

6

)

.Eventsarerecorded basedon a trigger decision usinginformation fromthe CMS de-tector subsystems.The first level(L1) ofthe CMStrigger system, composedof custom hardware processors,uses informationfrom thecalorimetersandmuondetectorstoselectthemostinteresting eventsinafixedtimeintervaloflessthan4 μs.Thehigh-level trig-ger(HLT)processorfurtherdecreasestheeventratefrom100 kHz atL1toroughly300 Hz.

3. Dataandsimulationsamples

Eventsareretainediftheypassatriggerrequiringoneisolated muon with pT

>

24 GeV and

|

η

|

<

2

.

1. Signal and background simulated samples are produced and fully reconstructed using a simulation of the CMS detectorbased on Geant4 [22], and sim-ulatedeventsarerequiredtopassanemulation ofthetrigger re-quirementsappliedtothedata.Thesesimulationsincludemultiple collisions ina singlebunch crossing(pileup).Tomodelthe effect ofpileup,minimumbiaseventsgeneratedin pythia areaddedto the simulatedevents, withthe numberofpileup events selected tomatchthepileupmultiplicitydistributionobservedindata.

A W

ν

+

jets signal sample is generated with MadGraph 5.1.1andisusedtodeterminethedetectorresponseinthe unfold-ingproceduredescribedinSection6.Partonshoweringand hadro-nisation of the MadGraph samples are performed with pythia 6.424 using the Z2 tune [23]. The detector response is also de-terminedusinga differentW

+

jets eventsample generatedwith sherpa1.3.0 [13–16], andisused inthe evaluationofsystematic uncertaintiesduetotheunfoldingofthedata.

Themainsourcesofbackgroundaretheproductionoft

¯

t,single top-quark,Z

/

γ

+

jets,dibosons

(

ZZ

/

WZ

/

WW

)

+

jets,andmultijet production. With the exception of multijet production, all back-grounds are estimated from simulation. The simulated samples of t

¯

t and Z

/

γ

+

jets are generatedwith MadGraph 5.1.1; single top-quark samples (s-, t-, and tW-channels) are generated with powheg version1.0[24–27];VV samples, whereV represents ei-thera W boson ora Z boson, are generatedwith pythia version 6.424 using the Z2 tune [23]. Parton showering and hadronisa-tion of the MadGraph and powheg samples are performedwith pythia6.424.Thesimulationswith MadGraph and pythia usethe CTEQ6L1 partondistribution functions(PDF) [28]. The simulation with sherpa uses the CTEQ6.6m PDF, and the simulations with powhegusetheCTEQ6mPDF.

TheW

+

jets andZ

/

γ

+

jets samplesarenormalisedto next-to-next-to-leadingorder(NNLO)inclusivecrosssectionscalculated with fewz [29].Single top-quarkandVV samples arenormalised toNLOinclusivecrosssectionscalculatedwith mcfm[30–33].The t

¯

t contributionis normalised to theNNLO

+

next-to-next-leading logarithm(NNLL)predictedcrosssectionfromRef.[34].

4. Objectidentificationandeventselection

Muon candidatesarereconstructedastracksinthemuon sys-temthatarematchedtotracksreconstructedintheinnertracking system[35].Muon candidates are requiredto have pT

>

25 GeV, and to be reconstructed within the fiducial volume used forthe high-leveltriggermuonselection,i.e.within

|

η

|

<

2

.

1.Thisensures that the offline event selection requirements are as stringent as thetrigger.Inaddition,an isolationrequirementisappliedto the muon candidates by demanding that therelative isolation is less than0.15,wheretherelativeisolationisdefinedasthesumofthe transverse energydepositedinthe calorimeters(ECALandHCAL) andofthe pT ofchargedparticlesmeasuredwiththetracker ina coneof



R

=



(φ)

2

+ (

η

)

2

=

0

.

3 aroundthemuon candidate track(excludingthistrack),dividedbythemuon candidatepT.To ensure a precise measurement of the transverse impact parame-terofthemuontrackrelativetotheinteractionpoint,onlymuon candidateswithtrackscontainingmorethan10hitsinthesilicon trackerandatleastonehitinthepixeldetectorareconsidered.To rejectmuonsfromcosmicrays,thetransverseimpactparameterof themuoncandidatewithrespecttotheprimaryvertexisrequired tobelessthan2 mm.

Jets are reconstructed using the CMS particle-flow algorithm [36,37],usingtheanti-kT[38,39]algorithmwithadistance

(4)

param-Fig. 1. Thejetmultiplicityindataandsimulationbefore(left)andafter(right)theb-jetveto.TheW+jets contributionismodelledwith MadGraph 5.1.1+pythia6.424.The solidbandindicatesthetotalstatisticalandsystematicuncertaintyintheW+jets signalandbackgroundpredictions,asdetailedinSection7.Thisincludesuncertaintiesin thejetenergyscaleandresolution,themuonmomentumscaleandresolution,thepileupmodelling,theb-taggingcorrectionfactors,thenormalisationsofthesimulations, andtheefficienciesofreconstruction,identification,andtriggeracceptance.Asubstantialreductionintheexpectedt¯t backgroundisobservedintherightplot.

eter of 0.5. The jet energy is calibrated using the pT balance of dijetand

γ

+

jet events[40] toaccount forthefollowingeffects: nonuniformityandnonlinearityofthe ECALandHCAL energy re-sponse to neutral hadrons, the presence of extra particles from pileupinteractions,thethresholdsusedinjetconstituentselection, reconstructioninefficiencies,andpossiblebiasesintroducedbythe clustering algorithm. Only jets with pT

>

30 GeV,

|

η

|

<

2

.

4, and a spatial separation of



R

>

0

.

5 from the muon are considered. Toreducethecontaminationfrompileupjets,jetsare requiredto be associated tothe same primary vertexasthe muon. The ver-texassociated toeach jet istheone that hasthelargest number of pT-weighted tracks in common with the jet. The contamina-tionfrompileupjetsisestimatedwiththesignalsimulation,with pileupeventssimulatedwith pythia,andfoundtobelessthan1%. Themissingmomentumvector,pmissT ,isdefinedasthenegative of the vectorial sum ofthe transverse momenta of the particles reconstructed with the particle-flow algorithm, and the EmissT is defined asthe magnitudeof the pmissT vector. The measurement of the Emiss

T in simulation is sensitive to the modelling of the calorimeterresponseandresolutionandtothedescriptionofthe underlyingevent.Toaccountfortheseeffects,theEmiss

T inW

+

jets simulationiscorrectedforthedifferencesinthedetectorresponse betweendataandsimulation,usingamethoddetailedinRef.[41]. A recoil energy correction is applied to the W

+

jets simulation on an event-by-event basis, using a sample of Z

μμ

events in data and simulation. The transverse recoil vector, defined as thenegativevectorsumofthemissingtransverseenergyandthe transverse momentaof thelepton(s), is divided intocomponents parallel andperpendicular to the bosondirection. The mean and thewidthofthetransverserecoilvectorcomponentsare parame-terisedasafunctionoftheZ bosonpTindataandsimulation.The ratioofthedataandsimulationparameterisationsisusedtoadjust thetransverse recoilvector componentsin each simulatedevent, anda new EmissT is computedusing the corrected recoil compo-nents.

Events are required to contain exactly one muon satisfying the conditions described above andone or more jets with pT

>

30 GeV.EventsarerequiredtohaveMT

>

50 GeV,where MT,the transversemassofthemuonandmissingtransverseenergy,is

de-fined asMT



2pμTEmiss T

(

1

cos

φ)

,where p μ T isthemuon pT and

is the difference in azimuthal angle between the muon momentumdirectionandthepmiss

T vector.

5. Estimationofthebackgroundsandselectionefficiencies All background sources exceptfor the multijetproduction are modelled with simulation. The simulated eventsamples are cor-rectedfordifferencesbetweendataandsimulationinmuon identi-fication efficienciesandeventtriggerefficiency.A“tag-and-probe” method[35]isusedtodeterminethedifferencesbetween simula-tion and data forthe efficiency of thetrigger and forthe muon identification and isolation criteria. This method uses Z

μμ

events from both data and simulated samples where the “tag” muon is required to pass the identification and isolation crite-ria. The efficiencymeasurementsusethe “probe”muon, whichis required to pass minimal quality criteria. Trigger efficiency cor-rections are determined asafunction ofthe muon

η

,andare in general lessthan 5%. Muon isolation and identificationefficiency corrections are determined asa function ofthe muon pT and

η

, and aregenerally lessthan 2%. Correctionsto the simulation are appliedonanevent-by-eventbasisintheformofeventweights.

ThedominantbackgroundtoW

+

jets productionist

¯

t produc-tion,whichhasalargertotalcontributionthanthatoftheW

+

jets signal in events with four or more jets. In order to reduce the level oft

¯

t contamination, avetoisappliedto eventswithoneor moreb-taggedjets. Heavy-flavour taggingisbasedona tag algo-rithm[42] thatexploitsthelonglifetimeofb-quarkhadrons.This algorithm calculates the signed impact parameter significance of alltracksinthejetthatsatisfyhigh-qualityreconstructionand pu-ritycriteria, andordersthetracks bydecreasing significance.The impactparametersignificanceisdefinedastheratiooftheimpact parametertoits estimateduncertainty.Forjetswithtwoormore significanttracks,ahigh-efficiencyb-quarkdiscriminatorisdefined asthesignificanceofthesecondmostsignificanttrack.Thesizeof the t

¯

t background isillustratedinFig. 1,beforeandafterthe im-plementationoftheb-jetveto,usingtheeventselectiondescribed inSection4.Theexpectedcontributionsforthedifferentprocesses inFig. 1areshownasafunctionofthejetmultiplicity,alongwith

(5)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 15 theobserveddata.Differencesinthetaggingandmistaggingrates

betweendataandsimulationaremeasuredasafunctionofthejet pTinmultijetandt

¯

t events[42],andareusedtocorrectthe tag-gingratesofthejetsinsimulation.Forjetmultiplicitiesof1to6, theb-jet vetoeliminates 44–84% of thepredicted t

¯

t background, whileeliminating3–26%ofthepredictedW

+

jets signal.The re-sultingincrease in the signal purity allows for reductionsin the totaluncertainty inthe measured crosssectionsof 6–43% forjet multiplicitiesof4–6.

The shape and normalisations of the Z

/

γ

+

jets and t

¯

t pre-dictionsare cross-checked inselected data samples.The Z

+

jets background is compared to data in a Z-boson dominated data sample that requires two well-identified, isolated muons. The t

¯

t backgroundis compared to data in a control region requiringat least two b-tagged jets. Background estimations from simulation andfromdatacontrolsamplesagreewithin theuncertainties de-scribedinSection7.

Themultijetbackgroundisestimatedusingadatacontrol sam-ple withan inverted muon isolation requirement. In the control sample, the muon misidentification ratefor multijetprocesses is estimated in the multijet-enriched sideband region with MT

<

50 GeV, and the shape template of the multijet distribution is determined inthe region with MT

>

50 GeV. Contributions from other processes to the multijetcontrol region are subtracted, in-cluding the dominant contribution from W

+

jets. In order to improve the estimation of W

+

jets in the multijet control re-gion,the W

+

jets contribution is firstnormalised to datain the MT

>

50 GeV region with the muon isolation condition applied. The multijet shape template is then rescaled according to the muonmisidentificationrate.Forexclusivejetmultiplicitiesof1–4, thepurityofthemultijet-enrichedinverted-isolationsideband re-gionis99.7–98.1%,andthepurityoftheW

+

jetscontributionto thesignalregion is92–76%.The multijetestimatecorresponds to 32.7–1.9%ofthetotalbackgroundestimate,or2.6–0.3%ofthetotal SMprediction.

6. Theunfoldingprocedure

Forthemeasurementofcrosssections,theparticlelevelis de-finedbyaW boson, whichdecaysintoamuon andamuon neu-trino, produced in association with one or more jets. Kinematic thresholds on the particle-level muon, MT, and jets are identi-cal tothose appliedto thereconstructed objects.Specifically, the particle-level selection includes the requirement of exactly one muon with pT

>

25 GeV and

|

η

|

<

2

.

1, and MT

>

50 GeV. The particle-levelEmiss

T isdefinedasthenegativeofthevectorialsum of the transverse momenta of all visible final state particles. To accountforfinal-stateradiation,themomentaofall photonsina coneof



R

<

0

.

1 aroundthemuonareaddedtothatofthemuon. Jetsareclusteredusingtheanti-kT [38]algorithmwithadistance parameter of 0

.

5. Clustering is performed using all particles af-terdecay and fragmentation, excluding neutrinos andthe muon fromthe W boson decay. Additionally, jetsare required to have pT

>

30 GeV and

|

η

|

<

2

.

4,andtobeseparatedfromthemuonby



R

>

0

.

5.

The reconstructed distributions are corrected to the particle levelwiththemethodofregularisedsingularvaluedecomposition (SVD) [10] unfolding,using the RooUnfold toolkit[43]. Foreach distribution,thetotalbackground,includingthe multijetestimate from data and all simulated processes except the W boson sig-nal,issubtracted fromthe databefore unfolding.Aresponse ma-trix,defining the migrationprobability betweentheparticle-level and reconstructed quantities, as well as the overall reconstruc-tionefficiency,iscomputedusingW

+

jets eventssimulatedwith MadGraph

+

pythia.Fora givenparticle-levelquantity Q witha

corresponding reconstructed quantity Q , themigration probabil-ityfromanintervala

<

Q

<

b toanintervalc

<

Q

<

d isdefined asthefractionofeventswitha

<

Q

<

b thathavec

<

Q

<

d.The unfoldingofthejetmultiplicityisperformedwitharesponse de-fined by the number of particle-level jets versus the number of reconstructed jets. For particle-level jet multiplicities of 1 to 6, 4 to 51%ofsimulatedeventsexhibitmigrationtodifferentvalues of reconstructed jet multiplicity. The unfolding of the kinematic distributions ofthenth jetis performedwitharesponse defined by the kinematicquantity ofthe nth-highest-pT particle-leveljet versus that ofthe nth-highest-pT reconstructed jet. To achieve a full migration from the selection of reconstructed events to the particle-levelphasespace,nomatchingbetweenreconstructedand particle-level jetsis applied. The contribution fromthe W

τ ν

processwithamuoninthefinalstateisestimatedtobeatthe1% level,andisnotconsidered aspartofthesignal definitionatthe particlelevel.

The b-jet veto is treated as an overall event selection condi-tion.Events failingthiscondition are treatedasnonreconstructed intheunfoldingresponse,sothatthecrosssectionobtainedafter unfoldingisvalidforW bosondecayswithassociatedjetsofany flavour.

7. Systematicuncertainties

Thesourcesofsystematicuncertaintiesconsideredinthis anal-ysisare describedbelow.The entiretyoftheunfoldingprocedure is repeated for each systematic variation, and the unfolded data results withthesevariations are compared withthe central (un-varied) results to extract the uncertainties in the unfolded data distributions.

In mostdistributions, thedominantsources of systematic un-certaintyincludethejetenergyscaleandresolutionuncertainties, whichaffecttheshapeofallreconstructeddistributionsaswellas theoveralleventacceptance.Thejetenergyscaleuncertaintiesare estimatedby assigning a pT- and

η

-dependent uncertaintyinjet energycorrectionsasdiscussedinRef.[40],andbyvaryingthejet pT by the magnitude ofthe uncertainty. The uncertainties injet energyresolutionareassessedbyincreasing thepTdifference be-tweenthereconstructedandparticle-leveljetsbyan

η

-dependent value[40].Thejetenergyuncertaintiesaredeterminedbyvarying the pTofthejetsindataratherthaninsimulation.

Muonmomentumscaleandresolutionuncertaintiesalso intro-duce uncertainties in the overall event acceptance.A muon mo-mentum scale uncertainty of 0.2% and a muon momentum res-olutionuncertaintyof0.6%are assumed[35].Theeffectsofthese uncertaintiesareassessedbydirectlyvaryingthemomentumscale andrandomlyfluctuatingthemuonmomentuminthesimulation. Variations for uncertainties in the energy and momentum scalesandresolutionsaffectthesizeandshapeofthebackground distribution to be subtracted from the data distribution, as well astheacceptanceofW

+

jets simulatedevents,whichdefine the response matrixusedforunfolding. The variationsare also prop-agatedtothemeasurementof EmissT ,whichaffectstheacceptance oftheMT

>

50 GeV requirement.

Another important source of systematic uncertainty is the choiceofthegenerator usedintheunfoldingprocedure.Thesize of this uncertainty is assessed by repeating the unfolding pro-cedure with a response trained on a separate simulated sample generatedwith sherpa 1.3.0. The absolutevalue ofthedifference between the data unfolded with a response matrix trained on sherpaandwitharesponsematrixtrainedon MadGraph

+

pythia istreatedasasymmetricuncertaintyinthemeasurement.

Other minor sources of systematic uncertainty include the uncertainties in the background normalisation, the b-tagging

(6)

Table 1

Rangesofuncertaintiesforthemeasurementofdσ/dpTofthenthjetineventswithn ormorejets.Theuncertaintiesdisplayedincludethestatisticaluncertaintyinthe dataminusthebackground,propagatedthroughtheunfoldingprocedure(Statistical),thejetenergyscaleandresolution(JES,JER),thechoiceofgeneratorusedinthe unfoldingprocedure(Generator),theuncertaintyduetoafinitenumberofsimulatedeventsusedtoconstructtheresponsematrix(MCstat.),andallothersystematic uncertainties(Other)detailedinSection7,includingpileup,integratedluminosity,backgroundnormalisation,b-tagging,muonmomentumandresolution,triggerefficiency, muonidentification.

n pT[GeV] Statistical [%] JES, JER [%] Generator [%] MC stat. [%] Other [%] Total [%]

1 30–850 0.1–3.2 3.4–24 0.9–9.6 0.2–11 2.3–6.6 4.5–29

2 30–550 0.4–2.4 4.6–12 1.6–13 0.8–11 2.9–5.9 6.9–21

3 30–450 0.6–16 6.0–23 2.7–48 1.0–45 4.5–11 9.4–73

4 30–210 1.6–10 11–15 6.4–21 2.4–23 7.2–26 16–43

efficiency,themodellingoftheWbcontributioninthesignal sim-ulation, integrated luminosity, the pileup modelling, the trigger andobjectidentificationefficiencies,andthefinitenumberof sim-ulatedevents usedto constructthe response matrix.Background normalisation uncertainties are determined by varying the cross sectionsofthe backgroundswithintheir theoreticaluncertainties. For the Z

+

jets process, a normalisation uncertainty of 4.3% is calculatedasthesuminquadratureofthe factorisation/renormal-isation scale and PDF uncertainties calculated in fewz [29]. For thedibosonandsingletop-quarkprocesses,uncertaintiesare cal-culated with mcfm [30–33] to be 4% and 6%, respectively. The uncertainty in the t

¯

t modelling is assessed by taking the differ-encebetweendataandsimulationinacontrolregionwithtwoor moreb-taggedjets, andisestimatedtobe 5to12%forjet multi-plicitiesof2to6.Theestimateofthemultijetbackgroundhasan uncertaintybasedonthelimitednumberofeventsinthemultijet sampleandinthecontrolregions wherethemultijetsample nor-malisationis calculated,and other systematicvariations affecting the backgrounds in the multijet control regions introduce varia-tions in the multijet normalisation and template shape. For the b-taggingalgorithm usedto vetoeventscontaining b jets, uncer-tainties in the data/simulation ratio of the b-tagging efficiencies are applied.For jetswith pT

>

30 GeV,these uncertainties range from 3.1 to 10.5%. An additional uncertainty is ascribed to the normalisation of the Wb content in the simulation by examin-ing theagreement betweendata andsimulation asa functionof jetmultiplicityinacontrolregiondefinedbyrequiringexactlyone b-taggedjet. Anincrease in thenormalisationof theWb process of120%isconsidered,yieldinganuncertaintyinthemeasurement of0.5to11%forjetmultiplicitiesof1to6.Theuncertaintyinthe integratedluminosityis2.2%[3].Anuncertaintyinthemodelling of pileup in simulation is determined by varying the numberof simulatedpileupinteractionsby5% toaccountfortheuncertainty in theluminosity and the uncertaintyin the total inelasticcross section[44],asdeterminedby acomparisonofthenumberof re-constructed vertices in Z

μμ

events in data and simulation. Uncertaintiesin the differencesbetween data andsimulation ef-ficiencies of the trigger, muon isolation, andmuon identification criteriaare generallylessthan 1%. An additionaluncertainty due tothefinitenumberofsimulatedeventsusedtoconstructthe re-sponse matrix is calculated by randomly varying the content of the response matrix according to a Poisson uncertainty in each bin.

The effectof thesystematic variations on themeasured cross sectionasafunctionoftheexclusivejetmultiplicity isillustrated inFig. 2.TheuncertaintiesgiveninFig. 2arethetotaluncertainty for each jet multiplicity. The corresponding ranges of systematic uncertaintyacrossbinsofjet pT aregiveninTable 1.

8. Results

Thecross sectionsforexclusive andinclusivejetmultiplicities are giveninFig. 3.In Figs. 4–7 thedifferential crosssectionsare

Fig. 2. ThedominantsystematicuncertaintiesinthemeasurementoftheW+jets crosssectionasafunctionoftheexclusivejetmultiplicity.Thesystematic uncer-taintiesdisplayedincludethejetenergyscaleandresolution(JES,JER),thechoice ofgeneratorusedintheunfoldingprocedure(Generator),thestatisticaluncertainty inthe dataminus thebackground, propagatedthroughthe unfoldingprocedure (Statistical),the uncertaintyduetoafinitenumberofsimulatedeventsusedto construct the response matrix (MCstat.), and allothersystematicuncertainties (Other)detailedinSection7,including pileup,integratedluminosity,background normalisation,b-tagging,muonmomentumandresolution,triggerefficiency,muon identification.Theuncertaintiespresentedherecorrespondtotheweightedaverage ofthevaluesshowninTable 1.

presented.Themeasured W

+

jets crosssectionsare comparedto thepredictionsfromseveralgenerators.WeconsiderW

+

jets sig-nal processesgenerated with MadGraph 5.1.1 usingthe CTEQ6L1 PDFset,with sherpa 1.4.0usingtheCT10[45,46]PDFset,andwith BlackHat

+

sherpa[17] usingtheCT10PDF set.Predictionsfrom MadGraph

+

pythiaand sherpa arenormalisedtotheNNLO inclu-sivecrosssectionscalculatedwith fewz[29].The sherpa sampleis aseparate samplefromthatusedfortheevaluationof uncertain-ties inSection 7. The MadGraph and sherpa predictionsprovide leading-order (LO) matrix element (ME) calculations at each jet multiplicity, which are then combined into inclusivesamples by matching the ME partons to particle jets. Parton showering (PS) and hadronisation of the MadGraph sample is performed with pythia6.426 usingtheZ2tune. The MadGraph

+

pythia calcula-tionincludestheproductionofup tofourpartons.Thejet match-ing is performed following the kT-MLM prescription [47], where partons are clusteredusing thekT algorithm witha distance pa-rameter of D

=

1. The kT clustering thresholds are chosen to be 10 GeV and 20 GeV at the matrix-element and parton-shower level, respectively. The factorisation scale for each event is cho-sentobethetransversemasscomputedafterkT-clusteringofthe eventdowntoa2

2 topology.Therenormalisationscaleforthe eventisthekT computedateachvertexsplitting.Thepredictions from sherpa include the production of up to four partons. The matching betweenjetsandpartons isperformedwiththeCKKW

(7)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 17

Fig. 3. Thecrosssectionmeasurementfortheexclusiveandinclusivejetmultiplicities,comparedtothepredictionsof MadGraph 5.1.1+pythia6.426, sherpa 1.4.0,and BlackHat+sherpa(correctedforhadronisationandmultiple-partoninteractions).Blackcircularmarkerswiththegreyhatchedbandrepresenttheunfoldeddata measure-mentanditsuncertainty.Overlaidarethepredictionstogetherwiththeirstatisticaluncertainties(Theorystat.).The BlackHat+sherpauncertaintyalsocontainstheoretical systematicuncertainties(Theorysyst.)describedinSection8.Thelowerplotsshowtheratioofeachpredictiontotheunfoldeddata.

matchingscheme[47],andthedefaultfactorisationand renormal-isationscalesareused.

The predictions from MadGraph

+

pythia and sherpa are shown with statistical uncertainties only. These MadGraph

+

pythia and sherpa samples are processed through the Rivet toolkit [48] in order to create particle level distributions, which canbecomparedwiththeunfoldeddata.The BlackHat

+

sherpa samplesrepresentfixed-orderpredictions atthe levelofME par-tonsofW

+

n jets atNLO accuracy, forn

=

1

,

2

,

3

,

4

,

and 5 jets. Each measured distribution for a given inclusive jet multiplicity is compared with the corresponding fixed-order prediction from BlackHat

+

sherpa.Thechoiceofrenormalisationandfactorisation scalesfor BlackHat

+

sherpa is H

ˆ

T

/

2, where H

ˆ

T



mpmT

+

EWT, m represents the final state partons, and EW

T is the transverse energy of the W boson. Before comparing to data, a nonpertur-bative correction is applied to the BlackHat

+

sherpa distribu-tionstoaccountfortheeffectsofmultiple-partoninteractionsand hadronisation. The nonperturbative correction is determined us-ingMadGraph5.1.1interfacedto pythia 6.426andturningonand offthe hadronisation and multiple-parton interactions. The mag-nitudeofthe nonperturbative correction istypically 1–5%,andis calculatedforeach binofeach measureddistribution. Themodel dependence of the nonperturbative correction is negligible [49]. TheBlackHat

+

sherpapredictionalsoincludesuncertaintiesdue tothePDFandvariationsofthefactorisationandrenormalisation scales.Thenominalpredictionisgivenbythecentralvalueofthe CT10PDF set,andthePDF uncertaintyconsiders theenvelopeof theerrorsetsofCT10,MSTW2008nlo68cl[50],andNNPDF2.1[51] according to the PDF4LHC prescription [52,53]. The factorisation and renormalisation scale uncertainty is determined by varying thescalessimultaneouslybyafactor0.5or2.0.

The unfolded exclusive andinclusive jet multiplicity distribu-tions,shown inFig. 3,are found to be inagreement, within

un-Table 2

Crosssectionmeasurementswithstatisticalandsystematicuncertaintiesfor inclu-siveandexclusivejetmultiplicitiesupto6jets.

Jet multiplicity Exclusiveσ[pb] Inclusiveσ [pb]

1 384+15 −17 480+ 18 −20 2 79.1+65..29 95.6+ 8.5 −8.0 3 13.6+11..96 16.6+ 2.3 −2.0 4 2.48+0.40 −0.36 2.93+ 0.52 −0.48 5 0.382+00..097097 0.45+ 0.12 −0.12 6 0.056+0.020 −0.022 0.067+ 0.023 −0.026

certainties, with the predictions of the generators and with the NLO calculation of BlackHat

+

sherpa. Table 2 details the mea-suredcrosssectionsasafunctionoftheinclusiveandexclusivejet multiplicity.

Thejet pT unfoldeddistributionsforinclusivejetmultiplicities from 1to 4 are shown in Fig. 4.The predictions ofBlackHat

+

sherpa are inagreement withthe measured distributions within thesystematicuncertainties,while MadGraph

+

pythiaisobserved to overestimate the yields up to 50% (45%) for the first (sec-ond) leading jet pT distributions at high-pT values. The predic-tionsfrom sherpa arefoundtoagreewell forthesecond-, third-, andfourth-leadingjet pTdistributions,whileanexcessofslightly more thanone standard deviationcan be seenathigh-pT values for the leading jet pT distribution. Similar observations hold for MadGraph

+

pythiaand sherpa predictionsintheHTdistributions forinclusivejetmultiplicitiesof1–4,asshowninFig. 5.Sincethe BlackHat

+

sherpaNLOpredictionforHT (

1jet)isafixed-order predictionwithup totworealpartons,contributionsfromhigher jetmultiplicitiesare missing,whichresultsinanunderestimation inthetailofthedistribution[54].Similarobservationshavebeen made with W

+

jets measurements at D0 [7]and ATLAS [4]. In

(8)

Fig. 4. Thedifferentialcrosssectionmeasurementfortheleadingfourjets’transversemomenta,comparedtothepredictionsof MadGraph 5.1.1+pythia6.426, sherpa 1.4.0,and BlackHat+sherpa(correctedforhadronisationandmultiple-partoninteractions).Blackcircularmarkerswiththegreyhatchedbandrepresenttheunfoldeddata measurementanditsuncertainty.Overlaidarethepredictionstogetherwiththeirstatisticaluncertainties(Theorystat.).The BlackHat+sherpauncertaintyalsocontains theoreticalsystematicuncertainties(Theorysyst.)describedinSection8.Thelowerplotsshowtheratioofeachpredictiontotheunfoldeddata.

general, sherpa modelstheHTdistributionsbetterthanother gen-erators.

Thedistributionsofthejet

η

andofthedifferenceinazimuthal anglebetweeneachjetandthemuonareshowninFigs. 6 and 7, respectively.Themeasurementsofthejet

η

agreewithpredictions from all generators, with MadGraph

+

pythia and BlackHat

+

sherpa performing best. The measurements of the

between theleading jet andthe muon areunderestimated by asmuch as

38%by BlackHat

+

sherpa,withsimilar,butsmaller, underestima-tionsinpredictionsfrom MadGraph

+

pythiaand sherpa.

Examplesofthevariationinthe BlackHat

+

sherpaprediction due to the choice of PDF are given in Fig. 8, in which the pre-dictionswiththeMSTW2008nlo68cl,NNPDF2.1,andCT10PDFsets are compared to the measurements from data. The distributions determined with the different PDF sets are consistent with one another.

(9)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 19

Fig. 5. Thedifferentialcrosssectionmeasurementfor HTforinclusivejetmultiplicities1–4,comparedtothepredictionsof MadGraph 5.1.1+pythia6.426, sherpa 1.4.0, and BlackHat+sherpa(correctedforhadronisationand multiple-partoninteractions).Blackcircular markerswith thegreyhatchedbandrepresenttheunfolded data measurementanditsuncertainty.Overlaidarethepredictionstogetherwiththeirstatisticaluncertainties(Theorystat.).The BlackHat+sherpauncertaintyalsocontains theoreticalsystematicuncertainties(Theorysyst.)describedinSection8.Thelowerplotsshowtheratioofeachpredictiontotheunfoldeddata.

9. Summary

Measurementsofthecross sectionsanddifferentialcross sec-tionsfora W bosonproducedinassociationwithjetsinpp colli-sionsatacentre-of-massenergyof7 TeVhavebeenpresented.The datawerecollectedwiththeCMSdetectorduringthe2011pprun oftheLHC,andcorrespondtoanintegratedluminosityof5.0 fb−1. Crosssectionshavebeendeterminedusingthemuondecaymode oftheW boson andwere presentedas functionsofthejet

mul-tiplicity,thetransversemomentaandpseudorapiditiesofthefour leading jets, the difference in azimuthal angle betweeneach jet and the muon, and the HT for jet multiplicities up to four. The results, correctedfor all detectoreffects by means of regularised unfolding,havebeencompared withparticle-levelsimulated pre-dictionsfrompQCD.

Predictions from generators, MadGraph

+

pythia and sherpa, and NLO calculations from BlackHat

+

sherpa, describe the jet multiplicity within theuncertainties. Thecrosssection asa

(10)

func-Fig. 6. Thedifferentialcrosssectionmeasurementforthepseudorapidityofthefourleadingjets,comparedtothepredictionsof MadGraph 5.1.1+pythia6.426, sherpa 1.4.0,and BlackHat+sherpa(correctedforhadronisationandmultiple-partoninteractions).Blackcircularmarkerswiththegreyhatchedbandrepresenttheunfoldeddata measurementanditsuncertainty.Overlaidarethepredictionstogetherwiththeirstatisticaluncertainties(Theorystat.).The BlackHat+sherpauncertaintyalsocontains theoreticalsystematicuncertainties(Theorysyst.)describedinSection8.Thelowerplotsshowtheratioofeachpredictiontotheunfoldeddata.

tionofthe pT oftheleading jetisoverestimatedby MadGraph

+

pythia and sherpa, especially at high-pT. Some overestimation from MadGraph

+

pythiacanalsobeobservedinthesecond- and third-leading jet pT distributions. The cross sections as a func-tion of pT predicted by BlackHat

+

sherpa agree withthe mea-surementswithinuncertainties. Thepredictions fromBlackHat

+

sherpaunderestimate themeasurement ofthe crosssection asa function of HT for Njet

1, sincethe contribution fromW

+ ≥

3 jetsis missingfroman NLO predictionof W

+ ≥

1 jet. Thecross

sections as a function of HT for Njet

2

,

3

,

and 4 predicted by BlackHat

+

sherpaagreewiththemeasurementswithinthe uncer-tainties. Thedistributions of

betweenthe leadingjet andthe muon are underestimated by all predictions for

values near zero,withthelargestdisagreementvisiblein BlackHat

+

sherpa. The distributions of

betweenthesecond-, third-,and fourth-leadingjetsandthemuonagreewithallpredictionswithin uncer-tainties.Nosignificantdisagreementwasfoundinthedistributions of

η

ofthefourleadingjets.

(11)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 21

Fig. 7. Thedifferentialcrosssectionmeasurementinφ(jetn,μ),forn=1–4,comparedtothepredictionsof MadGraph 5.1.1+pythia6.426, sherpa 1.4.0,and BlackHat+

sherpa(correctedforhadronisationandmultiple-partoninteractions).Blackcircularmarkerswiththegreyhatchedbandrepresenttheunfoldeddatameasurementandits uncertainty.Overlaidarethepredictionstogetherwiththeirstatisticaluncertainties(Theorystat.).The BlackHat+sherpauncertaintyalsocontainstheoreticalsystematic uncertainties(Theorysyst.)describedinSection8.Thelowerplotsshowtheratioofeachpredictiontotheunfoldeddata.

Acknowledgements

We extend our thanks to Daniel Maître and Zvi Bernfor the productionofdataandtoolsusedtocreatethe BlackHat

+

sherpa predictions,andforthesharingofexpertiseandadviceregarding thesepredictions.

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS

in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses. Finally, we acknowledge the enduring support for the construc-tionandoperation oftheLHC andtheCMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil);

(12)

Fig. 8. Theratioofthe predictionsof BlackHat+sherpatothe crosssectionmeasurements forfourdifferent quantities.Thecircular,triangular, andsquaremarkers indicatethepredictionsusingtheCT10,MSTW2008nlo68cl,andNNPDFPDFsets,respectively.Thegreyhatchedbandindicatesthetotaluncertaintyintheunfoldeddata measurement.

MES(Bulgaria);CERN;CAS,MOST,andNSFC(China);COLCIENCIAS (Colombia);MSESandCSF(Croatia);RPF(Cyprus);MoER,ERCIUT andERDF(Estonia);Academy ofFinland,MEC,andHIP(Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM(Malaysia); CINVESTAV, CONACYT,SEP,andUASLP-FAI(Mexico);MBIE(NewZealand);PAEC (Pakistan);MSHEandNSC(Poland);FCT(Portugal);JINR(Dubna); MON,RosAtom,RASandRFBR(Russia);MESTD(Serbia);SEIDIand CPAN(Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEPCenter,IPST,STARandNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramme and the European Research Council and EPLANET (Eu-ropean Union); the Leventis Foundation; the A.P. Sloan Founda-tion; the Alexander von Humboldt Foundation; the Belgian Fed-eral Science Policy Office; the Fonds pour la Formation à la Recherchedansl’Industrieetdansl’Agriculture(FRIA-Belgium);the AgentschapvoorInnovatiedoorWetenschapenTechnologie (IWT-Belgium);the Ministry ofEducation,Youth andSports (MEYS) of the Czech Republic; the Council of Scientific and Industrial Re-search, India; the HOMING PLUS programme of Foundation For Polish Science, cofinanced fromEuropean Union, Regional Devel-opmentFund;theCompagniadiSanPaolo(Torino);theThalisand Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF; andtheNationalPrioritiesResearchProgrambyQatarNational Re-searchFund.

References

[1] CMSCollaboration,Measurementofthet¯t productioncrosssectioninpp col-lisionsat√s=7 TeV withlepton

+

jetsfinalstates,Phys.Lett.B720(2012) 83,http://dx.doi.org/10.1016/j.physletb.2013.02.021,arXiv:1212.6682. [2] CMSCollaboration,Measurementofthesingle-top-quarkt-channelcross

sec-tioninppcollisionsat√s=7 TeV,J.HighEnergyPhys.12(2012)035,http:// dx.doi.org/10.1007/JHEP12(2012)035,arXiv:1209.4533.

[3] CMSCollaboration, Absolute calibration of the luminosity measurement at CMS: winter 2012 update, CMS Physics Analysis Summary CMS-PAS-SMP-12-008,2012,http://cdsweb.cern.ch/record/1434360.

[4] ATLASCollaboration,StudyofjetsproducedinassociationwithaW bosonin ppcollisionsat√s=7 TeV withtheATLASdetector,Phys.Rev.D85(2012) 092002,http://dx.doi.org/10.1103/PhysRevD.85.092002,arXiv:1201.1276. [5] CMSCollaboration,Jetproduction ratesinassociationwithWandZ bosons

inppcollisions at√s=7 TeV,J.HighEnergy Phys. 01(2012)010,http:// dx.doi.org/10.1007/JHEP01(2012)010,arXiv:1110.3226.

[6] V.M. Abazov, D0 Collaboration, Measurements of inclusive W

+

jets pro-duction rates as a function of jet transverse momentum in pp collisions¯ at √s=1.96 TeV, Phys. Lett. B 705 (2011) 200, http://dx.doi.org/10.1016/ j.physletb.2011.10.011,arXiv:1106.1457.

[7] V.M.Abazov,D0Collaboration,StudiesofW bosonplusjetsproductioninpp¯ collisionsat√s=1.96 TeV,Phys.Rev.D88(2013)092001,http://dx.doi.org/ 10.1103/PhysRevD.88.092001,arXiv:1302.6508.

[8] T.Aaltonen,etal., CDFCollaboration, Measurementofthe crosssection for W-bosonproductioninassociationwithjetsinpp collisions¯ at√s=1.96 TeV, Phys.Rev.D77(2008)011108,http://dx.doi.org/10.1103/PhysRevD.77.011108, arXiv:0711.4044.

[9]G.Aad,etal.,ATLASCollaboration,MeasurementsoftheWproductioncross sectionsinassociation withjets with the ATLAS detector,arXiv:1409.8639, 2014.

[10] A. Hocker, V. Kartvelishvili, SVD approach to data unfolding, Nucl. In-strum.MethodsPhys.Res.,Sect.A372(1996)469,http://dx.doi.org/10.1016/ 0168-9002(95)01478-0,arXiv:hep-ph/9509307.

[11] J.Alwall, M. Herquet,F.Maltoni, O.Mattelaer, T. Stelzer,MadGraph5: go-ing beyond,J. High Energy Phys. 06 (2011) 128, http://dx.doi.org/10.1007/ JHEP06(2011)128,arXiv:1106.0522.

[12] T. Sjostrand, S.Mrenna, P.Skands, PYTHIA6.4 physicsand manual, J.High EnergyPhys.05(2006)026,http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[13] T.Gleisberg,S.Höche,Comix,anewmatrixelementgenerator,J.HighEnergy Phys.12(2008)039,http://dx.doi.org/10.1088/1126-6708/2008/12/039,arXiv: 0808.3674.

[14] S.Schumann,F.Krauss,ApartonshoweralgorithmbasedonCatani–Seymour dipolefactorisation, J. High Energy Phys. 03 (2008) 038, http://dx.doi.org/ 10.1088/1126-6708/2008/03/038,arXiv:0709.1027.

[15] T.Gleisberg,S.Höche,F.Krauss,M.Schönherr,S.Schumann,F.Siegert,J. Win-ter,Eventgeneration withSHERPA1.1,J. HighEnergy Phys. 02(2009)007, http://dx.doi.org/10.1088/1126-6708/2009/02/007,arXiv:0811.4622.

[16] S.Höche,F.Krauss,S.Schumann,F.Siegert,QCDmatrixelementsand trun-catedshowers,J.HighEnergyPhys.05(2009)053,http://dx.doi.org/10.1088/ 1126-6708/2009/05/053,arXiv:0903.1219.

(13)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 23 [17] C.F.Berger,Z.Bern,L.J.Dixon,F.F.Cordero,D.Forde,T.Gleisberg,H.Ita,D.A.

Kosower,D.Maître,Next-to-leadingorderQCDpredictionsforW+3-jet distri-butionsathadroncolliders,Phys.Rev.D80(2009)074036,http://dx.doi.org/ 10.1103/PhysRevD.80.074036,arXiv:0907.1984.

[18] C.F.Berger,Z.Bern,L.J.Dixon,F.FebresCordero,D.Forde,T.Gleisberg,H.Ita, D.A.Kosower,D.Maître,PrecisepredictionsforW

+

4-jetproduction atthe LargeHadronCollider,Phys. Rev.Lett. 106(2011) 092001,http://dx.doi.org/ 10.1103/PhysRevLett.106.092001,arXiv:1009.2338.

[19] Z.Bern,L.J.Dixon,F.FebresCordero,S.Höche,H.Ita,D.A.Kosower,D.Maître, NtuplesforNLOeventsathadroncolliders,Comput.Phys.Commun.185(2014) 1443,http://dx.doi.org/10.1016/j.cpc.2014.01.011,arXiv:1310.7439.

[20] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[21] CMSCollaboration,EnergycalibrationandresolutionoftheCMS electromag-neticcalorimeterinppcollisionsat√s=7 TeV,J.Instrum.8(2013)P09009, http://dx.doi.org/10.1088/1748-0221/8/09/P09009,arXiv:1306.2016.

[22] S.Agostinelli,etal.,GEANT4Collaboration,GEANT4—asimulationtoolkit,Nucl. Instrum.MethodsPhys.Res.,Sect.A506(2003)250,http://dx.doi.org/10.1016/ S0168-9002(03)01368-8.

[23] CMSCollaboration,Chargedparticlemultiplicitiesinppinteractionsat√s=

0.9,2.36,and 7 TeV, J. High Energy Phys. 01 (2010) 079,http://dx.doi.org/ 10.1007/JHEP01(2011)079,arXiv:1011.5531.

[24] P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms, J. High Energy Phys. 11 (2004) 040, http://dx.doi.org/10.1088/ 1126-6708/2004/11/040,arXiv:hep-ph/0409146.

[25] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070, http://dx.doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[26] S.Alioli, P.Nason, C. Oleari,E.Re, Ageneral framework for implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J. High EnergyPhys.06(2010)043,http://dx.doi.org/10.1007/JHEP06(2010)043,arXiv: 1002.2581.

[27] S.Alioli,P.Nason,C.Oleari,E.Re,NLOsingle-topproduction matchedwith showerinPOWHEG:s- andt-channelcontributions,J.HighEnergyPhys.09 (2009)111,http://dx.doi.org/10.1088/1126-6708/2009/09/111,arXiv:0907.4076. [28] J.Pumplin, D.R. Stump, J. Huston, H.-L. Lai, P.Nadolsky, W.-K. Tung, New generationofpartondistributionswithuncertaintiesfromglobalQCD analy-sis,J.HighEnergyPhys.07(2002)012,http://dx.doi.org/10.1088/1126-6708/ 2002/07/012,arXiv:hep-ph/0201195.

[29] K.Melnikov,F.Petriello,Electroweakgaugebosonproductionathadron collid-ersthroughO2

S),Phys.Rev.D74(2006)114017,http://dx.doi.org/10.1103/

PhysRevD.74.114017,arXiv:hep-ph/0609070.

[30] J.Campbell,R.K.Ellis, F.Tramontano,Singletop-quark production and de-cayatnext-to-leadingorder,Phys.Rev.D70(2004)094012,http://dx.doi.org/ 10.1103/PhysRevD.70.094012,arXiv:hep-ph/0408158.

[31] J. Campbell, F. Tramontano, Next-to-leading order corrections to W t

pro-ductionand decay,Nucl. Phys. B726(2005)109,http://dx.doi.org/10.1016/ j.nuclphysb.2005.08.015,arXiv:hep-ph/0506289.

[32] J.M.Campbell,R. Frederix,F. Maltoni, F.Tramontano,Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev.Lett.102(2009)182003,http://dx.doi.org/10.1103/PhysRevLett.102.182003, arXiv:0903.0005.

[33] J.M.Campbell,R.K.Ellis,C.Williams,VectorbosonpairproductionattheLHC, J.HighEnergyPhys.07(2011)018,http://dx.doi.org/10.1007/JHEP07(2011)018, arXiv:1105.0020.

[34] M.Czakon,P. Fiedler,A.Mitov, The totaltop quarkpair production cross-sectionathadroncollidersthroughO4

S),Phys.Rev.Lett.110(2013)252004,

http://dx.doi.org/10.1103/PhysRevLett.110.252004,arXiv:1303.6254.

[35] CMSCollaboration,PerformanceofCMSmuonreconstructioninppcollision eventsat√s=7 TeV,J.Instrum.7(2012)P10002,http://dx.doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

[36] CMSCollaboration,Particle-floweventreconstructioninCMSandperformance forjets,taus,and Emiss

T ,CMSPhysicsAnalysisSummaryCMS-PAS-PFT-09-001, 2009,http://cdsweb.cern.ch/record/1194487.

[37] CMSCollaboration, Commissioningofthe particle-flowevent reconstruction with the first LHC collisions recorded in the CMS detector, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010, http://cdsweb.cern.ch/record/ 1247373.

[38] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[39] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,http://dx.doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [40] CMS Collaboration, Determination of jet energy calibration and transverse

momentumresolutioninCMS,J. Instrum.6(2011)11002,http://dx.doi.org/ 10.1088/1748-0221/6/11/P11002,arXiv:1107.4277.

[41] CMSCollaboration,MeasurementoftheinclusiveWandZproductioncross sections inpp collisions at √s=7 TeV with the CMSexperiment, J. High EnergyPhys.10(2011)132,http://dx.doi.org/10.1007/JHEP10(2011)132,arXiv: 1107.4789.

[42] CMS Collaboration,Identificationofb-quarkjetswith the CMSexperiment, J.Instrum.8(2013)04013,http://dx.doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[43]T. Adye, Unfolding algorithms and tests using RooUnfold, arXiv:1105.1160, 2011.

[44] CMS Collaboration, Measurement ofthe inelasticproton–proton cross sec-tion at √s=7 TeV, Phys. Lett. B 722 (2013) 5, http://dx.doi.org/10.1016/ j.physletb.2013.03.024,arXiv:1210.6718.

[45] H.-L.Lai,M.Guzzi,J.Huston,Z.Li,P.Nadolsky,J.Pumplin,C.-P.Yuan,New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, http://dx.doi.org/10.1103/PhysRevD.82.074024,arXiv:1007.2241.

[46] J.Gao,M.Guzzi,J.Huston,H.-L.Lai,Z.Li,P.Nadolsky,J.Pumplin,D. Stump, C.-P.Yuan, CT10next-to-next-to-leadingorderglobalanalysisofQCD,Phys. Rev.D89(2014)033009,http://dx.doi.org/10.1103/PhysRevD.89.033009,arXiv: 1302.6246.

[47] J.Alwall,S.Höche,F.Krauss,N.Lavesson,L.Lönnblad,F.Maltoni,M.L.Mangano, M.Moretti,C.G.Papadopoulos,F.Piccinini,S.Schumann,M.Treccani,J.Winter, M.Worek,Comparativestudyofvariousalgorithmsforthemergingofparton showersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53(2008) 473,http://dx.doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [48] A.Buckley,J.Butterworth,L.Lonnblad,D.Grellscheid,H.Hoeth,L.Lönnblad,

J.Monk,H.Shulz,F.Siegert,Rivetusermanual,Comput.Phys.Commun.184 (2013)2803,http://dx.doi.org/10.1016/j.cpc.2013.05.021,arXiv:1003.0694. [49] Z.Bern,G.Diana,L.J.Dixon,F.FebresCordero,S.Höche,D.A.Kosower,H.Ita,

D.Maître,K.Ozeren,Four-jetproductionattheLargeHadronColliderat next-to-leadingorderinQCD,Phys.Rev.Lett.109(2012)042001,http://dx.doi.org/ 10.1103/PhysRevLett.109.042001,arXiv:1112.3940.

[50] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, http://dx.doi.org/10.1140/epjc/ s10052-009-1072-5,arXiv:0901.0002.

[51] R.D. Ball, L.D. Debbio, S. Forte, A. Guffanti, J.I. Latorre,J. Rojo,M. Ubiali, A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys.B 838(2010) 136,http://dx.doi.org/10.1016/ j.nuclphysb.2010.05.008,arXiv:1002.4407.

[52]S.Alekhin,etal.,ThePDF4LHCworkinggroupinterimreport,arXiv:1101.0536, 2011.

[53]M. Botje,J.Butterworth, A.Cooper-Sarkar,A.deRoeck,J. Feltesse,S.Forte, A. Glazov,J.Huston,R.McNulty,T.Sjöstrand,R.S.Thorne,ThePDF4LHC work-inggroupinterimrecommendations,arXiv:1101.0538,2011.

[54] D. Maître,S.Sapeta, SimulatedNNLOforhigh-pT observablesinvector bo-son + jetsproduction at the LHC,Eur. Phys. J. C73 (2013) 2663, http:// dx.doi.org/10.1140/epjc/s10052-013-2663-8,arXiv:1307.2252.

CMSCollaboration

V. Khachatryan,

A.M. Sirunyan,

A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam,

T. Bergauer,

M. Dragicevic,

J. Erö,

C. Fabjan

1

,

M. Friedl,

R. Frühwirth

1

,

V.M. Ghete,

C. Hartl,

N. Hörmann,

J. Hrubec,

M. Jeitler

1

,

W. Kiesenhofer,

V. Knünz,

M. Krammer

1

,

I. Krätschmer,

D. Liko,

I. Mikulec,

D. Rabady

2

,

B. Rahbaran,

H. Rohringer,

R. Schöfbeck,

J. Strauss,

A. Taurok,

W. Treberer-Treberspurg,

W. Waltenberger,

C.-E. Wulz

1

(14)

V. Mossolov,

N. Shumeiko,

J. Suarez Gonzalez

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt,

M. Bansal,

S. Bansal,

T. Cornelis,

E.A. De Wolf,

X. Janssen,

A. Knutsson,

S. Luyckx,

S. Ochesanu,

B. Roland,

R. Rougny,

M. Van De Klundert,

H. Van Haevermaet,

P. Van Mechelen,

N. Van Remortel,

A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman,

S. Blyweert,

J. D’Hondt,

N. Daci,

N. Heracleous,

A. Kalogeropoulos,

J. Keaveney,

T.J. Kim,

S. Lowette,

M. Maes,

A. Olbrechts,

Q. Python,

D. Strom,

S. Tavernier,

W. Van Doninck,

P. Van Mulders,

G.P. Van Onsem,

I. Villella

VrijeUniversiteitBrussel,Brussel,Belgium

C. Caillol,

B. Clerbaux,

G. De Lentdecker,

D. Dobur,

L. Favart,

A.P.R. Gay,

A. Grebenyuk,

A. Léonard,

A. Mohammadi,

L. Perniè

2

,

T. Reis,

T. Seva,

L. Thomas,

C. Vander Velde,

P. Vanlaer,

J. Wang

UniversitéLibredeBruxelles,Bruxelles,Belgium

V. Adler,

K. Beernaert,

L. Benucci,

A. Cimmino,

S. Costantini,

S. Crucy,

S. Dildick,

A. Fagot,

G. Garcia,

B. Klein,

J. Mccartin,

A.A. Ocampo Rios,

D. Ryckbosch,

S. Salva Diblen,

M. Sigamani,

N. Strobbe,

F. Thyssen,

M. Tytgat,

E. Yazgan,

N. Zaganidis

GhentUniversity,Ghent,Belgium

S. Basegmez,

C. Beluffi

3

,

G. Bruno,

R. Castello,

A. Caudron,

L. Ceard,

G.G. Da Silveira,

C. Delaere,

T. du Pree,

D. Favart,

L. Forthomme,

A. Giammanco

4

,

J. Hollar,

P. Jez,

M. Komm,

V. Lemaitre,

J. Liao,

C. Nuttens,

D. Pagano,

L. Perrini,

A. Pin,

K. Piotrzkowski,

A. Popov

5

,

L. Quertenmont,

M. Selvaggi,

M. Vidal Marono,

J.M. Vizan Garcia

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy,

T. Caebergs,

E. Daubie,

G.H. Hammad

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior,

G.A. Alves,

M. Correa Martins Junior,

T. Dos Reis Martins,

M.E. Pol

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

W. Carvalho,

J. Chinellato

6

,

A. Custódio,

E.M. Da Costa,

D. De Jesus Damiao,

C. De Oliveira Martins,

S. Fonseca De Souza,

H. Malbouisson,

M. Malek,

D. Matos Figueiredo,

L. Mundim,

H. Nogima,

W.L. Prado Da Silva,

J. Santaolalla,

A. Santoro,

A. Sznajder,

E.J. Tonelli Manganote

6

,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

C.A. Bernardes

b

,

F.A. Dias

a

,

7

,

T.R. Fernandez Perez Tomei

a

,

E.M. Gregores

b

,

P.G. Mercadante

b

,

S.F. Novaes

a

,

Sandra S. Padula

a

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov,

V. Genchev

2

,

P. Iaydjiev,

A. Marinov,

S. Piperov,

M. Rodozov,

G. Sultanov,

M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov,

I. Glushkov,

R. Hadjiiska,

V. Kozhuharov,

L. Litov,

B. Pavlov,

P. Petkov

UniversityofSofia,Sofia,Bulgaria

J.G. Bian,

G.M. Chen,

H.S. Chen,

M. Chen,

R. Du,

C.H. Jiang,

D. Liang,

S. Liang,

R. Plestina

8

,

J. Tao,

X. Wang,

Z. Wang

(15)

CMS Collaboration / Physics Letters B 741 (2015) 12–37 25

InstituteofHighEnergyPhysics,Beijing,China

C. Asawatangtrakuldee,

Y. Ban,

Y. Guo,

Q. Li,

W. Li,

S. Liu,

Y. Mao,

S.J. Qian,

D. Wang,

L. Zhang,

W. Zou

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,

L.F. Chaparro Sierra,

C. Florez,

J.P. Gomez,

B. Gomez Moreno,

J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic,

D. Lelas,

D. Polic,

I. Puljak

TechnicalUniversityofSplit,Split,Croatia

Z. Antunovic,

M. Kovac

UniversityofSplit,Split,Croatia

V. Brigljevic,

K. Kadija,

J. Luetic,

D. Mekterovic,

L. Sudic

InstituteRudjerBoskovic,Zagreb,Croatia

A. Attikis,

G. Mavromanolakis,

J. Mousa,

C. Nicolaou,

F. Ptochos,

P.A. Razis

UniversityofCyprus,Nicosia,Cyprus

M. Bodlak,

M. Finger,

M. Finger Jr.

9

CharlesUniversity,Prague,CzechRepublic

Y. Assran

10

,

A. Ellithi Kamel

11

,

M.A. Mahmoud

12

,

A. Radi

13

,

14

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

M. Kadastik,

M. Murumaa,

M. Raidal,

A. Tiko

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,

G. Fedi,

M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,

V. Karimäki,

R. Kinnunen,

M.J. Kortelainen,

T. Lampén,

K. Lassila-Perini,

S. Lehti,

T. Lindén,

P. Luukka,

T. Mäenpää,

T. Peltola,

E. Tuominen,

J. Tuominiemi,

E. Tuovinen,

L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,

F. Couderc,

M. Dejardin,

D. Denegri,

B. Fabbro,

J.L. Faure,

C. Favaro,

F. Ferri,

S. Ganjour,

A. Givernaud,

P. Gras,

G. Hamel de Monchenault,

P. Jarry,

E. Locci,

J. Malcles,

J. Rander,

A. Rosowsky,

M. Titov

DSM/IRFU,CEA/Saclay,Gif-sur-Yvette,France

S. Baffioni,

F. Beaudette,

P. Busson,

C. Charlot,

T. Dahms,

M. Dalchenko,

L. Dobrzynski,

N. Filipovic,

A. Florent,

R. Granier de Cassagnac,

L. Mastrolorenzo,

P. Miné,

C. Mironov,

I.N. Naranjo,

M. Nguyen,

C. Ochando,

P. Paganini,

R. Salerno,

J.B. Sauvan,

Y. Sirois,

C. Veelken,

Y. Yilmaz,

A. Zabi

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3–CNRS,Palaiseau,France

J.-L. Agram

15

,

J. Andrea,

A. Aubin,

D. Bloch,

J.-M. Brom,

E.C. Chabert,

C. Collard,

E. Conte

15

,

J.-C. Fontaine

15

,

D. Gelé,

U. Goerlach,

C. Goetzmann,

A.-C. Le Bihan,

P. Van Hove

(16)

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,

N. Beaupere,

G. Boudoul

2

,

S. Brochet,

C.A. Carrillo Montoya,

J. Chasserat,

R. Chierici,

D. Contardo

2

,

P. Depasse,

H. El Mamouni,

J. Fan,

J. Fay,

S. Gascon,

M. Gouzevitch,

B. Ille,

T. Kurca,

M. Lethuillier,

L. Mirabito,

S. Perries,

J.D. Ruiz Alvarez,

D. Sabes,

L. Sgandurra,

V. Sordini,

M. Vander Donckt,

P. Verdier,

S. Viret,

H. Xiao

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS–IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

Z. Tsamalaidze

9

InstituteofHighEnergyPhysicsandInformatization,TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,

S. Beranek,

M. Bontenackels,

M. Edelhoff,

L. Feld,

O. Hindrichs,

K. Klein,

A. Ostapchuk,

A. Perieanu,

F. Raupach,

J. Sammet,

S. Schael,

D. Sprenger,

H. Weber,

B. Wittmer,

V. Zhukov

5

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Ata,

E. Dietz-Laursonn,

D. Duchardt,

M. Erdmann,

R. Fischer,

A. Güth,

T. Hebbeker,

C. Heidemann,

K. Hoepfner,

D. Klingebiel,

S. Knutzen,

P. Kreuzer,

M. Merschmeyer,

A. Meyer,

M. Olschewski,

K. Padeken,

P. Papacz,

H. Reithler,

S.A. Schmitz,

L. Sonnenschein,

D. Teyssier,

S. Thüer,

M. Weber

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

V. Cherepanov,

Y. Erdogan,

G. Flügge,

H. Geenen,

M. Geisler,

W. Haj Ahmad,

F. Hoehle,

B. Kargoll,

T. Kress,

Y. Kuessel,

J. Lingemann

2

,

A. Nowack,

I.M. Nugent,

L. Perchalla,

O. Pooth,

A. Stahl

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

I. Asin,

N. Bartosik,

J. Behr,

W. Behrenhoff,

U. Behrens,

A.J. Bell,

M. Bergholz

16

,

A. Bethani,

K. Borras,

A. Burgmeier,

A. Cakir,

L. Calligaris,

A. Campbell,

S. Choudhury,

F. Costanza,

C. Diez Pardos,

S. Dooling,

T. Dorland,

G. Eckerlin,

D. Eckstein,

T. Eichhorn,

G. Flucke,

J. Garay Garcia,

A. Geiser,

P. Gunnellini,

J. Hauk,

G. Hellwig,

M. Hempel,

D. Horton,

H. Jung,

M. Kasemann,

P. Katsas,

J. Kieseler,

C. Kleinwort,

D. Krücker,

W. Lange,

J. Leonard,

K. Lipka,

A. Lobanov,

W. Lohmann

16

,

B. Lutz,

R. Mankel,

I. Marfin,

I.-A. Melzer-Pellmann,

A.B. Meyer,

J. Mnich,

A. Mussgiller,

S. Naumann-Emme,

A. Nayak,

O. Novgorodova,

F. Nowak,

E. Ntomari,

H. Perrey,

D. Pitzl,

R. Placakyte,

A. Raspereza,

P.M. Ribeiro Cipriano,

E. Ron,

M.Ö. Sahin,

J. Salfeld-Nebgen,

P. Saxena,

R. Schmidt

16

,

T. Schoerner-Sadenius,

M. Schröder,

S. Spannagel,

A.D.R. Vargas Trevino,

R. Walsh,

C. Wissing

DeutschesElektronen-Synchrotron,Hamburg,Germany

M. Aldaya Martin,

V. Blobel,

M. Centis Vignali,

J. Erfle,

E. Garutti,

K. Goebel,

M. Görner,

M. Gosselink,

J. Haller,

M. Hoffmann,

R.S. Höing,

H. Kirschenmann,

R. Klanner,

R. Kogler,

J. Lange,

T. Lapsien,

T. Lenz,

I. Marchesini,

J. Ott,

T. Peiffer,

N. Pietsch,

D. Rathjens,

C. Sander,

H. Schettler,

P. Schleper,

E. Schlieckau,

A. Schmidt,

M. Seidel,

J. Sibille

17

,

V. Sola,

H. Stadie,

G. Steinbrück,

D. Troendle,

E. Usai,

L. Vanelderen

UniversityofHamburg,Hamburg,Germany

C. Barth,

C. Baus,

J. Berger,

C. Böser,

E. Butz,

T. Chwalek,

W. De Boer,

A. Descroix,

A. Dierlamm,

M. Feindt,

F. Frensch,

M. Giffels,

F. Hartmann

2

,

T. Hauth

2

,

U. Husemann,

I. Katkov

5

,

A. Kornmayer

2

,

E. Kuznetsova,

P. Lobelle Pardo,

M.U. Mozer,

Th. Müller,

A. Nürnberg,

G. Quast,

K. Rabbertz,

F. Ratnikov,

S. Röcker,

H.J. Simonis,

F.M. Stober,

R. Ulrich,

J. Wagner-Kuhr,

S. Wayand,

T. Weiler,

R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou,

G. Daskalakis,

T. Geralis,

V.A. Giakoumopoulou,

A. Kyriakis,

D. Loukas,

A. Markou,

C. Markou,

A. Psallidas,

I. Topsis-Giotis

Figure

Fig. 1. The jet multiplicity in data and simulation before (left) and after (right) the b-jet veto
Fig. 2. The dominant systematic uncertainties in the measurement of the W + jets cross section as a function of the exclusive jet multiplicity
Fig. 3. The cross section measurement for the exclusive and inclusive jet multiplicities, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa 1.4.0, and BlackHat + sherpa (corrected for hadronisation and multiple-parton interactions)
Fig. 4. The differential cross section measurement for the leading four jets’ transverse momenta, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa 1.4.0, and BlackHat + sherpa (corrected for hadronisation and multiple-parton interaction
+5

Références

Documents relatifs

131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center, Institute for High Energy Physics (Protvino), NRC KI, Russia 133

The combination of measured cross sections, differential in the inclusive jet multiplicity (W+≥N jets with N=1, 2, 3, or 4) and in the transverse energy of the leading jet, are

Summary of χ 2 /ndf obtained from the comparison of the inclusive jet cross-section and the NLO QCD prediction for the CT14 and the NNPDF30 PDF sets and the p jet,max T scale choice

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics,

δ sys tot is the total systematic uncertainty and includes the fol- lowing components: uncertainties due to electron reconstruction (δ el rec ), identification ( δ ID el ) and trigger

The “overall type-1” systematic uncertainty includes overall cross section uncertainty 5%, overall acceptance uncertainty due to PDF and scale 1.8% and theoretical and

The corresponding cross- sections (pb), generator names, generator level filter efficiencies and total numbers of events are shown in this Table.. NpX (X=0..5) in the process

The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of √