• Aucun résultat trouvé

Extraction of humic acid by coacervate: Investigation of direct and back processes

N/A
N/A
Protected

Academic year: 2021

Partager "Extraction of humic acid by coacervate: Investigation of direct and back processes"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00878996

https://hal.archives-ouvertes.fr/hal-00878996

Submitted on 31 Oct 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Extraction of humic acid by coacervate: Investigation of

direct and back processes

H. Ghouas, Boumediene Haddou, Mohamed Kameche, Zoubir Derriche,

Christophe Gourdon

To cite this version:

H. Ghouas, Boumediene Haddou, Mohamed Kameche, Zoubir Derriche, Christophe Gourdon.

Extrac-tion of humic acid by coacervate: InvestigaExtrac-tion of direct and back processes. Journal of Hazardous

Materials, Elsevier, 2012, vol. 205-206, pp. 171-178. �10.1016/j.jhazmat.2011.12.057�. �hal-00878996�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9983

To link to this article

: DOI:10.1016/j.jhazmat.2011.12.057

URL : http://dx.doi.org/10.1016/j.jhazmat.2011.12.057

To cite this version

:

Ghouas, H. and Haddou, Boumediene and Kameche, Mohamed and

Derriche, Zoubir and Gourdon, Christophe Extraction of humic acid

by coacervate: Investigation of direct and back processes. (2012)

Journal of Hazardous Materials, vol. 205-206 . pp. 171-178. ISSN

0304-3894

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(3)

Extraction

of

humic

acid

by

coacervate:

Investigation

of

direct

and

back

processes

H.

Ghouas

a

, B.

Haddou

a,∗

, M.

Kameche

a

, Z.

Derriche

a

,

C.

Gourdon

b

aU.S.T.Oran,FacultédesSciences,DépartementdeChimieBP1505,M’Nouar,Oran,Algeria

bLaboratoiredeGénieChimique,UMR5503,BP84234,CampusINP-ENSIACET,N4AlléeEmileMonso,ToulouseCedex4,France

Keywords: Extraction Humicacid Surfactant Coacervate Cloudpoint

a

b

s

t

r

a

c

t

Thetwoaqueousphasesextractionprocessiswidelyusedinenvironmentalcleanupofindustrial effluents andfinechemical productsfortheir reuse.This processcanbe madebycloud point of polyethoxylatedalcoholsandmicellarsolubilizationphenomenon.Itiscommonlycalled“coacervate extraction”andisused,inourcase,forhumicacidextractionfromaqueoussolutionat100mg/L.The surfactantsusedarealcoholpolyethoxylateandalkylphenolpolyethoxylate.Phasediagramsofbinary water/surfactantandpseudo-binaryareplotted.Theextractionresultsareexpressedbythefollowing responses:percentageofsoluteextracted,E(%),residualconcentrationsofsoluteandsurfactantindilute phase(Xs,w,andXt,wrespectively)andvolumefractionofcoacervateatequilibrium().Foreach

parame-ter,theexperimentalresultsarefittedtoempiricalequationsinthreedimensions.Theaimofthisstudyis tofindoutthebestcompromisebetweenEandC.Thecomparisonbetweenexperimentalandcalculated

valuesallowsmodelsvalidation.Sodiumsulfate,cetyltrimethylammoniumbromide(CTAB)additionand pHeffectarealsostudied.Finally,thepossibilityofrecyclingthesurfactanthasbeenproved.

1. Introduction

Humicsubstancesarepolyelectrolyticmacromoleculeshaving

highmolecularweights[1–4].Theyaresignificantinaquatic

sys-temsforseveralreasons.Theygiveyellowbrowncolortowater

[5]andcancomplexmetals[6,7]andorganicpollutantssuchas

pesticides[8].Theyareprecursorstotheformationofmutagenic

halogenatedcompoundsinwaterafterchlorination[9].Especially

humicacidrepresentsthemajoradvantageofthenaturalorganic

matterinsoilandsurfacewater[1].However,itspresenceinraw

watercansignificantlyaffectthequalityduringthepurification

process [10]. It is widely agreed that trihalomethanes (THMs),

one of disinfection byproducts, can begenerated by step

chlo-rinationinwatertreatmentwhentheycontainhumicacid[11].

Severalresearcheshavebeencarriedoutasanalternativeforthe

degradationofaquatichumicsubstances[12–15].Besides,

differ-enttechniquesfortreatmentofcontaminatedreleasewithhumic

acid,havebeenproposedsuchas:biologicaltreatment[16],

filtra-tion[17,18],adsorption[7,9],ozoneoxidation[19],heterogeneous photocatalysis[20,21],coagulationandionexchange[22], electro-chemistry[23],photocatalytictreatment[24,25].

∗ Correspondingauthor.Tel.:+213041425763;fax:+213041425763. E-mailaddress:Boumediene74@yahoo.fr(B.Haddou).

Thepresentworkconcernsthestudyofcloudpointextraction

(CPE)asamethodofrecoveryandvalorizationofhumicacidof

aqueoussolutionusingthepowerfulsolubilizingcharacteristicof

nonionicsurfactantaqueoussolutions. Ineffect,above alineof

lowcriticaldemixingpointofsuchsystemsdefinedascloudpoint

(tc),aqueoussolutionsofmostnonionicpolyethoxylated(orinthe

presenceofpolyethyleneglycolelectrolyte)formtwophases:the

coacervate,richinsurfactant,andthedilutephase.Inthelatter,the

surfactantconcentrationisclosetoitscriticalmicelle

concentra-tion(cmc).Therefore,duetothemicellarsolubilizationpropertyof

thesurfactant,hydrophobic,amphiphilicorevenionicsoluteshave

beenextractedinthecoacervateafterincreasingthetemperature

aboveitscriticalvalueTc.Theextractionprocesswithtwoaqueous

phases, initially applied tothe case of metal ionsin the

pres-enceofchelatingagent[26],waslaterappliedtomanychemical

species:variousmetalions,smallorganicmoleculesand

biologi-calmolecules[27,28].ThistechniqueallowsmovingtowardGreen

Chemistry.Thesmallvolumeofthebiodegradablesurfactant-rich

phaseobtainedbyusingthecloudpointmethodology,permitsto

setupanexperimentalprocessoflowercost,betterextraction

effi-ciencyandlowertoxicitythanthoseusingorganicsolvents.This

factisparticularlyattractive,becausethe“GreenChemistry”

con-ceptcanbeemployed here.CPEisconsideredtobeconvenient

and environmentallysafealternativetoextraction withorganic

solvents[28,29].ManyadvantageswereclaimedtoCPEcompared

(4)

efficiency,easeofwastedisposalandtheuseofnon-toxicandless

dangerousreagents[29].

2. Materialsandmethods

2.1. Reagents

Thesurfactantsusedinthisworkarebiodegradablenonionic

surfactants:

1) Apolyethoxylatedoctylphenolknownas“Dowfax20B102”,

sup-pliedbyDowChemicalcompany.Ithasthechemicalformula

C16–18H33–37-8-(OCH2 CH2)9 OHandbelongstothefamilyof

ethoxylatedalkylphenols(EPA).

2)Analcohol polyethoxylate (AE) experienced by Lutensol ON

30andequivalenttoC10H21(OCH2 CH2)3OH.Itisprovidedby BASF.

Thesesurfactantswarrantedgreatdealofresearch,both

theo-retically[30]andexperimentally[25].Theyarenotsoexpensive

andhaveexcellentextractionperformances.Humicacidwas

sup-pliedbySigma–Aldrich.

2.2. Methods

2.2.1. Cloudpoint

Aqueous solutions of ethoxylated alcohols and

ethoxy-lated alkylphenols are sensitive to temperature, because their

hydrophilicgroupstodésolvategraduallyduringheating[31–33].

Thedeterminationofcloudpointwasmadebyusingtheapparatus

MettlerFP900whichconsistsoftheoperatingFP900,acontrolunit,

andseveralmeasuringcells.Thecelltemperaturemeasurement

isperformedwithahighly accuratesensor Pt100(probe),

inte-gratedinthebodyofafurnace.Inthelowerpartofthecloudpoint

measuringcell,PF81Cisalightsourceandanopticalfiberwhich

illuminatesthethree specimens. The light passing throughthe

specimensisconvertedbythreephotoelectriccellsintoelectrical

signalsproportionaltotheintensityremains.Thelight

transmis-sionismeasuredcontinuouslywhilethecelltemperatureincreases

linearlywiththeheatingratechosen.Thecloudpointdesignates

thetemperatureatwhichthesinglelimpidphaseistroubled,asa

resultoftheappearanceofasecondphase.

Fortheextractiontests,10mLofsolutioncontainingthe

sur-factantconcentrations(1–12wt.%)andthesolute(humicacidat

100mg/L)indeionizedwater,wereheatedinaprecisionovenfor

2htoreachequilibrium.Theheatingtemperaturerangewas

cho-senfromthecloudpointtemperaturetoabout20◦C.Ineffect,for

thesurfactantLutensolON30,thetemperaturerangeis(27–47◦C)

whilethatforDowfax20B102is(33–53◦C).Thevolumesofboth

phaseswereregistered.Asmallamountofthedilutephasewas

takenusingasyringeandanalyzed.

2.2.2. Analysis

TheconcentrationofDowfax20B102inthedilutephasewas

achieved by high performance liquid chromatography reverse

phase,underthefollowingconditions:RP18column(ODS),95bar

pressure,eluentH2O/CH3CN/CH3OH,7.5/60/32.5(vol.%),flowrate

1mL/minand260nmwavelengthdetector(UV).

ForLutensolON30,thelightscatteringdetectorLS31(EUROSEP

instruments)wasused.Thethreeparameterstooptimizethe

sen-sitivityofthedetectorweretheflowofairintothenebulizer,the

temperatureoftheevaporatorandthegainofthephotomultiplier.

Duringtheanalysis,theairpressurewassetto1bar,the

evapora-tortemperaturefixedat55◦Candthegainofphotomultiplierwas

equalto400mV.Humicacidconcentrationwasdeterminedusing

thespectrophotometer(SAFAStypeMC2)at400nm.

3. Resultsanddiscussion

3.1. Binaryandpseudo-binaryphasediagrams

Organic solubilizates can interact with the surfactant polar

head group or with its hydrophobic lengthafter solubilization

in micelles. According to their chemical nature, organic

com-pounds can vary the surfactants cloud point [31,34].The cloud

pointincreasingofLutensolON30andDowfax20B102surfactants

by humic acid addition, this phenomenon is especially

notice-ableforlowsurfactantconcentrations.Thisindicatesasignificant

interactionbetweenhumicacidandthesurfactant.Indeed,the

sur-factantssolubilityinwaterwasincreasedbyinducingthecloud

pointincrease[34,35].Furthermore,evenatverylow

concentra-tion(0.1wt.%), thepresence ofCTAB significantlyenhancesthe

cloudpointofLutensolON30.Toexplainthisphenomenon,various

mechanismshavebeensuggestedincludingformationofmicelles,

solubilizationandcomplexformation.Theincorporationofionic

surfactantintothenonionic micellescauses electrostatic

repul-sionbetweenthemicelles,thus hinderingthecoacervatephase

formationandraisingupthecloudpoint[36,37].

4. Modelingofextraction

Theextractionresultsofhumicacidfromitsaqueoussolutions

at100mg/Lbydifferentsurfactants,accordingtotwovariables:

wt.%surfactant(Xt),andtemperature(T),wereexpressedbythree

responses(Y):percentageofextractedsolute(E),residual

concen-trationsof solute(Xs,w)in thedilute phase and the coacervate

volumefractionatequilibrium(C)[34,38].Foreachparameter

determinedand by consideringcentral composite designs [39],

theresultswereanalyzedbyanempiricalfitting.Inthismethod,

theexperimentalvalues can beused todeterminethe

polyno-mial model constants which were adjusted. The models were

checkedbyplottingcomputingdataagainstexperimentalresults.

Thequadratic correlationwaschosen togivetheslope andthe

regressioncoefficient(R2)closertounity.

Y=a0+a1Xt+a2T+a12XtT+a11Xt2+a22T2 (1)

Suchcorrelationallowsbuildingtheresponsesurface.However,

onecannotallowphysicalsignificancetotheportionofhorizontal

planescorrespondingtothemaximumvalueoftheresponse.

Thequadraticequationsfortheproperties(E,Xs,w,Xt.wandC),

whosereliabilitywaschecked,areasfollows:

E(Dowfax)=26.993+11.314Xt+1.21T−0.103XtT −0.395Xt2−8.788 10−3T2 (2) E(Lutensol)=14.687+5.592Xt+2.607T−0.033XtT −0.216Xt2−0.027T2 (3) Xs.w(Dowfax) =106.276+0.063Xt−2.92T−0.125XtT +0.344Xt2+0.03T2 (4) Xs.w(Lutensol)=83.753−2.485Xt−2.543T−0.051XtT +0.225Xt2+0.027T2 (5)

(5)

Xt.w(Dowfax)=106.276+0.063Xt−2.92T−0.125XtT +0.344X2t +0.03T2 (6) Xt.w(Lutensol)=0.506+0.035Xt−0.023T−1.046 10−3XtT −1.159 10−3X2t +3.11 10−4T2 (7) C(Dowfax)=0.403+0.479Xt−0.027T−0.009XtT −0.001Xt2+4 10−4T2 (8) C(Lutensol) =0.2939+0.0009Xt−0.0136T −0.002XtT−0.0054X2−0.0006T2 (9) 4.1. Extractionefficiency

Fig.2representsthethree-dimensionalisoresponsecurvesof

thestudiedpropertiessmoothedbythequadraticmodel(Eqs.(2)

and(3)).Fig.3ashowsthattheextentofhumicacidextraction(E)

increaseswithXt.Inthiswork,Ereaches98%for10%LutensolON

30.However,thetemperatureincreasehasslighteffectofhumic

acidextraction.Thistrendwasalsoobservedbyotherresearchers

in otherextractionsystems [34,35,38].Indeed,thetemperature

raiseinducessimultaneousandoppositeeffects:itincreasesthe

concentrationofsoluteinthemicellaraggregatesasaresultofthe decreaseof(C)[38].Besides,onecannoticethattheextraction

extentobtainedwithLutensolON30,ishigherthanobservedusing

Dowfax20B102.Thepresenceofabenzeneringinthehydrophobic

chainofDowfax20B102,seemstohaveanegativeeffectonhumic

acidsolubilization.

4.2. Concentrationofresidualhumicacid(Xs.w)

Fig.3representsthethree-dimensionalisoresponsecurvesof

thestudiedproperty(Xs.w),smoothedbythequadraticmodel(Eqs.

(4)and(5)).Inthisfigure, itisshownthattheconcentrationof

humicacidinthedilutephaseXs.wdecreasesasXtantTincrease.

Hence,thefirstcontactbetweenthesurfactantandtheeffluent

solutions,allowssoluteconcentrationreductiontoabout10and

60timesusingDowfax20B102andLutensolON30,respectively

(Table1).

4.3. Concentrationofresidualsurfactant(Xt.w)

Theconcentrationofresidualsurfactant(Xt.w)isavery

impor-tantparameter.Thehighlossofsurfactantinthedilutephasecan

compromisetheprocessreliability.Indeed,thepresenceofanother

contaminant inthe dilute phase, issufficient tomake the

pro-cessuseless.Althoughthesesurfactantsareknownbytheirgood

biodegradabilityproprieties,itwouldbedetrimentaltosquander

theminthedilutephase.

Thebehaviorof(Xt.w)accordingtoXtandTisshowninFig.4

(smoothedbythequadraticmodelEqs.(6) and(7)).Thisfigure

showsthattheresidualconcentrationofsurfactantislowathigh

temperatureandlowsurfactantconcentration.Theseresultsare

ingood agreementwithpreviousstudiesusingpolyethoxylated

alkylphenols[37]aswellasotherpolyethoxylatedalcohols[38].

Indeed,theheatingdesolvatesgraduallythesurfactanthydrophilic

groupsandthusitreducesitshydrophiliccharacter.Ingeneral,the

desolvationenergyofthesurfactantmolecule canbeassociated

withitsenergytransferfromthehydrophilic(aqueoussolution)

tothehydrophobicmedium(micellarsystem).Onecannoticein

Fig.4thattheremainingconcentrationofLutensolON30inthe

dilutephaseaftertheextraction,ishigherthanthatobtainedusing

Dowfax20B102.Suchresultcanbeexplainedbythefactthatthe

cmcofLutensolON30(cmc=0.2g/L)ishigherthanthatofDowfax

20B102(cmc=0.08g/L).Hence,LutensolON30ismoresolublein

waterthanDowfax20B102.

4.4. Volumefractionofcoacervate

Inordertoincreasetheconcentrationfactorofsolute,a

mini-malvolumefractionofcoacervate(C)shouldbeobtainedwhen

temperatureincreases.Ineffect,accordingtoFig.5,thesmoothed

valueofCusingEqs.(8)and(9)islowathightemperatureandlow

surfactantconcentration.However,highsurfactantconcentrations

inducemoresurfactantlossinthedilutephase(Fig.4).Although

thesurfactantisbiodegradable,thislossisnoteconomical.Sothe

optimizationoftheprocessneedstocompromisebetweenthefour

studiedparametersE,Xs,w,Xt.wandC.Itshouldbepointedout

thatthisobservationhadalsobeendoneeitherbyusandothers

[34,37,38,40].Indeed,lesssurfactantconcentrationshouldbeused tohaveasmallervolumefractionofcoacervate.Onthebasisofthis

finding,optimalvaluesofC(i.e.0.1and0.3)wereobtainedusing

4wt.%Dowfax20B10and4wt.%LutensolON30at50◦Cand40C,

respectively.

Table1

Someexperimentalresultsoftheextractionparameters(E,Xs,w,C,R2andXs,0/Xs,w).

[XT(wt.%),T(◦C)] E(%) Xs,w(mg/L) Xt,w(wt.%) C Xs,0/Xs,wa LutensolON30 R2=0.994 R2=0.990 R2=0.968 R2=0.957 [2,30] 76.681 23.319 0.102 0.060 4.288 [2,36] 79.864 20.136 0.090 0.050 4.966 [2,42] 81.080 18.920 0.078 0.050 5.285 [6,36] 92.201 7.799 0.087 0.200 12.822 [6,42] 94.027 5.973 0.072 0.070 16.742 [10,42] 98.340 1.660 0.115 0.050 60.240 Dowfax20B102 R2=0.989 R2=0.995 R2=0.959 R2=0.962 [1,36] 67.026 32.974 0.024 0.075 3.032 [1,42] 70.012 29.988 0.021 0.050 3.334 [1,48] 71.089 28.911 0.012 0.030 3.458 [5,42] 88.102 11.898 0.041 0.300 8.404 [5,48] 89.017 10.983 0.023 0.100 9.104 [9,48] 92.287 7.713 0.051 0.150 12.965 aX

(6)

Fig.1.EffectofhumicacidandCTABonthecloudpointofLutensolON30andDowfax20B102.

5. Parametersaffectingextractionefficiency

5.1. Effectofsodiumsulfate

OnecanseeclearlyinFig.6thattheelectrolyteincreasesthe

extraction extent(E%)of humicacid. The presenceof the

elec-trolyteinducesadecreaseinthesolubilityofhumicacidinwaterby

salting-outphenomenon.AccordingtoSaitoandShinoda[41],the

additionofelectrolytetonon-ionicsurfactantsolutionsincreases

theirhydrocarbonsolubilizationcapacity, byloweringcmc.This

behaviormaybetheresultofanincreaseinmicellarnumberin

thepresenceofelectrolyte.So,theadditionofelectrolyteto

non-ionicsurfactants solutionsincreasestheirsolubilizationcapacity

towardorganicsoluteandconsequentlyimprovestheefficiencyof

itscoacervateextraction(Fig.6).

5.2. Effectofcetyltrimethylammoniumbromide(CTAB):

extractionbymixedmicelles

When nonionic and ionic surfactant co-exist together, they

interactandprovideadditionalbeneficialpropertiestothesystem.

Thisinteractionresultsinmostcasesbyaspecificassociationand

(7)

Fig.3.Three-dimensionalisoresponsecurvessmoothedbyaquadraticmodel,Xs.w=f(Xt.T),calculatedbythequadraticmodel(Eqs.(4)and(5)).

Fig.4.Three-dimensionalisoresponsecurvessmoothedbyaquadraticmodel,Xt.w=f(Xt.T),calculatedbythequadraticmodel(Eqs.(6)and(7)).

(8)

Fig.6. EffectoftheNa2SO4ontheextractionextentofhumicacid(E%).

theformationofnewandoriginalstructuresthatcanleadto

syn-ergisticeffects.Thesemicellesareknownas“mixedmicelles”.The

cloudtemperatureanalysis(Fig.1)allowsustoconfirmthe

forma-tionofmixedmicelles.Onecanseeclearlythatthecloudpointof

1wt.%LutensolON30risesdramaticallyinthepresenceofCTAB.

Mixedmicelleshavepositiveeffectsontheextractionratioof

humicacid(E%).OnecanseeinFig.7thatEincreasessignificantly

withincreasingCTABconcentration.ThepositivechargeofCTAB

moleculesincreasestheaffinityofthenegativelychargedhumic

acidtowardthemicellaraggregates[42],suchresultswasobtained

inothersystemsusingmixedmicelles[37].

5.3. EffectofpHonextractionrateofhumicacid:recyclingof surfactant

Humicsubstancesaremixturesofweakacidpolyelectrolytes,

widelyspreadoutinsoilandnaturalaquaticenvironments[37,43].

Followingthecomplexityoftheirchemicalnature,alarge

num-berof modelshave beendeveloped todescribe theiracid-base

properties[44,45].Models knownascontinuous distributionof

acidityconstantsvalues(expressedintermsofpKi=−logKi),have

beendeveloped.Inthis model,theaciditydistributionofhumic

Fig.7. EffectofCTABontheextractionextentofhumicacid(E%).

Fig.8. EffectofpHontheextractionextentofhumicacid(E%).

substances molecules may be expressed by several functions

[46–48].Posner [48] showed that thedissociation constants of

humicacidcanbedescribedbyamodelofpKivaluesdistribution

ofitsacidsites(4.0≤pK≤9.0),whereastherelativeconcentration ofeachsiteisnormallydistributedaccordingtothepKivalues.

HAi+H2O⇆Ai−+H3O+ (10)

Itisalsowellknownthatthesolute–micelleinteractionsare

stronglyinfluencedbysoluteionization[38].Afterthe

deproto-nationofa weakacidortheprotonationofa weakbase,slight

interactionsmayoccurwiththesurfactant.In theseconditions,

a small amountof those species maysolubilize, unlike neutral

molecules.Consequently,asmallamountofionizedsolutecanbe

extracted.

InFig.8,theresultsshowthatthedistributionofhumicacid

betweenaqueousandsurfactant-richphase,depends greatlyon

thesolutionacidity.Theextractionratio(E%)increaseswhenthe

pHdecreases(Fig.8).Thisbehaviorcanbeexplainedbythe

trans-formationofhumicacidtotheneutralmolecularformatacidpH.

Theneutralformofhumicacidinteractsstronglywiththe

micel-laraggregatesofnonionicsurfactant.Thisphenomenonwasalso

observedwithfulvicacid(pKa=4.15)[49].Hence,separation of

humicacidisfavoredbyacidpH.

Indeed,pHis thekey-parameterforsurfactant regeneration.

Severalworks havebeendoneontherecyclingandrecoveryof

surfactantsolutionaftertheextractionsteps,byasimplepH

con-trol[38,50,51].Thisrequirestwosteps:thefirstoneconcernsthe

back-extractionofsolutesfromcoacervatewhilethesecondone

relatestotheregenerationofthesurfactant.

Afterafirstextractionprocessofhumicacid(asweakacid)at

4wt.%ofLutensolON30and40◦C,thecoacervatepHwasincreased

beyonditspKaequalto9.0,usingCa(OH)2togiveacomplete disso-ciationofthesolute(Table2)[38,48].Hence,87.15%ofhumicacid

extractedat40◦Ccanbereleasedfromthecoacervatetoanew

dilutephase(at75◦CandpH12.4).ItisthemaximumpHwhich

canbereachedusingCa(OH)2withasolubilitylimitof1.53g/L[52].

Moreover,thepreviouscoacervatewasseparatedintotwonew

phasesat75◦C:asmallquantityoftheaqueousphasecontaining

theconcentratedsolute,andanewcoacervatephasecontaining

mostofthesurfactant.Inordertousethesurfactantagain,itis

necessarytodecreaseitspHandtoprecipitatethebase(Ca(OH)2).

Therefore,itisbettertochooseanacidforminganinsolublesalt

(9)

Table2

Conditionsforregenerationofcoacervate. [Ca(OH)2](g/L) inthe coacervate pHof coacervate Concentration(mg/L) ofhumicacidrelease fromthecoacervate

0 7.62 13.60 0.05 8.24 26.15 0.12 9.56 31.14 0.24 10.08 38.89 0.36 11.12 46.72 0.65 11.56 57.06 0.75 11.89 72.62 1.25 12.21 75.24 1.53 12.40 77.91 Table3

ResultsofthreecycleregenerationofLutensolON30coacervate. Settings Surfactantfrom

thefirstback extraction Surfactantfrom thesecond backextraction Surfactantfrom thethirdback extraction Es(%) 96.587 81.298 69.758 XTs(%) 11.23 10.13 8.97

Et(%) 93.58 84.41 74.75

Table3summariestheresultsofsurfactantreuseforthree

suc-cessivecyclesafterback-extractionofhumicacid,solubilizedin

LutensolON30micelles.Thefirststageextractionwasperformed

at40◦Cusing10wt.%ofsurfactantwhereasthebackextractionwas

achievedat75◦C.Onecannoticethattheextractionextent(Es%)

recoveredafterhumicacidreleaseatpH12.4usingfresh

surfac-tant,ishigherthanthatobtainedwithrecycledsurfactant.Asthe

backextractionofhumicacidisaround87%atpH12.4,micelles

keep13%ofthehumicacidconcentrationateach

extraction/back-extractionstage.Therefore,Esdecreasesusingrecycledsurfactant.

Table3showsalsothatthesurfactantconcentrationobtainedafter humicacidreleasefromcoacervate(XTs%),decreasesafterthe

sur-factantrecycling.Indeed,ateachextraction/back-extractionstage,

asmallamountofsurfactantislostinthedilutephase,inducinga

lowersurfactantrecoverypercentage.

6. Conclusion

Coacervateextractionwasusedtoseparatehumicacidfrom

water.Thebestcompromise betweentheparametersgoverning

the extraction effectiveness (surfactant concentrationand

tem-perature) was foundusing a suitable experimentaldesign and

three-dimensionalempiricalcurvefitting.Thestudyshowedthat

cloudpointextractiontechniquewasabletoremovesoluble

pollu-tantsfromeffluent.Extractionsattemperaturesrangingbetween

40◦Cand50C,allowedtoobtaintheextractionextents94%and

97%using4wt.%ofDowfax20B102andLutensolON30

respec-tively.Whereaslowsurfactantconcentration(<5wt.%)shouldbe

usedtohavesmallervolumefractionofcoacervate.Na2SO4 and

CTABincreasedtheextractionextentofhumicacid.Theextraction

ofthesolutewashighatacidpHrange.Moreover,extractionextent

obtainedwithLutensolON30washigherthanthatusingDowfax

20B102.However,humicacidwaslessextractibleatpHaboveits

pKa.Indeed,thepHcanbeakey-parameterforsurfactant

regenera-tionincloudpointextractionprocessofhumicacid.Thesurfactant

recyclinginacloudpointextractionprocessseemstobepossible

atpH>pKaofthesolute. References

[1]C.S.Uyguner,M.Bekbolet,Evaluationofhumicacidphotocatalyticdegradation byUV–visandfluorescencespectroscopy,Catal.Today101(2005)267–274.

[2]A.Soumia,J.Abdelmajid,M.Abdelilah,G.Mohamed,W.Peter,H.Mohamed, Structuralstudyofhumicacidsduringcompostingofactivatedsludge-green waste:elementalanalysis,FTIRand13CNMR,J.Hazard.Mater.177(2010)

524–529.

[3]S.Riccardo,P.Alessandro,Molecularcharacteristicsofhumicacidsextracted fromcompostatincreasingmaturitystages,SoilBiol.Biochem.41(2009) 1164–1172.

[4] H.Katsumata,M.Sada,S.Kaneco,T.Suzuki,K.Ohta,Y.Yobiko,Humicacid degradationinaqueoussolutionbythephoto-Fentonprocess,Chem.Eng.J. 137(2008)225–230.

[5]W.Jaroslaw,R.Didier,S.Joanna,M.Korneliusz,M.Sixto,V.Jean,G.Didier,J. Surmacz,Solarphotocatalyticdegradationofhumicacidsasamodeloforganic compoundsoflandfillleachateinpilot-plantexperiments:influenceof inor-ganicsalts,Appl.Catal.B:Environ.53(2004)127–137.

[6]M.D.Paciolla,S.Kolla,S.A.Jansen,Thereductionofdissolvedironspeciesby humicacidsandsubsequentproductionofreactiveoxygenspecies,Adv. Envi-ron.Res.7(2002)169–178.

[7] T.Achour,A.R.T.Chafia,H.Didier,D.Safia,Evaluationofadsorption capaci-tiesofhumiccidsextractedfromAlgeriansoilonpolyanilineforapplication toremovepollutantssuchasd(II),Zn(II)andNi(II)andcharacterizationwith cavitymicroelectrode,J.Environ.Sci.23(2011)1095–1103.

[8]J.F.McCarthy,Bioavailabilityandtoxicityofmetalsandhydrophobicorganic contaminants,in:I.H.Suffet,P.McCarthy(Eds.),AquaticHumicSubstances: InfluenceonFateandTreatmentofPollutants,Am.Chem.Soc.,Washington, DC,1989,pp.263–279.

[9]J.Polak,M.Bartoszek,M. ˙Z ˛adło,A.Kos,W.W.Sułkowski,Acomparativestudy oftheadsorptionofhumicacids,fulvicacidandphenolontoBacillussubtilis andactivatedsludge,Chemosphere84(2011)1548–1555.

[10]F.Jianfeng,Y.Zhao,Q.Wu,Optimisingphotoelectrocatalyticoxidationof ful-vicacidusingresponsesurfacemethodology,J.Hazard.Mater.144(2006) 499–505.

[11] A.A.Stevene,C.J.Slocum,Chlorinationoforganicsindrinkingwater,J.Am. WaterWorksAssoc.68(1976)615–623.

[12]T.Takeshi,Muneaki,Y.Kazuhiko,Adsorbabilityandphotocatalytic degradabil-ityofhumicsubstancesinwateronTi-modifiedsilica,J.ColloidInterfaceSci. 297(2006)678–686.

[13]W.S.WanNgah, M.A.K.M.Hanafiah, S.S.Yong,Adsorptionofhumicacids from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: kinetics and isotherm studies, Colloids Surf. B: Biointerface 65 (2008) 18–24.

[14]A. Badis, F.Z. Ferradji, A. Boucherit, D. Fodil, H. Boutoumi, Removal of naturalhumicacidsbydecolorizingactinomycetesisolatedfromdifferent soils(Algeria)forapplicationinwaterpurification,Desalination259(2010) 216–222.

[15] R.SAl-Rasheed,D.J.Cardin,Photocatalyticdegradationofhumicacidinsaline waters.Part2.Effectsofvariousphotocatalyticmaterials,Appl.Catal.A246 (2003)39–48.

[16] S.Silvia,P.Gabriella,A.Fabrizio,Perspectiveontheuseofhumicacidsfrom biomassasnaturalsurfactantsforindustrialapplications,Biotechnol.Adv.29 (6)(2011)913–922.

[17]K.Katsoufidou,S.G.Yiantsios,A.J.Karabelas,Astudyofultrafiltration mem-branefoulingbyhumicacidsandfluxrecoverybybackwashing:experiments andmodeling,J.Membr.Sci.266(2005)40–50.

[18]K.Katsoufidou,S.G.Yiantsios,A.J.Karabelas,AnexperimentalstudyofUF membraneoulingbyhumicacidsandsodiumalginatesolutions:theeffect ofbackwashingonfluxrecovery,Desalination220(2008)214–227. [19]P.C.Singer,Assessingozonationresearchneedsinwatertreatment,J.Am.

WaterWorksAssoc.82(1990)78–88.

[20]J.Wwiszniowski,D.Robert,J.Surmacz-Gorska,K.Miksch,J.V.Weber, Photo-catalyticdecompositionofhumicacidsonTiO2.PartI:discussionofadsorption

andmechanism,J.Photochem.Photobiol.152(2002)267–273.

[21]R.AL-Rasheed,D.J.Cardin,Photocatalyticdegradationofhumicacidinsaline waters.Part2.Effectsofvariousphotocatalyticmaterials,Appl.Catal.A246 (2003)39–48.

[22]D.Ghernaout,B.Ghernaout,A.Saiba,A.Boucherit,A.Kellil,Removalofhumic acidsbycontinuouselectromagnetictreatmentfollowedbyelectrocoagulation inbatchusingaluminiumelectrodes,Desalination239(1–3)(2009)295–308. [23]L.C.Chiang,J.E.Chang,T.C.N.Wen,Destructionofrefractoryhumicacidby electromechanicaloxidationprocess,WaterSci.Technol.42(2000)225–232. [24]X.Z.Li,F.B.Li,C.M.Fan,Y.P.Sun,Photoelectrocatalyticdegradationofhumic

acidinaqueoussolutionusingaTi/TiO2meshphotoelectrode,WaterRes.36

(2002)2215–2224.

[25]H.Selcuk,J.J.Sene,H.Z.Sarikaya,M.Bekbolet,M.A.Anderson,Aninnovative photocatalytictechnologyinthetreatmentofriverwatercontaininghumic substances,WaterSci.Technol.49(2004)153–158.

[26]H. Watanabe, H. Tanaka, A Non-ionic surfactant as a new solvent for liquid–liquidextractionofzinc(II)with1-(2-pyridylazo)-2-naphtho,Talanta 25(1978)585–589.

[27]C.Bordier,PhaseseparationofintegralmembraneproteinsinTritonX-114 solutions,Biol.Chem.256(1981)1604–1607.

[28]K.C.Hung,B.H.Chen,E.Y.Liya,Cloud-pointextractionofselectedpolycyclic aromatichydrocarbonsbynonionicsurfactants,Sep.Purif.Technol.57(2007) 1–10.

[29] Z.S.Ferrera,C.P.Sanz,C.M.Santana,J.J.S.Rodriguez,Theuseofmicellarsystems intheextractionandpre-concentrationoforganicpollutantsinenvironmental samples,TrendsAnal.Chem.23(7)(2004)479–489.

(10)

[30]L.D.Nogueira,J.PCanselier,Oxo-alcoholethoxylates:surfaceand thermody-namicpropertiesandeffectofcariousadditivesonthecloudpoint,Tenside Surf.Det.42(2005)299–305.

[31]Z.Talbi,B.Haddou,Z.Bouberka,Z.Derriche,Simultaneouseliminationof dis-solvedanddispersedpollutionfromcuttingoilwastesusingtwoaqueousphase extractionmethods,J.Hazard.Mater.163(2/3)(2009)748–755.

[32]K.Mateja,S.Barbara,Theinfluenceofnonionicsurfactantstructureonthe thermodynamicsofanionicdye-cationicsurfactantinteractionsinternary mix-tures,DyesPigments79(2008)59–68.

[33] L.A.M.Rupert,Athermodynamicmodelofcloudinginwater/alcoholethoxylate mixtures,J.ColloidInterfaceSci.153(1992)92–105.

[34] B.Haddou,J.P.Canselier,C.Gourdon,Purificationofeffluentsbytwo-aqueous phaseextraction,IChemE,England181(A)(2003)1184–1192.

[35] P.Trakultamupatam,J.F.Scamehorn,S.Osuwan,Scalingupcloudpoint extrac-tionofaromaticcontaminantsfromwastewaterinacontinuousrotatingdisk contactor.II.Effectofoperatingtemperatureandaddedelectrolyte,Sep.Sci. Technol.39(3)(2004)501–516.

[36]K.D.Sharma,G.Sudha,S.K.Suri,H.S.Randhawa,Studiesonmixedsurfactant systems:effectofsomeanionicsurfactantonthecloudpointofpoly(nona-) oxyethylatednonylphenol,J.Am.OilChem.Soc.66(7)(1989)1015–1017. [37]B.Haddou,N.Guitri,A.Debbab,C.Gourdon,Z.Derriche,Cloudpointextraction

of OrangeII and OrangeGusing neutraland mixedmicelles: compara-tive approachusingexperimentaldesign,Sep.Sci.Technol.46(5)(2011) 734–743.

[38]B.Haddou,J.P.Canselier,C.Gourdon,Cloudpointextractionofphenoland benzylalcoholfromaqueousstream,Sep.Purif.Technol.50(1)(2006)114–121. [39]G.Box,N.Draper,EmpiricalModelBuildingandResponseSurfaces,JohnWiley

&Sons,NewYork,1987.

[40]J.P. Canselier, C. Gourdon, L.D. Nogueira, Duarte, E.L. De Barros Neto, B. Haddou, C. Gumila, Procédé d’extraction sans solvant des polluants organiquesetmétalliques,FrenchPatent06/03632,WO-2007-122158,2006. [41]H.Saito,K.Shinoda,Thesolubilizationofhydrocarbonsinaqueoussolutionof

nonionicsurfactants,J.ColloidInterfaceSci.24(1967)10–15.

[42]J.Buffle,ComplexationReactionsinAquaticSystems:AnAnalyticalApproach, EllisHorwood,Chichester,1988.

[43] M.Schnitzer,S.U.Khan,HumicsSubstancesintheEnvironment,Dekker,New York,1972.

[44] H.Dautzenber,W.Jaeger,J.Köt,B.Philip,C.Seidel,D.Stscherbina, Polyelec-trolytes:Formation,CharacterizationandApplication,Hanser,Munich,1994. [45] S.J.Marshal,K.Gregson,Humicacid–protonequilibria:acomparisonoftwo

modelsandassessmentoftitrationerror,Eur.J.SoilSci.46(1995)471–478. [46] T.Miyajima,K.Yoshida,Y.Kanegae,H.Tohfuku,J.A.Marinsky,Metal

complex-ationofnegativelychargedpolymers,React.Polym.15(1991)55–62. [47] A.M.Posner,Titrationcurvesofhumicacid,in:EighthInt.Congr.SoilSci.Trans.,

vol.3,1964,pp.161–174.

[48] A.M.Posner,Thehumicacidsextractedbyvariousreagentsfromasoil:part1. Yield,inorganicscomponentsandtitrationcurves,SoilSci.17(1966)65–78. [49] L.Robert,A.Revia,G.Makharadze,Cloud-pointpreconcentrationoffulvicand

humicacids,Talanta48(1999)409–413.

[50]J.H.Fendler,MembraneMimeticChemistry,WileyInterscience,NewYork, 1982.

[51]L.J.N.Duarte,J.P.Cancelier,ExtractionparCoaservatEnVueDeL’élimination deContaminantsOrganiquesetD’ionsMétalliques,ThèsedeDoctorat,Ecole nationalPolytechniquedeToulouse,2005.

[52]K.A.Gutschick,in:J.I.Kroschwitz(Ed.),Kirk-OthmerEncyclopediaofChemical Technology,vol.15,4thed.,Wiley,NewYork,1995.

Figure

Fig. 2 represents the three-dimensional isoresponse curves of the studied properties smoothed by the quadratic model (Eqs
Fig. 1. Effect of humic acid and CTAB on the cloud point of Lutensol ON 30 and Dowfax 20B102.
Fig. 5. Three-dimensional isoresponse curves smoothed by a quadratic model,  C = f(X t
Fig. 8. Effect of pH on the extraction extent of humic acid (E%).
+2

Références

Documents relatifs

Optimization of extraction and concentration of anthocyanins from roselle (Hibiscus sabdariffa L.) by aqeous exraction and nanofiltration, IUFost 2010, Cap Town (Afrique du

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Les modèles porcins d’hépatectomie et de transplantation de foie partiel ont été largement utilisés pour étudier les techniques chirurgicales de modulation du

aGVHD, acute graft-versus-host disease; Allo-SCT, allogeneic hematopoietic stem cell transplantation; AML, acute myeloid leukemia; ATG, anti-thymocyte globulin; BM, bone marrow;

De plus, là encore, chaque phase de ce cycle interagit avec les autres (la matière contenue dans les nuages diffus influe sur le rayonnement stellaire, subit les chocs issus des

Nous formulons cette tâche comme un problème de sélection dynamique de sources, pour lequel nous proposons une méthode d’apprentissage pour orienter la collecte vers les données

et il suffit qu’il soit k-invariant par homotopie, i.e. la r´eciprocit´e forte) s’il v´erifie la l-r´eciprocit´e (resp. la l-r´eciprocit´e forte) pour toute extension finie l

Le th´eor`eme 2.2 est le pas d’une r´ecurrence simultan´ee avec la preuve du th´eor`eme de d´ecomposition, r´ecurrence sur la dimension des strates et la dimension de X ` a