• Aucun résultat trouvé

MAT237 - LEC5201 - 2019–2020 2020 Winter Term Notes

N/A
N/A
Protected

Academic year: 2022

Partager "MAT237 - LEC5201 - 2019–2020 2020 Winter Term Notes"

Copied!
148
0
0

Texte intégral

(1)

MAT237 - LEC5201 - 2019–2020 2020 Winter Term Notes

Jean-Baptiste Campesato April 1, 2020

Contents

The Implicit Function Theorem and the Inverse Function Theorem 3

The Implicit Function Theorem . . . 3

The Inverse Function Theorem . . . 6

Singular points of a subset of Rn . . . 8

Curves inR2 . . . 8

The general case . . . 12

Exercises . . . 16

Why is it interesting for a set to be locally a graph? A word on (sub)manifolds (extra, not part of MAT237) 19 Transformations . . . 21

Uniform continuity 24 Definition . . . 24

The Heine–Cantor theorem . . . 26

Exercises . . . 27

Supremum and Infimum 30 Integration 32 Partitions, Lower/Upper Darboux sums, Upper/Lower integrals, Integrals . . . 32

Theε-criterion for integrability . . . 37

Basic properties of the integral . . . 39

A continuous function on a rectangle is integrable. . . 42

The Fundamental Theorem of Calculus and its consequences (recollection from MAT137) . . . 43

Zero content sets . . . 45

Discontinuity set has zero content implies integrability . . . 47

Integration over a bounded set which is not a rectangle . . . 49

Iterated integrals . . . 53

Change of variables formula . . . 57

Heuristic idea . . . 57

The one-variable case. . . 59

The multivariable case . . . 61

Heuristic idea (extracurricular, not part of MAT237) . . . 62

Example: polar coordinates . . . 64

Example: cylindrical coordinates . . . 66

Example: spherical coordinates . . . 68

Functions of the form F(x) =∫ f(x, y)dy . . . 70

Theory. . . 70

Summary . . . 74

Examples . . . 75

Improper integrals . . . 76

The theory . . . 76

Examples . . . 85

1

(2)

Vector calculus 92

Line integrals . . . 92

Simple regular parametrizedC1 curves . . . 92

Line integral for real valued functions . . . 94

Arclength . . . 95

Line integral for vector fields and orientation of curves . . . 97

The Gradient Theorem/The FTC for line integrals . . . 100

Green’s theorem . . . 102

Regular region ofR2 with positively oriented piecewise smooth boundary . . . 102

Green’s theorem: statement and proof . . . 104

Examples . . . 107

Surface integrals . . . 111

Surface integrals for real-valued functions . . . 111

Surface area . . . 112

Orientation of surfaces inR3 . . . 113

Surface integrals for vector fields . . . 115

Addendum 1: why is there a cross-product in the definition of surface integrals? . . . 118

Addendum 2: physics interpretation of the surface integral for vector fields. . . 120

Gradient, curl∇·, divergence ∇× . . . 121

The divergence theorem . . . 125

Statement . . . 125

A first example . . . 126

Physics interpretation of the divergence . . . 127

Gauss’ law. . . 128

Computing a volume using a surface integral . . . 130

Stokes theorem . . . 131

Statement . . . 131

A first example . . . 132

Physics interpretation of the curl . . . 134

A second example . . . 135

Le théorème de Stokes dans tous ses états: a short summary about the special cases of Stokes’ theorem you met in MAT237 . . . 136

Conservative vector fields . . . 137

Path-independence . . . 137

Star-shaped sets . . . 139

Poincaré lemma (two special cases) . . . 140

How to find the potential of a conservative vector field . . . 142

Vector potentials: another special case of Poincaré lemma . . . 143

Conservative vector fields & vector potentials: a summary around Poincaré Lemma. . . 146

2

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)

University of Toronto – MAT237Y1 – LEC5201

Multivariable calculus

Change of variables: usual coordinate systems

Jean-Baptiste Campesato February 13th, 2020

1 Polar coordinates

Φ ∶ (0, +∞) × (−𝜋, 𝜋) → ℝ2⧵ {(𝑥, 0) ∈ ℝ2 ∶ 𝑥 ≤ 0}

(𝑟, 𝜃) ↦ (𝑟cos𝜃, 𝑟sin𝜃)

𝑥 𝑦

𝑟

𝑟cos𝜃

𝑟sin𝜃

𝜃

• Φis𝐶1.

• Φis bijective.

• det𝐷Φ(𝑟, 𝜃) =det (

cos𝜃 −𝑟sin𝜃

sin𝜃 𝑟cos𝜃 )= 𝑟 (cos2𝜃 +sin2𝜃) = 𝑟 > 0.

• HenceΦis a𝐶1-diffeomorphism.

• And|det𝐷Φ(𝑟, 𝜃)| = 𝑟.

Example 1. LetΔ = {(𝑥, 𝑦) ∈ ℝ2 ∶ 1 ≤ 𝑥2+ 𝑦2≤ 9, 𝑥 ≥ 0}. We want to compute

Δ

𝑒𝑥2+𝑦2.

First, notice thatΔ = Φ ([1, 3] × [−𝜋/2, 𝜋/2]).

Hence,

Δ

𝑒𝑥2+𝑦2𝑑𝑥𝑑𝑦 =

[1,3]×[−𝜋/2,𝜋/2]

𝑒𝑟2𝑟𝑑𝑟𝑑𝜃 by the CoV formula

=∫

𝜋/2

−𝜋/2

3 1

𝑟𝑒𝑟2𝑑𝑟𝑑𝜃 by the iterated integrals theorem

=∫

𝜋/2

−𝜋/2

𝑒9− 𝑒 2 𝑑𝜃

=𝜋

2 (𝑒9− 𝑒)

(65)

2 Change of variables: usual coordinate systems

Example 2. We want to compute

𝐵((1,1),1)

𝑥2+ 𝑦2− 2𝑦𝑑𝑥𝑑𝑦.

First notice thatΨ ∶ ℝ2 → ℝ2 defined byΨ(𝑥, 𝑦) = (𝑥 + 1, 𝑦 + 1)is a𝐶1-diffeomorphism and that|det𝐷Ψ(𝑥, 𝑦)| = 1.

Moreover𝐵((1, 1), 1) = Ψ (𝐵(0, 1)). Hence

𝐵((1,1),1)

𝑥2+ 𝑦2− 2𝑦𝑑𝑥𝑑𝑦 =

𝐵(0,1)

(𝑥 + 1)2+ (𝑦 + 1)2− 2(𝑦 + 1)𝑑𝑥𝑑𝑦 by the CoV formula

= ∫

𝐵(0,1)

𝑥2+ 𝑦2− 2𝑥𝑑𝑥𝑑𝑦

Next, we have𝐵(0, 1) = Φ([0, 1] × [−𝜋, 𝜋]).

Notice that there is an issue for𝑟 = 0or𝜃 = ±𝜋(i.e.{(𝑥, 0) ∶ 𝑥 ∈ [−1, 0]}) but these sets have zero content.

Hence

𝐵(0,1)

𝑥2+ 𝑦2− 2𝑥𝑑𝑥𝑑𝑦 =

[0,1]×[−𝜋,𝜋]

(𝑟2− 2𝑟cos𝜃)𝑟𝑑𝑟𝑑𝜃 by the CoV formula

=∫

𝜋

−𝜋

1 0

𝑟3− 2𝑟2cos𝜃𝑑𝑟𝑑𝜃 by the iterated integrals theorem

=∫

𝜋

−𝜋

1 4−2

3cos𝜃𝑑𝜃

=𝜋 2

(66)

MAT237Y1 – LEC5201 – J.-B. Campesato 3

2 Cylindrical coordinates

Φ ∶ (0, +∞) × (−𝜋, 𝜋) × ℝ → ℝ3⧵ ((−∞, 0] × {0} × ℝ) (𝑟, 𝜃, 𝑧) ↦ (𝑟cos𝜃, 𝑟sin𝜃, 𝑧)

𝑥

𝑦 𝑧

𝜃 𝑟

(𝑟cos𝜃, 𝑟sin𝜃, 𝑧) 𝑧

𝑟cos𝜃 𝑟sin𝜃

• Φis𝐶1.

• Φis bijective.

• det𝐷Φ(𝑟, 𝜃, 𝑧) =det

⎛⎜

⎜⎝

cos𝜃 −𝑟sin𝜃 0 sin𝜃 𝑟cos𝜃 0

0 0 1

⎞⎟

⎟⎠

=det (

cos𝜃 −𝑟sin𝜃

sin𝜃 𝑟cos𝜃 )= 𝑟 > 0.

• HenceΦis a𝐶1-diffeomorphism.

• And|det𝐷Φ(𝑟, 𝜃, 𝑧)| = 𝑟.

(67)

4 Change of variables: usual coordinate systems

Example 3. We want to compute

Δ𝑧𝑑𝑥𝑑𝑦𝑑𝑥

whereΔ = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥2+ 𝑦2𝐻𝑅22(𝐻 − 𝑧)2, 0 ≤ 𝑧 ≤ 𝐻}.

𝑅 𝐻 Δ

𝜃

𝑟 𝑧

−𝜋 𝐻

Γ

𝜋 𝑅

Notice thatΔ = Φ(Γ)whereΓ = {(𝑟, 𝜃, 𝑧) ∶ 0 ≤ 𝑟 ≤ 𝐻𝑅(𝐻 − 𝑧), 𝜃 ∈ [−𝜋, 𝜋], 𝑧 ∈ [0, 𝐻]}. Again,Γgoes outside the domain ofΦbut the involved sets have zero content.

Hence

Δ𝑧𝑑𝑥𝑑𝑦𝑑𝑥 =

Γ𝑧𝑟𝑑𝑟𝑑𝜃𝑑𝑧 by the CoV formula

=∫

𝐻

0

𝜋

−𝜋

𝑅 𝐻(𝐻−𝑧) 0

𝑟𝑧𝑑𝑟𝑑𝜃𝑑𝑧

=∫

𝐻

0

𝜋

−𝜋

𝑅2

2𝐻2(𝐻 − 𝑧)2𝑧𝑑𝜃𝑑𝑧

= 𝜋𝑅2 𝐻2

𝐻 0

(𝐻 − 𝑧)2𝑧𝑑𝑧

= 𝜋𝑅2𝐻2 12

(68)

MAT237Y1 – LEC5201 – J.-B. Campesato 5

3 Spherical coordinates

Φ ∶ (0, +∞) × (0, 2𝜋) × (0, 𝜋) → ℝ3⧵ ([0, +∞) × {0} × ℝ) (𝑟, 𝜃, 𝜑) ↦ (𝑟cos𝜃sin𝜑, 𝑟sin𝜃sin𝜑, 𝑟cos𝜑) In this course, we use the following convention :

(𝑟, 𝜃, 𝜑) = (radius/distance to the origin,longitude,colatitude)

𝑥

𝑦 𝑧

𝑟sin 𝜑

𝑟cos𝜑

𝜃 𝜑

𝑟

𝑥

𝑦 𝑧

𝑟cos𝜃sin𝜑 𝑟sin𝜃sin𝜑 𝜃

𝜑 𝑟

• Φis𝐶1.

• Φis bijective.

• The Jacobian determinant is

det𝐷Φ(𝑟, 𝜃, 𝜑) =det

⎛⎜

⎜⎝

cos𝜃sin𝜑 −𝑟sin𝜃sin𝜑 𝑟cos𝜃cos𝜑 sin𝜃sin𝜑 𝑟cos𝜃sin𝜑 𝑟sin𝜃cos𝜑

cos𝜑 0 −𝑟sin𝜑

⎞⎟

⎟⎠

=cos𝜑det (

−𝑟sin𝜃sin𝜑 𝑟cos𝜃cos𝜑

𝑟cos𝜃sin𝜑 𝑟sin𝜃cos𝜑)− 𝑟sin𝜑det (

cos𝜃sin𝜑 −𝑟sin𝜃sin𝜑 sin𝜃sin𝜑 𝑟cos𝜃sin𝜑 )

= 𝑟2cos2𝜑sin𝜑det (

−sin𝜃 cos𝜃

cos𝜃 sin𝜃 )− 𝑟2sin3𝜑det (

cos𝜃 −sin𝜃 sin𝜃 cos𝜃 )

= −𝑟2cos2𝜑sin𝜑 − 𝑟2sin3𝜑

= −𝑟2sin𝜑 < 0since𝜑 ∈ (0, 𝜋)

• HenceΦis a𝐶1-diffeomorphism.

• And|det𝐷Φ(𝑟, 𝜃, 𝜑)| = 𝑟2sin𝜑.

This convention may differ from the one used in other courses in math or in physics (the meaning of𝜃and𝜑may be swapped, some people use the latitude and not the colatitude…).

I believe that the usual convention in physics is(𝑟, 𝜃, 𝜑) = (radius,colatitude,longitude)as in ISO 80000-2, i.e. the meaning of𝜃and𝜑are swapped from our convention in MAT237.

(69)

6 Change of variables: usual coordinate systems

Example 4. We want to compute∫Δ𝑧𝑑𝑥𝑑𝑦𝑑𝑧whereΔ = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥2+ 𝑦2+ 𝑧2≤ 1, 𝑧 ≥ 0}. Notice thatΔ = Φ ([0, 1] × [0, 2𝜋] × [0, 𝜋/2]).

Again, there is an issue with the domain ofΦbut the involved sets have zero content.

Hence

Δ𝑧𝑑𝑥𝑑𝑦𝑑𝑧 =

[0,1]×[0,2𝜋]×[0,𝜋/2]

𝑟3cos𝜑sin𝜑𝑑𝑟𝑑𝜃𝑑𝜑 by the CoV formula

=∫

𝜋/2

0

2𝜋

0

1 0

𝑟3sin(2𝜑)

2 𝑑𝑟𝑑𝜃𝑑𝜑 by the iterated integrals theorem

= 2𝜋1 4 (

cos0 4 −cos𝜋

4 )

=𝜋 4

(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)
(126)
(127)

3

(128)
(129)
(130)
(131)
(132)
(133)
(134)

Assume that S is "closed"

In this corollary, I am not very formal.

It is possible to define properly what do I mean by "closed", but I think that's not necessary for our purpose.

You can believe your intuition: "closed" means that there is no "boundary" in the above sense, so the line integral is 0.

By the way, (*) doesn't depend on the coordinate system!

(Image from Wikipedia) By "counterclockwise", I mean that the force pushes

the particle in the direction of the orientation of the boundary, as in the "right hand rule" on the right:

� n

(135)
(136)
(137)
(138)
(139)
(140)
(141)
(142)
(143)

- G eitc ~ c_~ ~~ ~ M (VIL ~ )

~ \)) ~ ~ ~ ~ 9~CDiL ~ ;

~ , Ql e.. 9? ~ ' f · . l\l - '9i 3 c~-

~ '\\ f"" ~Gr ~ G - l\,l_.,,~ C 2 ~ d.>-~F '° o

(I) ~ ~ -ù ~ ~ Il>-. VI>.\°"- -- ~ - -

~ (}l \h ~~-~ ostl ~t '.:: 0 ~

~ ~'vs G~ ftl:~~ C ~\- . t-=: ~&

m. ~ M b Ch 0- 1- -cl~I\. ~ J ~ F

b. eù ~ r = ~ l ~ ~ t c;, î ~

0

® ~ \l<'l<L. {l},_ in

~ ( I N - ~ ,

3 ?o t- C1,L .,, \. • V<\ t it.L -\k.

~ ~ r ? o ~ ~ \A V0 AL

~ ~ ~ \ ~J-u:)<.

te'-- '\ ~ \?.,~I l ) f_ ll.,l 1\,6.Q_ là- '

,7

G('\) == \ r l~ ~ --\; 2 ?,, '" \:~) )'- lt l C\ - ?o)) J.~

-Ct\. Jp ~ ~

~ , ~ ~"'- te- 2. ~~ "~ ~ ~ ~~

I

""'- 1tf\::: \:k1- G 1.1 C o.J ~ c,,,.Q & c=: \ w,.Q. \_ ~ l M--

~ -lk t.wl 0M.

W ,{ · \--.

?\.,~ , t ~ ~ /M._

ti ~-b ~ ~ - ,~

1

~

}/.\:

(144)

(\'.)

Ft"-~,,i;, ~ F \ \.\-\.) ?., ·" \-\) - t ~ ~d"••,i..1.) - -

::: F \\~-\.)

~01'X.

~\-,c; ·· l~-\--')'r'o,~ - .ç-~j / t~---\-">- ro.~ ~ - t,; - ~ - ) --

~

_: f (.Q b -\- \-('t'll.,"\1't"')) _,. __ - - - - - - -· -- ---- - --- --

\ c~, ,11-::;.. _ _ __ ;::: --

'X._- - _ - - -

--- -=-· --- --- ---- ---- --

":I C\ ~ C _ \>,,.... % - - P.- ~ r1:--- ~,è--> - - - - - . -

~

\).)Q..__

U,\L - ~ - ~~ .- - - - - - L~-- ç1- - _ - ~v ---- ~ - ~ ---

\'.tJ; .

l _ Cr) _ _ J_G __ j_E __ ~N_ G:) _E __ ----

- - . __ __ -~(f ~1) __ 6:_ ~ ~F)~---

l ~ _ ~ , ~~- ~ - ~~- ~~ ~~ ~ _ --

~ ~ \ ~ Ù>- ~ - - - - ---== ----

tt,(Q. _( F ,c;_ ~ _ r)) -=- Ctr ~ - yiJ- F~ + -- fd,ï.,iI~ r \l F - cFJ)~r)- J.t.,cfK _

-- - - u) - -- - - -Cf) ___ - ~ (g

cb(__lc _: VJ - ~ "' - 'r~ :: ~< ~ î ::\ -~,~~'!> - '!_ _ l>s-\>o,~}j i::- ~

. ~ -

-

-

- - - - - - - -

. J .

:: t - ~~f-l~!'.'. ~~- ~\-!_ «\') - - - -

® - d,i..r l\ r J f - ~ :ft 'f C\,1:.,~ 9 ; ~ -\'\} _ _ --=- ~~

~ \_f , ,v)_l \-r')_ ~ _ \- f l\.1~\--J îé)_.\:_\ ~~ --- ---~ __ __ _

® c}..t~ lf) _ _ = + 2fit-) - ~ -\- - ~\- , -~ -~ -]E~.1-~ ..== .. 1. ~fl~ ~ \r l P o _ ~ l~_} ~

?,(, . '7)~ - 0~

_ ~ U L e»s Q_ G-_l °' \ ~ - -ç;) ~ f w -\-) '?o ~ t 9.) ~ t ~%li ~V-)J>,, _:1 hù1JC

_- ~ s: . - ï-Lf f \U~ \- } \'~~:\ )J d'r _ __ -_---~ - -~

::: [ t~f"( ~=t'Wo- ~\-~JJ~ - ~ • _:-__ -=--~ _ ~-

EJ

(145)

l~~ ~ ~ ~i r o._~Tu- ~ ~

G ( "--~,t0 ~ (' ) f (l ~ - \--) <i>o ~t \i,4,~ ') J ~ (.\-(C~,~.1:) -ï>

0)

Î dJ-

o

~ ?

0

t,llk ,J . 'f\ Èill ~ L ~_,_,__\- ~ Po 1-

0

1

V\ ~ ~ \ . l,_, M._

~ü.-_¼..~ ~ ( Vv\ r~ct_, l\,l V\ ~t<.J J- ê) io ~

fo :=:O ~

l ~~~ ~~ ~~~

-

~

-

~

..

5),~ ~ ... - f l"-,.,,i) -o 1

• v'I. t'>l ,'11~1 ~ ail"~~\){<;~

y~ . q.. 'l,,Ç-tt"Î

~ ~V~ o ~\- ~ V) ~ (y - . ttl~~~

C., 'L ~J" · f ~ tv,\.Q_ G

1~J \ . ~ WLri k \\f . -; ~

~

,x,?~'1 'l~ 'l; {.;:::; \

· 1

eot~

(L\- ~~ f. - ~ ~ 4Ïl4 0

(146)

University of Toronto – MAT237Y1 – LEC5201

Multivariable calculus

Poincaré lemma: summary of the last two sections

Jean-Baptiste Campesato April 2nd, 2020

Contents

1 Star-shaped sets 1

2 Conservative vector fields 1

2.1 𝑛 = 2 . . . 2 2.2 𝑛 = 3 . . . 2 2.3 General case . . . 2

3 Vector potentials 3

4 The general Poincaré lemma 3

1 Star-shaped sets

Definition 1. We say that𝑆 ⊂ ℝ𝑛isstar-shapedif there exists𝑝0 ∈ 𝑆such that for any𝑞 ∈ 𝑆the line segment from𝑝0to𝑞is included in𝑆.

Proposition 2. A non-empty convex set is star-shaped.

Beware:the empty set is convex but not star-shaped (because “∀𝑝 ∈ ∅, 𝑃 (𝑝)” is vacuously true whereas

“∃𝑝 ∈ ∅, 𝑃 (𝑝)” is always false).

2 Conservative vector fields

Theorem 3. Let𝑈 ⊂ ℝ𝑛be open (𝑛 ≥ 2), andF∶ 𝑈 → ℝ𝑛be a continuous vector field.

The following are equivalent:

1. There exists𝑓 ∶ 𝑈 → ℝ 𝐶1such thatF= ∇𝑓.

2. For any piecewise smooth closed oriented curve𝐶in𝑈, we have

𝐶F⋅dx= 0.

3. Fsatisfies thepath-independence property: for any two piecewise smooth oriented curves𝐶1and𝐶2with same startpoint and same endpoint, we have

𝐶

1

F⋅dx=

𝐶

2

F⋅dx.

Then we say thatFisconservativeand that𝑓is apotentialofF(beware: in physics we usually say that−𝑓 is a potential ofF).

(147)

2 Poincaré lemma: summary of the last two sections 2.1 𝑛 = 2

Proposition 4. Let𝑈 ⊂ ℝ2be open andF∶ 𝑈 → ℝ2be a𝐶1vector field.

IfFis conservative then 𝜕𝐹2

𝜕𝑥 =𝜕𝐹1

𝜕𝑦 on𝑈. When𝑈is star-shaped, the converse is true:

Theorem 5(Poincaré lemma). Let𝑈 ⊂ ℝ2be astar-shapedopen set andF∶ 𝑈 → ℝ2be a𝐶1vector field.

If𝜕𝐹2

𝜕𝑥 =𝜕𝐹1

𝜕𝑦 on𝑈then there exists𝑓 ∶ 𝑈 → ℝ 𝐶2such thatF= ∇𝑓.

Beware:the above theorem is false with no assumption on the domain.

Indeed, defineF(𝑥, 𝑦) = (𝑥2+𝑦𝑦 2,𝑥2−𝑥+𝑦2)on𝑈 = ℝ2⧵ {0}. Then𝜕𝐹2

𝜕𝑥 =𝜕𝐹1

𝜕𝑦 but

𝐶F⋅dx= −2𝜋 ≠ 0where 𝐶is the unit circle with the counterclockwise orientation, soFis not conservative.

Alexis Clairaut proved a first version of this Poincaré lemma in 1739 but there was a flaw since he didn’t real- ize that he needed some assumptions on the domain. Then Jean Le Rond d’Alembert gave this counter-example in 1768. Notice that the notation

𝐶𝑃 (𝑥, 𝑦)d𝑥 + 𝑄(𝑥, 𝑦)d𝑦was introduced by A. Clairaut in the above cited paper.

Proposition 6. Let𝑈 ⊂ ℝ2be an open rectangle andF∶ 𝑈 → ℝ2be a𝐶1conservative vector field.

Let𝑝 = (𝑎, 𝑏) ∈ 𝑈and define𝑓 ∶ 𝑈 → ℝby𝑓 (𝑥, 𝑦) =

𝑥 𝑎

𝐹1(𝑡, 𝑏)d𝑡 +

𝑦 𝑏

𝐹2(𝑥, 𝑡)d𝑡.

Then𝑓is𝐶2andF= ∇𝑓.

2.2 𝑛 = 3

Proposition 7. Let𝑈 ⊂ ℝ3be open andF∶ 𝑈 → ℝ3be a𝐶1vector field.

IfFis conservative thencurlF=0on𝑈. When𝑈is star-shaped, the converse is true:

Theorem 8(Poincaré lemma). Let𝑈 ⊂ ℝ3be astar-shapedopen set andF∶ 𝑈 → ℝ3be a𝐶1vector field.

IfcurlF=0on𝑈then there exists𝑓 ∶ 𝑈 → ℝ 𝐶2such thatF= ∇𝑓.

Proposition 9. Let𝑈 ⊂ ℝ3be an open rectangle andF∶ 𝑈 → ℝ3be a𝐶1conservative vector field.

Let𝑝 = (𝑎, 𝑏, 𝑐) ∈ 𝑈and define𝑓 ∶ 𝑈 → ℝby𝑓 (𝑥, 𝑦, 𝑧) =

𝑥 𝑎

𝐹1(𝑡, 𝑏, 𝑐)d𝑡 +

𝑦 𝑏

𝐹2(𝑥, 𝑡, 𝑐)d𝑡 +

𝑧 𝑐

𝐹2(𝑥, 𝑦, 𝑡)d𝑡.

Then𝑓is𝐶2andF= ∇𝑓.

2.3 General case

This subsection is not part of MAT237.

The proof of the above Poincaré Lemma for𝑛 = 2relied on the Gradient Theorem, and the proof of the above Poincaré Lemma for𝑛 = 3relied on Kelvin–Stokes theorem. They admit a generalization to any𝑛 from which we may derive the following general results.

Proposition 10. Let𝑈 ⊂ ℝ𝑛be open andF∶ 𝑈 → ℝ𝑛be a𝐶1vector field.

IfFis conservative then∀𝑖, 𝑗 = 1, … , 𝑛, 𝜕𝐹𝑖

𝜕𝑥𝑗 =𝜕𝐹𝑗

𝜕𝑥𝑖 on𝑈. When𝑈is star-shaped, the converse is true:

Theorem 11(Poincaré lemma). Let𝑈 ⊂ ℝ𝑛be astar-shapedopen set andF∶ 𝑈 → ℝ𝑛be a𝐶1vector field.

If∀𝑖, 𝑗 = 1, … , 𝑛, 𝜕𝐹𝑖

𝜕𝑥𝑗 =𝜕𝐹𝑗

𝜕𝑥𝑖 on𝑈then there exists𝑓 ∶ 𝑈 → ℝ 𝐶2such thatF=∇𝑓.

(148)

MAT237Y1 – LEC5201 – J.-B. Campesato 3 Proposition 12. Let𝑈 ⊂ ℝ𝑛be an open rectangle andF∶ 𝑈 → ℝ𝑛be a𝐶1conservative vector field.

Let𝑝 = (𝑎1, … , 𝑎𝑛) ∈ 𝑈and define𝑓 ∶ 𝑈 → ℝby𝑓 (𝑥1, … , 𝑥𝑛) =

𝑛

𝑖=1

𝑥𝑖 𝑎𝑖

𝐹𝑖(𝑥1, … , 𝑥𝑖−1, 𝑡, 𝑎𝑖+1, … , 𝑎𝑛)d𝑡.

Then𝑓is𝐶2andF= ∇𝑓.

3 Vector potentials

Proposition 13. Let𝑈 ⊂ ℝ3be open andF∶ 𝑈 → ℝ3be a𝐶1vector field.

IfF=curlGforG∶ 𝑈 → ℝ3𝐶2thendivF= 0on𝑈.

Then we say thatGis avector potentialofF.

When𝑈is star-shaped, the converse is true:

Theorem 14(Poincaré lemma). Let𝑈 ⊂ ℝ3be astar-shapedopen set andF∶ 𝑈 → ℝ3be a𝐶1vector field.

IfdivF= 0on𝑈then there existsG∶ 𝑈 → ℝ3𝐶2such thatF=curlG.

Beware:the above theorem is false with no assumption on the domain.

Indeed, defineF=‖r‖r3 onℝ3⧵ {0}wherer(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧).

Then divF= 0but there is noG∶ ℝ3⧵ {0} → ℝ3such thatF=curlG.

Proposition 15. Let𝑈 ⊂ ℝ3be astar-shapedopen set andF∶ 𝑈 → ℝ3be a𝐶1vector field such thatdivF= 0.

Let𝑝0= (𝑥0, 𝑦0, 𝑧0) ∈ 𝑈such that for any𝑞 ∈ 𝑈 the line segment from𝑝0to𝑞is included in𝑈. DefineG∶ 𝑈 → ℝ3by

G(𝑥, 𝑦, 𝑧) =

1

0

F

⎛⎜

⎜⎝

𝑥0+ 𝑡(𝑥 − 𝑥0) 𝑦0+ 𝑡(𝑦 − 𝑦0) 𝑧0+ 𝑡(𝑧 − 𝑧0)

⎞⎟

⎟⎠

×

⎛⎜

⎜⎝ 𝑥 − 𝑥0 𝑦 − 𝑦0 𝑧 − 𝑧0

⎞⎟

⎟⎠ 𝑡d𝑡

ThenGis𝐶2andF=curlG.

Quite often (but not always),𝑈iscenteredat0so that we can take𝑝0 =0, then the above formula may rewritten

G=

1 0

F(𝑡r) × (𝑡r)d𝑡 wherer(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧).

4 The general Poincaré lemma

In all the above results namedPoincaré Lemma, we may relax the assumption on the domain by assuming that𝑈 is open and contractible (which is weaker than open and star-shaped since a star-shaped set is contractible) but this notion is not part of MAT237.

Then, they are all special cases of the following very general result:

Theorem 16(Poincaré Lemma).

If𝑀is a contractible manifold then𝐻dR𝑛 (𝑀) = {

if𝑛 = 0 0 otherwise , i.e. the closed differential forms on𝑀are exact.

You should come back here after you learn differential forms and de Rham cohomology.

Références

Documents relatifs

They admit a generalization to

On the other hand, by using the new representation formula in Proposition 2.12 above for the original vector fields, we have avoided such an argument altogether and proved the

In a three dimensional bounded possibly multiply-connected domain, we give gradient and higher order estimates of vector fields via div and curl in L p theory. Then, we prove

Roughly speaking, this theorem states that, if the integrable vector field which is to be perturbed is nondegenerate in some sense and if the perturbation is small enough and

Consider now the Hilbert space £2(Z) of square integrable vector fields with the scalar product.. and the action

The representation of Vassiliev invariants by linear combinations of Gauss diagrams allows us to reduce the proof of Theorem 1 to the following combi- natorial statement..

To prove the lemma we show that each vectorfield, which is either of type I or of type II, can be written as the Lie-product of two vedtorfields with zero 1-jet

Our main result shows that, if a system is asymptotically controllable at the origin, then it can be stabilized by a piecewise constant patchy feedback control.. R´