• Aucun résultat trouvé

Exercise 1. Let F ∈ k[X

N/A
N/A
Protected

Academic year: 2022

Partager "Exercise 1. Let F ∈ k[X"

Copied!
2
0
0

Texte intégral

(1)

UNIVERSIT ´ E NICE SOPHIA ANTIPOLIS Ann´ ee 2015/2016

Master 2 MPA Introduction to algebraic geometry

Exercise sheet 8

Let k be an algebraically closed field of characteristic 0.

Exercise 1. Let F ∈ k[X

0

, X

1

, X

2

] be a homogeneous polynomial of degree d that does not have a multiple factor. For every P ∈ P

2

denote by µ

P

(F ) the multiplicity of V (F ) in P . a) Show that one has

X

P∈P2

µ

P

(F)(µ

P

(F) − 1) ≤ d(d − 1).

Hint : apply Bezout to V (F ) and V (

∂X∂F

0

).

b) Construct an example where the inequality above is an equality.

Exercise 2. Denote by V

3

the vector space of homogeneous polynomials of degree 3 in k[X

0

, X

1

, X

2

]. Let P

1

, . . . , P

8

∈ P

2

be eight distinct points.

a) Show that the vector space

V

3

(P

1

, . . . , P

8

) := {F ∈ V

3

| F(P

i

) = 0 ∀ i = 1, . . . , 8}

has dimension at least two.

b) Suppose that dim

k

V

3

(P

1

, . . . , P

8

) = 2. Suppose also that at most three of the points P

i

are on a line l ⊂ P

2

, and at most six of the points P

i

are on a conic C ⊂ P

2

. Show that there exists a polynomial f ∈ V

3

(P

1

, . . . , P

8

) which is irreducible.

c) Under the assumptions of b), let f, g be a base of V

3

(P

1

, . . . , P

8

) such that f and g are irreducible. Set C

1

= V (f ) and C

2

= V (g). Show that one of the following holds :

— There exists a point i ∈ {1, . . . , 8} such that µ

Pi

(C

1

, C

2

) ≥ 2.

— There exists a point P

9

∈ P

2

\ {P

1

, . . . , P

8

} such that P

9

∈ C

1

∩ C

2

. In the second case show that

V

3

(P

1

, . . . , P

8

) = V

3

(P

1

, . . . , P

9

).

We say that the linear system V

3

(P

1

, . . . , P

8

) has an unassigned base point P

9

.

Exercise 3. Consider the smooth projective surface

X := {(x

0

: x

1

: x

2

), (y

1

: y

2

) ∈ P

2

× P

1

| x

1

y

2

= x

2

y

1

}

a) Let ϕ : X → P

2

be the morphism defined by the projection on the first factor. Show that if p ∈ P

2

is distinct from (1 : 0 : 0), then ϕ

−1

(p) is a point. Show that ϕ

−1

((1 : 0 : 0)) is a curve E ⊂ X isomorphic to P

1

. Show that X \ E ' P

2

\ (1 : 0 : 0).

1

(2)

b) Let l ⊂ P

2

be a line defined by P

2

i=0

a

i

x

i

= 0, and let ϕ

l ⊂ X be the projective set defined by

{(x

0

: x

1

: x

2

), (y

1

: y

2

) ∈ P

2

× P

1

| x

1

y

2

= x

2

y

1

,

2

X

i=0

a

i

x

1

= 0}

Show that ϕ(ϕ

l) = l. Show that ϕ

l has two irreducible components if and only if (1 : 0 : 0) ∈ l.

c) Let l

1

, l

2

⊂ P

2

be two distinct lines. Show that the projection formula (ϕ

l

1

).(ϕ

l

2

) = l

1

.l

2

holds. Hint : use that l

1

and l

2

are linearly equivalent to lines that do not pass through (1 : 0 : 0).

d) Show that E

2

= −1. Hint : choose distinct lines that pass both through (1 : 0 : 0), then use the projection formula.

Exercise 4. Let X be an algebraic variety endowed with its structure sheaf O

X

. If U, V ⊂ X are open non-empty subsets and f ∈ O

X

(U), g ∈ O

X

(V ) we define that f ∼ g if f |

U∩V

= g|

U∩V

. a) Show ∼ defines an equivalence relation on the set S

∅6=U⊂X

O

X

(U ) where U ⊂ X are open sets.

b) Denote by K(X) the set of equivalence classes for the relation ∼. For every f, g ∈ K(X) one can define (in a natural way) the sum f + g and the product f · g. Show that K(X ) is a field, called the field of rational functions of X.

c) Let ϕ : X → Y be a morphism of algebraic varieties that is birational, i.e. there exist non- empty Zariski open subsets X

0

⊂ X and Y

0

⊂ Y such that ϕ|

X0

: X

0

→ Y

0

is an isomorphism.

Show that K(X) ' K(Y ).

d) Suppose that X ⊂ k

n

is an affine variety and let Γ(X) its function ring. Show that K(X ) = Frac(Γ(X)).

e) Suppose that X ⊂ P

n

is a projective variety, and let S(X ) be its associated graduated ring.

Show that

K(X ) = S(X )

((0))

where S(X )

((0))

⊂ Frac(S(X )) are the elements of the form

fg

with deg f = deg g.

2

Références

Documents relatifs

C’est le Th´eor`eme

Master 2 Agr´ egation, Math´ ematiques, Universit´ e de Nice Sophia-Antipolis, UE5 - 7 - Transform´ ee de Fourier.. Les fonctions consid´er´ees sont `a

[r]

1) Montrer que l’on peut prolonger la Transform´ee de Fourier en une application lin´eaire continue sur L p?. Qu’en d´eduit-on

Remarque 1 : f est holomorphe en a revient `a voir que f est diff´erentiable en tant que fonction du R - espace vectoriel C dans lui-mˆeme, sa diff´erentielle ´etant une

Th´eor`eme 16, Th´eor`eme de l’application conforme de Riemann : Tout ouvert connexe simplement connexe non vide (autre que le plan lui-mˆeme) est conform´ement ´equivalent au

Une application de classe C 1 dont la diff´erentielle en tout point est bijective est une application ouverte. Cela n’est-il pas en contradiction avec le principe des z´eros isol´es

[r]