• Aucun résultat trouvé

Agglomeration Process of Wet Granular Material: Effects of Size Distribution and Froude Number

N/A
N/A
Protected

Academic year: 2021

Partager "Agglomeration Process of Wet Granular Material: Effects of Size Distribution and Froude Number"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01772410

https://hal.archives-ouvertes.fr/hal-01772410

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Agglomeration Process of Wet Granular Material:

Effects of Size Distribution and Froude Number

Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai

To cite this version:

Thanh-Trung Vo, Saeid Nezamabadi, Jean-Yves Delenne, Farhang Radjai. Agglomeration Process of

Wet Granular Material: Effects of Size Distribution and Froude Number. 28th ALERT Workshop,

Oct 2017, Aussois, France. 2017. �hal-01772410�

(2)

CAPILLARY COHESION & VISCOUS FORCE

INDUSTRIAL PROCESS MOLECULAR DYNAMICS METHOD

FURTHER RESEARCHES AGGLOMERATION RESULTS OBJECTIVES & METHODOLOGY

Agglomeration Process of Wet Granular Material: Effects of

Size Distribution and Froude Number

THANH-TRUNG VO , SAEID NEZAMABADI , JEAN-YVES DELENNE , FARHANG RADJAI1,2 1 3 1,4

position vector of particle i

mass of particle i (kg) vector gravity normal unit vector tangential unit vector

We investigate the agglomeration process of solid particles in the presence of a viscous liquid. We are mostly interested in application to iron ore granulation in a horizontal rotating drum. In this work, we use Molecular Dynamics (MD) method to simulate the agglomeration process during the dense granular flows in the rotary drum. In which particles are distributed by an uniform distribution of particle volume fractions.

Granulation (balling) Drum

Agglomeration is the process of particles size enlargement and most commonly refers to the upgrading of material fines into larger particles, such as pellets or granules. Iron ore granulation is an important stage in the steel making.

ROLLING - CASCADING MODEL

Water drops Dry particles Wet particles Granule

)

rota ting dru m capillary bond

Mechanism of granule formation

Granular material flow & granule growth in the cascading regime

28

th

ALERT Workshop

Exponential increase of granule for different Froude numbers. Exponential increase of granule

for different size ratios

Exponential increase of kinetic energy normalized by

potential energy of granule as function of Fr.

Exponential increases of wet & contact coordination numbers (a) and decrease of kinetic energy normalized by potential energy of granule

(b), as functions of size ratio 𝞪.

a) b)

Filling level: Packing fraction:

- Investigation the agglomeration process of a huge number of particles.

- Comparison between experiment and simulation of agglomeration processes in rotating drum.

Conclusions

1 The effect of size ratio on the

granule growth is more crucial than that of rotational speed.

2 Granule growth is an exponential

function of size ratio and rotational speed of drum.

3 Kinetic energy normalized by

p o t e n t i a l e n e r g y i n c r e a s e s proportional to the rotational speed, but inversely proportional to the size ratio.

4 The wet and contact coordination

numbers of agglomerate grains are proportional to size ratio.

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0 5x10-7 1x10-6 1.5x10-6 2x10-6 2.5x10-6 3x10-6 3.5x10-6 4x10-6 fc (10 -6 N) δn (m) Vb=1.7 10-17(m3), α=2 Vb=7.1.10-18(m3), α=2 Vb=1.7 10-17(m3), α=3 Vb=7.1.10-18(m3), α=3 Vb=1.7 10-17(m3), α=4 Vb=7.1.10-18(m3), α=4 Vb=1.7 10-17(m3), α=5 Vb=7.1.10-18(m3), α=5 Froude number:

Aussois 2017

Granule (form & grow)

!

!

0.27 0.275 0.28 0.285 0.29 0.295 0.3 2 2.5 3 3.5 4 4.5 5 k g /p g 0.27 0.275 0.28 0.285 0.29 0.295 0.3 2 2.5 3 3.5 4 4.5 5 k g /p g 0.27 0.275 0.28 0.285 0.29 0.295 0.3 2 2.5 3 3.5 4 4.5 5 k g /p g 3 4 5 6 7 8 9 10 11 12 2 2.5 3 3.5 4 4.5 5 Coordination number c , b b c 3 4 5 6 7 8 9 10 11 12 2 2.5 3 3.5 4 4.5 5 Coordination number c , b b c 3 4 5 6 7 8 9 10 11 12 2 2.5 3 3.5 4 4.5 5 Coordination number c , b b c 0.29 0.295 0.3 0.305 0.31 0.315 0.5 0.6 0.7 0.8 0.9 1 k g /p g Fr 0.29 0.295 0.3 0.305 0.31 0.315 0.5 0.6 0.7 0.8 0.9 1 k g /p g Fr 0.29 0.295 0.3 0.305 0.31 0.315 0.5 0.6 0.7 0.8 0.9 1 k g /p g Fr 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions Fr=0.5 Fr=0.6 Fr=0.7 Fr=0.8 Fr=0.9 Fr=1.0 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions Fr=0.5 Fr=0.6 Fr=0.7 Fr=0.8 Fr=0.9 Fr=1.0 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions Fr=0.5 Fr=0.6 Fr=0.7 Fr=0.8 Fr=0.9 Fr=1.0 mid 2s i dt2 = X (i) ((fn+ fc+ fvis)n + ftt) + mig

s

i

g

n

t

mi

!

A B '

!

S LC C Rc x z f = S ⇡R2 c =' sin ' 2⇡ = Vs S⇤ L= ⌃(4 3⇡R 3 i) S⇤ L F r =! 2R c g C = AB = 2Rcsin ' 2 S =R 2 c 2(' sin ') LC = AB = 'Rc fc= 8 > < > : R, for n< 0 Re n , for 0 n nmax 0, for n maxn fvis= 3 2⇡R 21 n dn dt

 = 2⇡

s

cos ✓

max n = (1 + 1 2✓)V 1/3 b ↵ =Rmax Rmin = c h(↵)(Vb R0) 1 2 R =pRiRj Diagram of capillary bridge

!

Rotational speed (rad/s) Free surface angle Filling angle (degree)

'

debonding distance 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions =2 =3 =4 =5 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions 100 120 140 160 180 200 220 240 0 10 20 30 40 50 Granule growth, N g (particles) Drum Revolutions

Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France. Bridge and Road Department, Danang Architecture University, 566 Nui Thanh St, Hai Chau Dist, Danang, Vietnam.

IATE, UMR1208 INRA - CIRAD - Université de Montpellier - SupAgro, 34060 Montpellier, France. <MSE>, UMI 3466 CNRS-MIT, CEE, MIT, 77 Massachusetts Avenue, Cambridge 02139, USA. 1 2 3 4 Liquid bridge Ri i mig fij c fij n fij vis fik vis fik c fij t mkg k Rk Rj j mjg n

Figure

Diagram of capillary bridge

Références

Documents relatifs

By means of a newly designed dilatometer the authors measured the change in volume of plaster at the time of setting, They discovered that the volume contracts during the setting

L’éthanol pourrait être à l’origine de la diminution du débit inspiratoire par augmentation de la résistance des voies aériennes supérieures mais aucune

Merrouche R, Yekkour A, Coppel Y, Bouras N, Lamari L, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2019) Effective biosynthesis of benzoyl-pyrrothine dithiolopyrrolone antibiotic

ىلاز ًم تُلاالإا مااىقلا ةصىح نيؿدج يف قُقضخلا مَاؿٌ : 2 _ ةضمعخم ريغ وؤ ةضمعخم ءاُزؤ ًم ثلاجسلاو غجافضلا يف ضحىً ضق ام فاكدلا يف يلزاضلا

Here, we provide an extensive biochemical and kinetic characterization of VmoLac and describe the X-ray structures of the enzyme bound to a fatty acid and to its cognate

The duplex antigen analysis showed a significant association of malaria attack inci- dence with IgG responses to MSP1p19 expressed as OD values, OD-ratio or dichotomized into

0 and 10 cm depth at different spatial and temporal scales in intermediate Elorn Estuary (A), and 914. Aulne

Studies have shown voriconazole to result in good clinical responses in 60% of patients with acute pulmonary or tracheobronchial invasive aspergillosis [10] and to be both