• Aucun résultat trouvé

polytopes The L capacitary Minkowski problem for Journal of Functional Analysis

N/A
N/A
Protected

Academic year: 2022

Partager "polytopes The L capacitary Minkowski problem for Journal of Functional Analysis"

Copied!
25
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The L

p

capacitary Minkowski problem for polytopes

Ge Xionga,∗, Jiawei Xionga, Lu Xub

aSchoolofMathematicalSciences,TongjiUniversity,Shanghai,200092,China

bCollegeofMathematicsandEconometrics,HunanUniversity,Changsha,410082, China

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received18September2018 Accepted2June2019 Availableonline7June2019 CommunicatedbyGuidoDe Philippis

MSC:

52A20 31B15

Keywords:

LpMinkowskiproblem Capacity

Polytope

Sufficient conditionsaregiven fortheexistence of solutions to the discreteLp Minkowski problem for p-capacity when 0< p<1 and1<p<2.

©2019ElsevierInc.Allrightsreserved.

1. Introduction

Thesetting forthis articleisEuclidean n-space, Rn. A convex body inRn isacom- pactconvexsetwithnonemptyinterior.TheBrunn-Minkowskitheoryofconvexbodies,

ResearchofthefirsttwoauthorsaresupportedbyNSFCNo.11871373;thethirdauthorissupported byNSFCNo.11771132andHunanScienceandTechnologyProjectNo.2018JJ1004.

* Correspondingauthor.

E-mailaddresses:xiongge@tongji.edu.cn(G. Xiong),1610528@tongji.edu.cn(J. Xiong), xulu@hnu.edu.cn(L. Xu).

https://doi.org/10.1016/j.jfa.2019.06.008

0022-1236/©2019ElsevierInc. Allrightsreserved.

(2)

also called themixedvolumetheory,whichwasdevelopedbyMinkowski,Aleksandrov, Fenchel, and many others, centers around the study of geometric functionals of con- vex bodies and the differentials of these functionals.Usually, the differentials of these functionals produce new geometric measures. This theory depends heavily onanalytic tools such as the cosine transform on the unit sphere Sn−1 and Monge-Ampère type equations.

AMinkowskiproblemisacharacterizationproblemforageometricmeasuregenerated by convex bodies: It asks for necessary and sufficient conditions in order that agiven measurearisesasthemeasuregeneratedbyaconvexbody.ThesolutiontoaMinkowski problem, in general, amountsto solvinga fully nonlinear partial differential equation.

The study of Minkowskiproblems hasalonghistory andstrong influenceon both the Brunn-Minkowski theory and fully nonlinear partial differential equations. For details, see, e.g.,[45,Chapter8].

The Lp Minkowski problem for volume was originated in the 90s of last century, and it significantly generalized the classical Minkowski problem and was intensively investigated.

1.1. Lp surfacearea measuresandtheLp Minkowskiproblemforvolume

TheLpBrunn-Minkowskitheory(see,e.g.,[45,Sections9.1and9.2])isanextensionof theclassicalBrunn-Minkowskitheory,inwhichtheLp surfaceareameasureintroduced byLutwak[37] is oneofthemostfundamentalnotions.

LetKbeaconvexbodyinRn withtheorigininitsinteriorandp∈R.ItsLp surface area measureSp(K,·) isafinite Borelmeasure onSn−1,definedforBorelω⊆Sn−1 by

Sp(K, ω) =

xgK1(ω)

(x·gK(x))1−pdHn−1(x),

where Hn1 is the (n1)-dimensional Hausdorff measure; gK : K Sn1 is the Gauss map defined on the set K of those points of ∂K that have a unique outer normal. Alternatively,Sp(K,·) canbe definedby

Sp(K, ω) =

ω

h1−pK (u)dS(K, u), (1.1)

where hK :RnR,hK(x)= max{x·y:y∈K}isthesupportfunctionofK;dS(K,·) is theclassicalsurfacearea measureofK.

Tracingthesource,theLpsurfaceareameasureresultedfromthedifferentialofvolume functional ofLp combinations ofconvexbodies.

In 1962, Firey [28] introduced the notionof Lp sum of convex bodies. Let K,L be convexbodieswiththeoriginintheirinteriorsand1p<∞.TheirLpsumK+pListhe compactconvexsetwithsupportfunctionhK+pL= (hpK+hpL)1/p.Fort>0,theLpscalar

(3)

multiplicationt·pKisthesett1/pK.NotethatK+1L=K+L={x+y:x∈K,y∈L} istheMinkowskisum ofK andL.

Using theLp combination,Lutwak [37] established thefollowing Lp variational for- mula

dV(K+ppL) dt

t=0+

= 1 p

Sn1

hpL(u)dSp(K, u), (1.2)

where V is the n-dimensional volume, i.e., Lebesgue measure in Rn. When p = 1, it reducesto thecelebratedAleksandrov variational formula

dV(K+tL) dt

t=0+

=

Sn1

hL(u)dS(K, u). (1.3)

Theintegralin(1.3),dividedbythefactor n,is calledthefirst mixedvolume V1(K,L) ofK andL.Thatis,

V1(K, L) = 1 n

Sn−1

hL(u)dS(K, u),

whichisageneralizationofthewell-knownvolumeformula V(K) = 1

n

Sn−1

hK(u)dS(K, u). (1.4)

The Lp Minkowski problem forvolume. Suppose μ is a finite Borel measure on Sn1 andp∈R.Whatare thenecessary andsufficientconditions on μsuchthat μis theLp

surfaceareameasure Sp(K,·)of aconvex bodyK inRn?

TheL1 Minkowskiproblem is preciselythe classicalMinkowskiproblem.Morethan a century ago, Minkowski himself [42] solved this problem when the given measure is either discrete or has a continuous density. Aleksandrov [2,3] and Fenchel-Jessen [27]

independently solved the problem for arbitrary measures: If μ is not concentrated on anygreatsubsphereofSn−1,thenμisthesurfaceareameasureofaconvexbodyifand onlyifitscentroidisat theorigino; i.e.,

Sn−1udμ(u)=o.

RecallthattheLpMinkowskiproblemforvolumeforp<1 waspublicizedbyaseries oftalks by ErwinLutwak inthe1990’s, and appearedinprintinChou and Wang[22]

for the first time. The case p = 0 isthe so called logarithmic Minkowski problem. In [11],theauthors posedthesubspaceconcentrationconditionand completelysolvedthe even logarithmic Minkowski problem. Additional references regarding the logarithmic Minkowski problem can be found in, e.g., [7–10,20,33,46–48,50]. If 0 < p < 1, the Lp Minkowski problem is essentially solved by Chen, Li and Zhu [19]. See also [12,51],

(4)

for more details. It is worth mentioning that in the very recent work [6], the authors discussed thecase −n< p< 1 for an absolutely continuous measure and provided an almost optimalsufficientconditionforthecase0< p<1.

Since for strictly convex bodies with smooth boundaries,the density of the surface area measure withrespect to the Lebesguemeasure is justthe reciprocalof theGauss curvature of closed convex hypersurface, analytically, the classical Minkowskiproblem is equivalent to solving a Monge-Ampère equation. Establishing the regularity of the solutionisdifficultandhasledtoalongseriesofhighlyinfluentialworks,see,e.g.,Lewy [36],Nirenberg[43],Cheng-Yau[21],Pogorelov[44], Caffarelli[13,14].

By now, the Lp Minkowski problem for volume has been investigated and achieved great developments. See,e.g.,[4,11,17,18,22,32,34,37–39,41,46,50,51]. Its solutionshave beenappliedtoestablishsharpaffineisoperimetricinequalities,suchastheaffineMoser- Trudinger and theaffine Morrey-Sobolev inequalities, the affine Lp Sobolev-Zhang in- equality,etc. See,e.g.,[40,49],formoredetails.

1.2. Lp p-capacitarymeasuresandtheLp Minkowskiproblem forp-capacity

Without adoubt,theMinkowskiproblemforelectrostaticp-capacityisanextremely important variant among Minkowskiproblems. Recall thatfor 1<p< n, the electro- staticp-capacityofacompactsetK inRn isdefinedby

Cp(K) = inf

Rn

|∇u|pdx:u∈Cc(Rn) andK ,

where Cc(Rn) denotesthe set ofsmooth functionswith compactsupports,and χK is the characteristic function of K. The quantity C2(K) is the classical electrostatic (or Newtonian) capacityofK.

For convex bodies K and L, via the variation of capacity functional C2(K), there appearstheclassicalHadamardvariationalformula

dC2(K+tL) dt

t=0+

=

Sn−1

hL(u)2(K, u) (1.5)

and itsspecialcase,thePoincarécapacityformula C2(K) = 1

n−2

Sn−1

hK(u)2(K, u). (1.6)

Here,μ2(K,·) iscalled theelectrostaticcapacitary measureofK.

Inhiscelebratedarticle[35],JerisonpointedouttheresemblancebetweenthePoincaré formula(1.6) andthevolumeformula(1.4) andalsoaresemblancebetweentheirvaria- tionalformulas (1.5) and(1.3). Thus,he initiatedto study theMinkowski problemfor

(5)

electrostatic capacity: Given afinite Borelmeasure μon Sn1,what are the necessary andsufficientconditionsonμsuchthatμistheelectrostaticcapacitarymeasureμ2(K,·) ofa convexbodyK in Rn?

Jerison[35] solved, infull generality,theMinkowskiproblem forcapacity.Heproved thenecessaryandsufficientconditionsforexistenceofasolution,whichareunexpectedly identicaltothecorrespondingconditionsintheclassicalMinkowskiproblem.Uniqueness wassettledbyCaffarelli,JerisonandLieb[16].Theregularitypartoftheproofdepends ontheideasofCaffarelli[15] fortheregularityofsolutionstotheMonge-Ampèreequa- tion.

Jerison’s workinspired muchsubsequent research onthis topic.In [24], the authors extended Jerison’s work to electrostatic p-capacity, 1 < p < n, and established the Hadamardvariationalformulaforp-capacity,

dCp(K+tL) dt

t=0+

= (p1)

Sn−1

hL(u)p(K, u) (1.7)

andthereforethePoincarép-capacityformula Cp(K) = p1

n−p

Sn−1

hK(u)p(K, u). (1.8)

Here,thenewmeasure μp(K,·) iscalled theelectrostaticp-capacitarymeasureofK.

Naturally,theMinkowskiproblem forp-capacitywasposed[24]:Given afiniteBorel measureμonSn−1,whatarethenecessaryandsufficientconditionsonμsuchthatμis thep-capacitarymeasureμp(K,·)of aconvexbody K inRn?

In [24], the authors proved the uniqueness of the solution when 1 < p < n, and existenceandregularitywhen 1<p<2.Veryrecently,theexistencefor2<p< nwas solvedbyM.Akman,J.Gong,J.Hineman,J.Lewis,andA. Vogel[1].

Inspiredby thedeveloped Lp Minkowski problem forvolume, D.Zou and G.Xiong [52] initiatedto researchthefollowing Lp Minkowskiproblemforp-capacitarymeasure.

Letp∈Rand1<p< n.ForaconvexbodyKinRnwiththeorigininitsinterior,its Lp p-capacitary measureμp,p(K,·) isafinite Borel measureon Sn1,defined forBorel ω⊆Sn1 by

μp,p(K, ω) =

ω

h1−pK (u)p(K, u).

Similar to the Lp surface area measure Sp(K,·), μp,p(K,·) is also resulted from the variation of p-capacity functional of Lp sumof convex bodies. Specifically, if K,L are convexbodiesinRn withtheoriginintheirinteriors,thenfor1p<∞,

dCp(K+ppL) dt

t=0+

= p1 p

Sn−1

hpL(u)p,p(K, u).

(6)

TheLpMinkowskiproblemforp-capacity.SupposeμisafiniteBorelmeasureonSn1, p∈R and1<p< n.What arethenecessary andsufficientconditionsonμsuchthatμ is theLp p-capacitarymeasure μp,p(K,·)of aconvexbody K inRn?

In[52], ZouandXiongcompletely solvedthecasewhenp>1 and1<p< n.Inthis article, wefocusonthecase0< p<1 and1<p<2,andprovethefollowing.

Theorem1.1. LetμbeafinitepositiveBorelmeasureonSn−1whichisnotconcentrated on any closed hemisphere, 0< p<1and1<p<2. Supposeμ isdiscreteandsatisfies μ({−u})= 0whenever μ({u})>0,foru∈Sn1.

(1)Ifp+p=n,thenthereexistsann-dimensionalpolytopePsuchthatμp,p(P,·)=μ;

(2)If p+p=n,thenthereexistsann-dimensionalpolytopeP andaconstantλ>0 suchthatλμp,p(P,·)=μ.

This articleis organized as follows. In Section2, we collect somebasic factson the theory ofconvex bodies.InSection3, westudy anextremalproblem undertranslation transforms. After clarifying the relationship between this extremal problem and our concerned Lp Minkowskiproblemfor capacityinSection4,we presenttheproofof the main resultinSection5.

2. Preliminaries

2.1. Basicsof convexbodies

Forquickreference,wecollectsomebasicfactsonthetheoryofconvexbodies.Good referencesare thebooksbyGardner [29],Gruber[31] andSchneider[45].

Write x·y for thestandardinner product ofx,y∈Rn.Let B be the standardunit ball of Rn. Denote byKn theset of convexbodies inRn, andbyKno theset ofconvex bodieswiththeoriginointheirinteriors.

Kn is often equipped with the Hausdorff metric δH, which is defined for compact convex setsK,Lby

δH(K, L) = max{|hK(u)−hL(u)|:u∈Sn−1}.

ForcompactconvexsetsKandL,theyaresaidtobehomothetic,ifK=sL+x,for somes>0 andx∈Rn.Thereflection ofK is−K={−x:x∈K}.

Write intK and bdK for the interior and boundaryof aset K, respectively. Write relintK and relbdK for the relative interior and relative boundary of K, that is, the interior andboundaryofK relativeto itsaffinehull,respectively.

DenotebyC(Sn−1) thesetofcontinuousfunctionsdefinedonSn−1,whichisequipped with themetric induced bythe maximal norm. Write C+(Sn1) for the set of strictly positivefunctionsinC(Sn1).Fornonnegativef,g∈C(Sn1) andt0,define

(7)

f+pt·g=

fp+tgp1/p

,

where, without confusion and for brevity, we omit the subscript p under the dot thereafter. If in addition f > 0 and g is nonzero, the definition holds when t >

maxminSn1f

Sn−1g

1/p

.

Fornonnegativef ∈C(Sn1),define [f] =

u∈Sn−1

{x∈Rn :x·uf(u)}.

Theset iscalled theAleksandrov body (alsoknownasthe Wulffshape)associated with f. Obviously, [f] is acompact convex set containing the origin.For acompact convex setcontainingtheorigin,sayK, wehaveK= [hK].Iff ∈C+(Sn−1),then[f]∈ Kno.

TheAleksandrov convergence lemma reads: If thesequence fj

j ⊆C+(Sn−1) con- vergesuniformlyto f ∈C+(Sn−1),thenlimj→∞[fj]= [f].

ForK∈ Kn andu∈Sn−1,thesupporthyperplaneH(K,u) isdefinedby H(K, u) ={x∈Rn:x·u=h(K, u)}.

Thehalf-spaceH(K,u) inthedirectionuisdefinedby H(K, u) ={x∈Rn:x·uh(K, u)}. Thesupportset F(K,u) inthedirectionuisdefinedby

F(K, u) =K∩H(K, u).

Supposethe unitvectors u1,. . . ,uN are notconcentrated onany closed hemisphere ofSn1,N n+ 1.LetP(u1,. . . ,uN) betheset withP ∈P(u1,. . . ,uN) suchthatfor fixeda1,. . . ,aN 0,

P= N k=1

{x∈Rn:x·ukak}.

Obviously,forP ∈P(u1,. . . ,uN),PhasatmostN facets,i.e.,(n1)dimensionalfaces, and the outer normals of P are a subset of {u1,. . . ,uN}. Let PN(u1,. . . ,uN) be the subsetofP(u1,. . . ,uN) suchthatapolytopeP ∈PN(u1,. . . ,uN),ifP ∈P(u1,. . . ,uN) andP hasexactlyN facets.

2.2. Basicfacts onp-capacity

Thispartlists somenecessaryfactsonp-capacity.For moredetails,see,e.g.,[24,26, 35].

(8)

Let 1<p< n.Thep-capacityCp hasthefollowing properties.First,itisincreasing with respect to set inclusion; that is, if E F, then Cp(E) Cp(F). Second, it is positively homogeneousofdegree (np),i.e., Cp(sE)=snpCp(E),for s>0. Third, itis rigidmotioninvariant, i.e.,Cp(gE+x)=Cp(E),forx∈Rn andg∈O(n).

Let K ∈ Kn. Thep-capacitarymeasure μp(K,·) has the following properties. First, it is positivelyhomogeneousofdegree (np1),i.e., μp(sK,·)=snp1μp(K,·),for s > 0. Second, it is translation invariant, i.e., μp(K+x,·) = μp(K,·), for x Rn. Third,itscentroidisattheorigin,i.e.,

Sn−1udμp(K,u)=o.Moveover,itisabsolutely continuous withrespectto thesurfaceareameasure S(K,·).

For convex bodiesKj,K ∈ Kn, j N,ifKj →K ∈ Kn, thenμp(Kj)→μp(K,·) weakly,asj → ∞.Thisimportantfactwasprovedin[24,p.1550].

LetK ∈ Kno andf ∈C(Sn1).There isat0>0 suchthathK+tf ∈C+(Sn1),for

|t|< t0.TheAleksandrov body[hK+tf] is continuousint∈(−t0,t0). TheHadamard variationalformulaforp-capacity(see[24,Theorem 1.1])statesthat

dCp([hK+tf]) dt

t=0

= (p1)

Sn−1

f(u)p(K, u). (2.1)

ForK,L∈ Kn,themixedp-capacityCp(K,L) (see[24,p.1549])isdefinedby

Cp(K, L) = 1 n−p

dCp(K+tL) dt

t=0+

= p1 n−p

Sn−1

hL(u)p(K, u). (2.2)

When L = K, it reduces to the Poincaré p-capacity formula (1.8). From the weak convergence ofp-capacitarymeasures,itfollowsthatCp(K,L) iscontinuousin(K,L).

Thep-capacitaryBrunn-Minkowskiinequality,provedbyColesanti-Salani[25],reads:

IfK,L∈ Kn, then

Cp(K+L)n−p1 Cp(K)n−p1 +Cp(L)n−p1 , (2.3) with equality if and only ifK and L are homothetic.When p= 2,the inequality was firstestablishedbyBorell[5],andtheequalityconditionwasshownbyCaffarelli,Jerison and Lieb[16]. For more details, see, e.g., Colesanti [23] and Gardner and Hartenstine [30].

Theinequality(2.3) isequivalenttothefollowing p-capacitaryMinkowskiinequality Cp(K, L)Cp(K)n−p−1Cp(L), (2.4) with equalityifand onlyifK andL arehomothetic.See[24,p.1549] formoredetails.

(9)

2.3. Basicfacts onAleksandrov bodies

Fornonnegativef ∈C(Sn1),define

Cp(f) =Cp([f]).

Obviously,Cp(hK)=Cp(K),foracompactsetK thatcontainstheorigin.

BytheAleksandrovconvergencelemmaandthecontinuityofCponKn,thefunctional Cp:C+(Sn−1)−→(0,) iscontinuous.

Let0< p<∞and1<p< n.ForK∈ Kno andnonnegativef ∈C(Sn−1),define Cp,p(K, f) = p1

n−p

Sn−1

f(u)phK(u)1−pp(K, u).

Forbrevity,writeCp(K,f) forC1,p(K,f).Obviously,Cp,p(K,hK)=Cp(K).

Lemma2.1. Let0< p<∞and1<p< n.If f ∈C+(Sn1),then Cp,p([f], f) =Cp([f]) =Cp(f).

Proof. Notethath[f]f.AbasicfactestablishedbyAleksandrovisthath[f] =f,a.e., with respect to S([f],·). That is, S([f],{h[f] < f}) = 0. Since μp([f],·) is absolutely continuous with respect to S([f],·), it follows thatμp([f],{h[f] < f})= 0.Combining thisfactandtheinequalityh[f] f, itfollowsthat

Cp,p([f], f)−Cp(f) = p1 n−p

h[f]<f

(fp−hp[f])h1[f]pp([f],·) = 0,

asdesired. 2

Lemma2.2. Let0< p<∞ andμ be afinite positive Borelmeasureon Sn1,which is notconcentratedonanyclosedhemisphere.IfQisacompactconvexsetinRncontaining theoriginanddimQ1,then0<

Sn1hpQdμ<∞.

Proof. That the integral is finite is clear, since μ is finite and hQ is nonnegative and bounded. To prove thepositivity of the integral, we cantake aline segment Q0 Q, whichisoftheform Q0=l{tu0: 0t1},with0< l <∞andu0Sn1.Since μis notconcentratedonanyclosedhemisphere,itimpliesthatμ({u∈Sn1:u·u0>0})>0.

Therefore,

Sn1

hpQ

Sn1

hpQ0=l

{uSn1:u·u0>0}

(u·u0)pdμ(u)>0,

asdesired. 2

(10)

Lemma2.3.LetI⊆Rbeanintervalcontaining0initsinterior,andletht(u)=h(t,u): Sn1−→(0,)be continuous,suchthat theconvergencein

h(0, u) = lim

t0

h(t, u)−h(0, u) t is uniformonSn−1.Then

dCp(ht) dt

t=0

= (p1)

Sn−1

h(0, u)p([h0], u). (2.5)

Lemma 2.4. The convergence limi→∞Ki =K inKn isequivalent tothefollowing con- ditions takentogether:

(1) each pointin K isthelimit ofasequence xi

i withxi∈Ki fori∈N;

(2) the limit of any convergent sequence xij

j with xij ∈Kij for j N belongs to K.

Fortheproofoftheabovetwolemmas,see[24,Theorem5.2] and[45,Theorem1.8.8], respectively.

3. Anextremalproblem forFp(Q,x)under translationtransforms

Supposec1,. . . ,cN (0,) andtheunitvectorsu1,. . . ,uN arenotconcentratedon any closedhemisphere ofSn1.Let

μ= N k=1

ckδuk(·)

be the discrete measure on Sn−1. For Q P(u1,. . . ,uN) and 0 < p < 1, define the functional Fp(Q,·):Q−→Rby

Fp(Q, x) = N k=1

ck(hQ(uk)−x·uk)p. (3.1) WeshowthereexistsauniquepointxQintQsuchthatFp(Q,x) attainsthemaximum.

Lemma 3.1. Let Q P(u1,. . . ,uN) and 0 < p < 1. Then there exists a unique point xQrelintQsuchthat

Fp(Q, xQ) = max

x∈QFp(Q, x).

In addition,if Qisan n-dimensionalpolytope,then

(11)

N k=1

ck(hQ(uk)−xQ·uk)p−1uk=o. (3.2) Proof. First, we provethe uniqueness of the maximal point. Assume x1,x2 relintQ and

Fp(Q, x1) =Fp(Q, x2) = max

xQFp(Q, x).

Usingthedefinition(3.1),theJenseninequalityandtheaboveassumption,wehave Fp(Q,1

2(x1+x2)) = N k=1

ck(hQ(uk)1

2(x1+x2)·uk)p

= N k=1

ck(1

2(hQ(uk)−x1·uk) +1

2(hQ(uk)−x2·uk))p

1

2 N k=1

ck(hQ(uk)−x1·uk)p+1 2

N k=1

ck(hQ(uk)−x2·uk)p

=1

2Fp(Q, x1) +1

2Fp(Q, x2)

= max

xQFp(Q, x).

SinceQisconvex, 12(x1+x2)∈Q.Sotheequalityinthethirdlineholds.Bytheequality conditionoftheJenseninequality,wehave

hQ(uk)−x1·uk =hQ(uk)−x2·uk, fork= 1, . . . , N.

Thatis,

x1·uk =x2·uk, fork= 1, . . . , N.

Since the unit vectors u1,. . . ,uN are not concentrated on any closed hemisphere, it followsthatx1=x2,whichproves theuniqueness.

Second,weprovetheexistenceofthemaximalpoint.SinceFp(Q,x) iscontinuousin x∈Q andQ iscompact, so Fp(Q,x) attains itsmaximum at apointof Q,say xQ. In thefollowing,weprovexQ relintQ.

AssumexQrelbdQ,theboundaryofQrelativeto itsaffinehull.Fixy0relintQ.

Letu0= |yy0xQ

0−xQ|. Thenforsufficiently smallδ >0,it followsthatxQ+δu0 relintQ.

Next,weaimtoshowthat

Fp(Q, xQ+δu0)−Fp(Q, xQ)

= N k=1

ck(hQ(uk)−xQ·uk−δu0·uk)p N k=1

ck(hQ(uk)−xQ·uk)p

(12)

ispositive,whichwillcontradictthemaximalityofFpatxQ.Consequently,xQrelintQ.

Forthis aim,wedivide{u1,. . . ,uN}into threepartsand let

U1={uk:xQ·uk=hQ(uk), uk·u0= 0, k∈ {1, . . . , N}}, U2={uk:xQ·uk=hQ(uk), uk·u0= 0, k∈ {1, . . . , N}}, U3={uk:xQ·uk< hQ(uk), k∈ {1, . . . , N}}.

WefirstclaimU1isnonempty.

AssumeU1 isempty.SincexQrelbdQ,thereexists aui0 ∈ {u1,. . . ,uN}suchthat xQ·ui0 =hQ(ui0).So,ui0 ∈U2,and thereforeU2 isnonempty.Inlightofthefactthat u1,. . . ,uN arenotconcentratedonanyclosedhemisphere,U3 isnonempty.

Choose apointxQ−δu0 forδ >0.Then,xQ−δu0∈/Q.

On onehand,for anyuk ∈U2, itfollowsthat(xQ−δu0)·uk =xQ·uk−δu0·uk = hQ(uk).Meanwhile,foranyuk ∈U3,sincexQ·uk < hQ(uk),forsufficientlysmallδ >0,

(xQ−δu0)·uk =xQ·uk−δu0·uk < hQ(uk).

Hence,

xQ−δu0

uk∈U2∪U3

x∈Rn:x·uk hQ(uk)

= N k=1

x∈Rn:x·uk hQ(uk)

=Q.

Thatis,xQ−δu0∈Q.Thisis acontradiction.Hence,U1isnonempty.

Thus,

Fp(Q, xQ+δu0)−Fp(Q, xQ)

=

uk∈U1∪U2∪U3

ck

(hQ(uk)−xQ·uk−δu0·uk)p(hQ(uk)−xQ·uk)p

=

ukU1

ck(−δu0·uk)p

+

uk∈U3

ck

(hQ(uk)−xQ·uk−δu0·uk)p(hQ(uk)−xQ·uk)p

uk∈U1

ck(−δu0·uk)p

uk∈U3

ck(hQ(uk)−xQ·uk−δu0·uk)p(hQ(uk)−xQ·uk)p.

(13)

SinceU1 is nonempty,andxQ+δu0relintQforsufficiently smallδ >0,itfollows thatforany uk ∈U1,

−δu0·uk=hQ(uk)(xQ+δu0)·uk >0.

So,

uk∈U1

ck(−δu0·uk)p>0. (3.3) Let

C= min

ukU3

(hQ(uk)−xQ·uk). Thenforanyuk∈U3,itfollowsthat

hQ(uk)−xQ·uk min

uk∈U3

(hQ(uk)−xQ·uk) =C >0.

So,forsufficientlysmallδ >0,wehave

hQ(uk)−xQ·uk−δu0·uk C 2 >0.

Bytheconcavityoftp for0< p<1,wehave

(hQ(uk)−xQ·uk−δu0·uk)p(hQ(uk)−xQ·uk)pp C

2

p−1−δu0·uk.

So,

uk∈U3

ck(hQ(uk)−xQ·uk−δu0·uk)p(hQ(uk)−xQ·uk)p

≤δp C

2

p−1

uk∈U3

cku0·uk.

(3.4)

Thus,accordingto(3.3) and(3.4),itfollows that Fp(Q, xQ+δu0)−Fp(Q, xQ)

uk∈U1

ck(−δu0·uk)p−δp C

2

p−1

uk∈U3

cku0·uk

p

uk∈U1

ck(−u0·uk)p−δ1−pp C

2

p−1

uk∈U3

cku0·uk

>0, forsufficientlysmallδ >0.SoxQ relintQ.Theexistenceisproved.

(14)

Finally,weprove(3.2).SinceFp(Q,x) attainsitsmaximumattheinteriorpointxQ, we have

0 = ∂Fp(Q, x)

∂xi

x=xQ

= N k=1

ckp(hQ(uk)−xQ·uk)p−1(−uk,i),

fori= 1,. . . ,n, wherex= (x1,. . . ,xn)T anduk= (uk,1,. . . ,uk,n)T.Thatis, N

k=1

ck(hQ(uk)−xQ·uk)p−1uk=o, as desired. 2

From now on,we usexQ to denote themaximal pointof thefunctional Fp(Q,x) on Q.

Lemma 3.2.Suppose Qi ∈P(u1,. . . ,uN)andQi→Q,asi→ ∞.Then xQi →xQ and Fp(Qi, xQi)→Fp(Q, xQ), asi→ ∞. Proof. SinceQi→Q,itfollowsthatforsufficientlylargei,

xQi ∈Qi⊆Q+B.

So, xQi

i isabounded sequence.Let xQij

j beaconvergentsubsequenceof xQi

i. AssumexQij →x,butx =xQ. ByLemma2.4,itfollowsthatx ∈Q.Hence,

Fp(Q, x)< Fp(Q, xQ).

From thecontinuityofFp(Q,x) inQand x,itfollows that

j→∞lim Fp(Qij, xQij) =Fp(Q, x).

Meanwhile, byLemma2.4,for xQ ∈Q,there existsayij ∈Qij suchthatyij →xQ. Hence,

j→∞lim Fp(Qij, yij) =Fp(Q, xQ).

So,

jlim→∞Fp(Qij, xQij)< lim

j→∞Fp(Qij, yij). (3.5)

(15)

However,forany Qij,wehave

Fp(Qij, xQij)Fp(Qij, yij).

So,

jlim→∞Fp(Qij, xQij) lim

j→∞Fp(Qij, yij),

whichcontradicts(3.5).Thus,xQij →xQ,andthereforexQi →xQ.Fromthecontinuity ofFp, itfollowsthat

Fp(Qi, xQi)→Fp(Q, xQ).

Thiscompletestheproof. 2

Lemma3.3. SupposeQ∈P(u1,. . . ,uN).Then (1)Fp(Q+y,xQ+y)=Fp(Q,xQ), fory∈Rn; (2)Fp(λQ,xλQ)=λpFp(Q,xQ), forλ>0.

Proof. From thedefinition(3.1),itfollowsthat Fp(Q+y, xQ+y) = max

zQ+yFp(Q+y, z)

= max

z−y∈Q

N k=1

ck(hQ+y(uk)−z·uk)p

= max

zyQ

N k=1

ck(hQ(uk)(z−y)·uk)p

= max

x∈Q

N k=1

ck(hQ(uk)−x·uk)p

=Fp(Q, xQ).

Similarly,

Fp(λQ, xλQ) = max

zλQFp(λQ, z)

= maxz

λQ

N k=1

ck(hλQ(uk)−z·uk)p

=λpmaxz

λQ

N k=1

ck hQ(uk)−z λ·ukp

(16)

=λpmax

x∈Q

N k=1

ck(hQ(uk)−x·uk)p

=λpFp(Q, xQ), as desired. 2

4. Anextremalproblem relatedtotheLp capacitaryMinkowskiproblem

Suppose0< p<1,1<p<2,andμisthediscretemeasureonSn−1suchthat μ=

N k=1

ckδuk(·),

whereN n+ 1,ck >0,andu1,. . . ,uN arenotconcentratedonanyclosedhemisphere.

Inthissection, wefirststudythefollowingextremalproblem inf{max

xQFp(Q, x) :Q∈P(u1, . . . , uN), Cp(Q) = 1}, (4.1) and then demonstrate that its solution is precisely the solution to our concerned Lp

Minkowskiproblem forp-capacity.

Lemma 4.1. SupposeP isan n-dimensionalpolytopewith normal vectorsu1,. . . ,uN.If P isthesolutiontoproblem (4.1) andxP =o,then

λh1Ppp(P,·) =dμ, where λ=n−pp−1

N k=1

ckhpP(uk).

Proof. Forδ1,. . . ,δN >0 andsufficientlysmall|t|>0,let

Pt={x:x·ukhP(uk) +k, k= 1, . . . , N} and

α(t)Pt=Cp(Pt)n1pPt.

Then, Cp(α(t)Pt)= 1, α(t)Pt∈PN(u1,. . . ,uN) andα(t)Pt→P,ast→0.

Forbrevity, letx(t)=xα(t)Pt.By(3.2) ofLemma3.1,itfollowsthat N

k=1

ck(α(t)hPt(uk)−x(t)·uk)p1uk,i= 0, fori= 1, . . . , n,

(17)

whereuk= (uk,1,. . . ,uk,n)T.Lett= 0.ThenP0=P, α(0)= 1,x(0)=oand N

k=1

ckhpP1(uk)uk,i = 0, fori= 1, . . . , n. (4.2)

Wefirstshowx(t)

t=0 exists.Let yi(t, x1, . . . , xn) =

N k=1

ck[α(t)hPt(uk)(x1uk,1+. . .+xnuk,n)]p−1uk,i,

fori= 1,. . . ,n.Then

∂yi

∂xj

(0,...,0)

= N k=1

(1−p)ckhpP2(uk)uk,iuk,j. So,

∂y

∂x

(0,...,0)

n×n

= N k=1

(1−p)ckhp−2P (uk)ukuTk.

Sinceu1,. . . ,uN arenotconcentratedonanyclosedhemisphere,forx∈Rn withx=o, thereexists aui0 ∈ {u1,. . . ,uN}suchthatui0·x= 0.Thus,

xT N

k=1

(1−p)ckhpP2(uk)ukuTk

x

= N k=1

(1−p)ckhp−2P (uk)(x·uk)2 (1−p)ci0hp−2P (ui0)(x·ui0)2>0,

whichimpliesthat

∂y

∂x

(0,...,0)

n×n

ispositivelydefinite.Bytheinversefunctiontheo- rem,itfollowsthatx(0)= (x1(0),. . . ,xn(0)) exists.

Now, we can finish the proof. Since the functional Fp attains its minimum at the polytopeP,from(2.5) and(4.2),wehave

0 =1 p

dFp(α(t)Pt, x(t)) dt

t=0

= N j=1

cjhpP1(uj)

hP(uj)( 1

n−p)dCp(Pt) dt

t=0

+δj−x(0)·uj

Références

Documents relatifs

A technical element of this proof that we believe of independent interest is the Poincaré-type trace inequality on convex sets proved in Section 2, with a constant having

careful study of this flow, we shall give another proof of the Minkowski problem in the smooth category..

In w we prove a delicate continuity property for the first variation that is used later in the existence part of Theorem 0.8 and also to extend the validity of the

In convex geometric analysis, the Brunn–Minkowski theory and its generalization were established after the contribution of Brunn [11], Minkowski [45,46], Hilbert [25],

A complete solution to the existence part of the logarithmic Minkowski problem, when restricting to even measures and the class of origin-symmetric convex bodies, was given by B¨

Like many other central objects of interest in convex geometry, such as the L p affine and geominimal surface areas and the L p John ellipsoids (see e.g., [27, 34, 37, 42, 43, 52,

Finally, a very general Minkowski-type inequality, involving two Orlicz functions, two convex bodies, and a star body, is proved, that includes as special cases several others in

The logarithmic Minkowski problem asks for necessary and sufficient conditions for a finite Borel measure on the unit sphere so that it is the cone-volume measure of a convex