• Aucun résultat trouvé

A domain decomposition method for quasi-incompressible formulation with discontinuous pressure fields

N/A
N/A
Protected

Academic year: 2021

Partager "A domain decomposition method for quasi-incompressible formulation with discontinuous pressure fields"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01224421

https://hal.archives-ouvertes.fr/hal-01224421

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A domain decomposition method for

quasi-incompressible formulation with discontinuous pressure fields

Pierre Gosselet, Christian Rey, Françoise Léné, Pascal Dasset

To cite this version:

Pierre Gosselet, Christian Rey, Françoise Léné, Pascal Dasset. A domain decomposition method for

quasi-incompressible formulation with discontinuous pressure fields. Revue Européenne des Éléments

Finis, HERMÈS / LAVOISIER, 2002, 11, pp.363–378. �hal-01224421�

(2)

formulations with dis ontinuous pressure eld

Appli ationtotheme hani alstudyofaexiblebearing

P. Gosselet

, C. Rey

, F. Léné

and P. Dasset

∗∗

*LaboratoiredeModélisation etMé aniquedesStru tures,

FRE2505duCNRS,UPMC,8rueduCapitaineS ott,75015PARIS

**SNECMAMoteurs,33187LeHaillan

February 3,2020

Abstra t

We study the implementation of a domain de omposition method for stru tures with quasi-

in ompressible omponents. We hoseamixedformulationwherethepressureeldisdis ontinuous

on the interfa es between substru tures. We propose anextension of lassi al pre onditioners to

this lassofproblems. Thenumeri alsimulationoftheme hani albehaviouroftheexiblebearing

ofthe nozzle ofa solidpropellant booster is then ondu tedusing various Newton-Krylov parallel

approa hes. Wepresentthemainme hani alresultsand omparethenumeri alperforman eofthe

parallelapproa hestoasequentialapproa h.

Nousétudionslamiseenoeuvred'uneméthodededé ompositiondedomainepourstru turesà om-

posantsquasi-in ompressibles.Uneformulationmixteà hampdepressiondis ontinuauxinterfa es

entre sous-stru tures est retenue ; nous proposons, pour ette lasse de problèmes, une extension

despré onditionneurs lassiques. La miseenoeuvredelasimulationnumériquedu omportement

mé aniqued'unebutéeexibledetuyèredepropulseuràpropergolsolidepardiversesappro hespar-

allèlesitérativesdetypeNewton-Krylovestalorsproposée. Nousprésentonslesprin ipauxrésultats

mé aniquesainsiquelesperforman esnumériquesobtenuesparlesappro hesparallèlesretenueset

uneappro heséquentielle.

Keyword: Domainde ompositionmethod,Newton-Krylov,quasiin ompressibility,mixedformula-

tion

Mots- lésMéthodededé ompositiondedomaine,Newton-Krylov,quasiin ompressibilité, formu-

lationmixte

1 Introdu tion

Primalanddualdomainde ompositionmethods[6 ,3℄are amongtherstnon-overlappingdomain

de ompositionmethodsthathavedemonstratednumeri als alabilitywithrespe ttobothmeshand

subdomainsizes. They haveprovedtheire ien yonmanytypesof problemssu has se ondand

fourthorderlinear(stati anddynami )elasti ity,heterogeneousproblems...andtheyare urrently

extendedtootherproblemssu hasStokes'equation[1℄.

Inthispaperwefo usonthe omputationofquasi-in ompressibleelastomeri omponentsusing

aprimal domainde ompositionmethod. Numeri al simulation of the behaviour of su hmaterials

whi h main properties are the ability to handle large deformations, the non-linearbehaviour and

thequasiin ompressibility,requirestousemixeddispla ement-pressureniteelements[6, 2℄. More

pre iselywedeal withthe ase ofdis ontinuouspressureeld ontheinterfa e ofsubstru turesand

ontinuousor dis ontinuouspressure eld inside substru tures. Su h an approa h orresponds to

any substru turation whenthe pressure is dis ontinuous between niteelements, and to physi al

de ompositionbetweendierentpie eswhenthe ontinuityofpressureisensuredinsidesubstru tures

(e.g. interfa e between steel and elastomeror two dierent elastomeri pie es). However, as the

in ompressible/ ompressibleheterogeneity is nottaken intoa ount ina satisfyingway by urrent

pre onditioners, we extendthem to this lassof problems. Beside, be ause of non linearities, we

use anon-linear solverleading to the solutionto a sequen eof ill- onditioned linearsystemswith

both non invariant matrix and right-hand side. Various strategies to a elerate the solution to

su essivesystems[9 ,10 ,11 ℄havealreadybeendeveloped,andevaluated oupledwithadualdomain

de ompositionmethod. Weassesstheperforman e ofsu hKrylova eleration approa hes oupled

withtheprimaldomainde ompositionmethod.

Allnumeri alassessmentsrelatetoavery hallengingindustrialproblem: thenumeri alsimula-

tionofsteel-elastomerstratiedstru tures. These stru turesarewidelyusedinaerospa e industry

(3)

revolvingma hines,blade-rotor onne tionsofheli opters,ro ket-nozzle onne tionsoftheArianeV

laun her. They maytake theformof aexiblesteel-elastomerstru turelo ated between thebody

andthenozzleofasolidpropellantbooster,ofwhi htheengineofthepowdera elerationstagesof

theArianeVlaun herisatypi alexample.

Thus, we present inse tion (2) the formulation of the problem and the generi algorithms to

a hieve the simulation. We give in se tion (3) the extension of traditionalpre onditioners to the

quasi-in ompressible aseandinse tion(4)aKrylova elerationte hniquetosolvethesequen eof

linearsystemsresultingfromthe linearization ofthenon-linearproblem. Inse tion (5)we present

theexiblebearing whi hsupportsthe assessments,and asso iated me hani al results; se tion (6)

sumsupnumeri alperforman e. Se tion(7) on ludesthisarti le.

2 Overview of the models and methods

2.1 Lagrangian formulation

We onsiderthe omputationoftheequilibriumpositionofabody

madeupofaquasi-in ompressible hyperelasti materialundergoing largedeformation. We hoose alagrangianformulation where all

variablesaredenedinthereferen e onguration.Let

f

denotethebodyfor e,

g

thesurfa etra tion

imposedon

∂ g Ω

,

u 0

theimposeddispla ementonthe omplementarypartoftheboundary. Taking into a ount the in ompressibility leads to the introdu tion of an unknownpressure eld

p

. The

resear hoftheequilibriumofthebody(deadloadingassumption)isequivalenttotheresear hofthe

saddlepointofthefollowinglagrangian:

(u, p) ∈ ({u 0 } + H) × P L(u, p) =

Z

W(F )dΩ + Z

p(h(J) − 1

2K p)dΩ − Z

f udΩ − Z

g

gudS

(1)

Theproblemthenreads:

Find

(u, p) ∈ ({u 0 } + H) × P / ∀(v, q) ∈ H × P, Z

∂W

∂F (Id + ∇u) : ∇vdΩ + Z

ph (J) ∂J

∂F : ∇vdΩ = Z

f vdΩ + Z

g

gvdS

Z

(h(J) − 1

K p)qdΩ = 0

(2)

Where

H

and

P

arethe spa esofadmissible displa ement andpressure elds,

F

isthegradientof

the deformation (

F = Id + ∇u

,

J = det(F )

),

K

is the ompressibility modulus of the material.

Freeenergy

W(F )

anbe hosenfromdierentmodels([12 ,5℄). Forisotropi materials,it isoften

writtenasafun tionofthe

C = F T F

tensorinvariants

W(F ) = ¯ W(I 1 , I 2 , J)

where

I 1 = Tr(C)

and

I 2 = 1 2 (Tr 2 (C) − Tr(C 2 ))

. Amongotherswe itetheMooney-Rivlinmodel:

W(I ¯ 1 , I 2 ) = C 10

2 (I 1 − 3) + C 01

2 (I 2 − 3)

Where

C 01

and

C 10

are onstantsthat hara terizethematerial. Fun tion

h(J)

analsobegivenby

variousmodels,inthesimplest ase (linearmodel)

h(J) = (J − 1)

.

Thenumeri alsolutiontothisvariationalproblemis lassi ally ondu tedusingtheniteelement

method.Subspa es

H

and

P

arerepla edwithnitedimensionsubspa es

H h ⊂ H

and

P h ⊂ P

. Let

usunderlinethat the onstru tionofmixedniteelementsmustinparti ular omplywith ompat-

ibility onditions (Ladyzenska-Babuska-Brezzi ondition[2℄) thus restri ting thepossible hoi esof

approximationspa es. However ommon hoi esfor

3

Dproblemsarethe

Q 2 − P 1

hexahedralelement

(

27

displa ement nodes,

4

pressure nodes)and the

Q 2 − Q 1

hexahedral element (

20

displa ement nodes,

8

pressurenodes).

2.2 Newton-type algorithms

The problem arising from the nite element method is nonlinear, let us write it

F(x) = 0

with

x = (u h , p h )

. The prin iple of Newton's algorithms is to build a sequen e of linear systems the

solutions of whi h onverge to the solution to the non-linear problem. There are many versions

of Newton'salgorithms, the most widelyused is Newton-Raphson's. This last method onsists in

iteratively substitutingthesolutiontotheequation

F(x) = 0

foritsrstorderlimiteddevelopment around

x k

:

F(x k ) + dF(x k )

dx (x k+1 − x k ) = 0

(3)

Newton-Raphson's method is known to onverge fast when properly initialized. A very ommon

extensionisthe in rementalalgorithmwhi h onsistsindening"stepsofloading"and ndingthe

(4)

step as an e ient initialization. The linear system arising from Newton-Raphson's linearization

reads:

 K uu K up

K up T K pp

  v k q k



=

 f u

f p



with

 v k = u k+1 − u k

q k = p k+1 − p k

(4)

 K uu (u k , p k ) 

ij = Z

 ∂ 2 W

∂F 2 : ∇Φ i



: ∇Φ j dΩ +

Z

p k h ′′ (J)  ∂J

∂F : ∇Φ i

  ∂J

∂F : ∇Φ j

 dΩ +

Z

p k h (J)  ∂ 2 J

∂F 2 : ∇Φ i



: ∇Φ j dΩ



K up (u k , p k ) 

ib = Z

h (J)  ∂J

∂F : ∇Φ i

 Ψ b dΩ

 K pp (u k , p k ) 

ab = − 1

K Z

Ψ α Ψ β dΩ



f u (u k , p k ) 

i =

Z

f Φ i dΩ + Z

∂ g Ω

gΦ i dS − Z

∂W

∂F : ∇Φ i dΩ

− Z

p k h (J) ∂J

∂F : ∇Φ i dΩ

 f p (u k , p k ) 

a = −

Z

Ψ α



h(J) − 1 K p k

 dΩ

(5)

Wherefun tions

(Φ i )

and

(Ψ α )

are the basis of the displa ement and pressure elds. For amore ompletedes riptionofNewton'stypealgorithmforin ompressiblenon-linearelasti ity,readers an

referto[7 ℄.

Remark: Whenusing domainde ompositionmethods,be ause ofinsu ient Diri hlet's onditions

orinternalme hanisms,thestinessmatrixofsomesubstru turesmaybenotinvertible;the ompu-

tationofthekernelofthematrixisthenanimportantpoint. Asfarasweknow,therearenogeneral

resultswhi hindi ateapriorithe ompositionofthekernel. What anbedemonstratedforsubstru -

tureswithoutme hanismisthattherstsystemisthelinearizedelasti itysystem,thentheve tors

ofthekernelare(rigidbodydispla ements,zeropressure),forfollowingsystemsve tors omposedby

(admissibletranslations, zero pressure)alwaysbelong to thekernel. Wehave neverobservedother

kindsofnullspa e modes (translationsand rotationsfor therstsystem, onlytranslationsfor the

following systems). Sowe propose touse ageometri al omputationof therigidbody motionsfor

therstsystemandjustsuppresstherotationsforthefollowingsystems.

Duetotheinversibilityofthe

K pp

submatrix,pressurenodes anbeeliminatedfromtheresolution

pro essusingaS hur ondensation. One ansolvethefollowingsystemforthedispla ementunknown

and omputepressureaspost-pro ess:

Kv ˜ k = ˜ f

with

 K = K ˜ uu − K up K pp −1 K up T

f = f ˜ u − K up K pp −1 f p

(6)

Inthe asewheretherearenonodesontheinterelementboundary(dis ontinuouspressureeld)whi h

isthe ase ofthe

Q 2 − P 1

hexahedralelement,this ondensationis usuallya hievedat theelement s aleataverylow ostsin ethe

(Ψ α )

fun tions anbe hosenorthonormalandthen

K pp = − K 1 I d

.

2.3 Primal domain de omposition method

We briey re all the primal domain de omposition method[6 ℄ ina generi ase, the next se tion

fo uses onitsextensionto mixed displa ement-pressure formulations. We onsider thedis retized

problem (4). Let us make a non-overlapping onform partition of dis retized domain

into

N

subdomains

(Ω (s) ) 16s6N

,theinterfa e ofasubdomainis denedas

Υ (s) = ∂Ω (s) \∂Ω

,the omplete

interfa e

Υ

istheunionoftheinterfa esofallsubstru tures.

Using lassi alnotation(

i

standsforinternaldegreeoffreedom,

b

forboundarydegreeoffreedom),

thestiness matrixofthe

s th

subdomainreads:

K (s) = K ii (s) K (s) ib K bi (s) K (s) bb

!

(7)

Theprimalapproa hsimply onsistsineliminatinginternaldegreesoffreedomfromthe omplete

problemwhi h anbedoneindependentlyonea hsubstru ture onstru tingthelo alprimalS hur

omplement

S 1 (s)

. Let

u

bethedispla ementeldoftheinterfa edegreesoffreedom,theproblemto solvethenreads:

Su = b

with

 

 

 

  S = P

s

B (s) S 1 (s) B (s)T b = P

s

B (s) b (s) S (s) 1 = K bb (s) − K bi (s) K ii (s) −1 K ib (s)

b (s) = f b (s) − K bi (s) K ii (s) −1 f i (s)

(8)

(5)

The

B (s)

matrixproje tsthelo alinterfa e

Υ (s)

ontheglobalinterfa e

Υ

. Fortheprimalapproa h,

oppositeto the lassi al dualmethod(FETI), rosspoints(pointsshared by morethan

2

substru -

tures)arenotrepeatedwhendes ribing

Υ

.

Duetotheexisten eofe ientpre onditioners,system(8)issolvedusingaKryloviterativesolver

(Conjugategradient,GMRes

. . .

)whi hiswellsuitedtotheparallelar hite tureofmodern omput- ers. TheNeumann pre onditioner onsists inapproximating the inverse of the sumof lo al S hur

omplementsbythesumoftheinverseoflo alS hur omplements.Let

M −1

bethepre onditioner:

M −1 = P

s

D (s) B (s) S 2 (s) B (s)T D (s) S (s) 2 = S 1 (s) + = β (s) K (s) + β (s)T

(9)

β (s) = (0 i Id b )

extra ts fromve tors dened on thesubdomain

(s)

their tra eon their interfa e

Υ (s)

.

K (s)+

is apseudo-inverseofmatrix

K (s)

,

S (s) 2

is thelo aldual S hur omplement.

D (s)

isa

diagonal s alingmatrix(

P D (s) = Id Υ

). Whendealing withhomogeneousstru tures,

D (s)

anbe

hosenequaltotheinverseofthemultipli ityofea hdegreeoffreedom. Forheterogeneousstru tures

[13 ℄,s alinghas to provideinformation aboutthe dieren eof stinessbetween subdomains,most

oftenthisitemofinformationisextra tedfromthediagonalofthe

K (s) bb

matrix:

D (s) i = (B (s) Diag(K (s) bb )B (s)T ) i

( P

k

B (k) Diag(K bb (k) )B (k)T ) i

(10)

Tobe omes alablewithrespe tto thenumberofsubstru tures,theprimal approa hequipped

withtheNeumannpre onditionerhas tobeenri hedwitha oarseproblem. Theidea isto ensure

thatve torsthat aremultipliedby generalizedinversematri es

K (s)+

belongto theimageof

K (s)

.

Thismethodisreportedasbalan ingmethod[8℄be auseitsme hani alinterpretationistoensurethe

equilibriumofea hsubstru turefa eup torigid-bodyloadings. Noting

r

theresidual

(r = b − Su)

,

pre onditioning onsistsin omputing

M −1 r

.

M −1 r = P

s

D (s) B (s) β (s) K (s) + β (s) T B (s)T D (s) r

∀s β (s)T B (s)T D (s) r ∈ Im(K s )

⇔ ∀s R (s)T β (s) T B (s)T D (s) r = 0

with

Span(R (s) ) = Ker(K (s) )

⇔ ∀s (D (s) B (s) β (s) R (s) ) T r = 0

⇔ G T r = 0

with

G = . . . D (s) B (s) β (s) R (s) . . . 

(11)

This ondition isimposedusing aproperinitialization(

u 0 = G(G T SG)G T b

) and aproje tor

P = Id − G(G T SG) −1 G T S

;thepre onditionerthenreads

P M −1

.

3 Extension of primal domain de omposition method to

quasi-in ompressible material with dis ontinuous pressure

eld

Inthispaperwedealwiththe aseofdis ontinuouspressureeldsattheinterfa eofsubstru tures.

Thepressureeld insidesubstru turesmay beeither ontinuous(e.g. hexahedral

Q 2 − Q 1

) ornot

(e.g. hexahedral

Q 2 − P 1

). Inthe aseof ontinuouspressureeldinsidesubstru ture,su hamodel orrespondsto physi alde ompositions between stu k pie es(whatevertheirmaterialmaybe,e.g.

interfa ebetweensteelandelastomerortwodierentelastomersortwodierentpie esofthesame

elastomer). Hen eallpressuredegreesoffreedomare onsideredinternal.

Forthefollowingequations

i

and

b

standforinternalandboundarydispla ementdegreeoffreedom,

p

forpressure degreeoffreedom. Sin epressureis onsideredasaninternaleld, the ondensation shownin(6) anberealizedatthesubstru tures ale(ifnotyetrealizedattheelements ale)without

modifyingtheglobalproblem. Theinterfa eproblemthenreads:

Su = ˜b ˜

with

 

 

 S = ˜ P

s

B (s) S ˜ 1 (s) B (s)T ˜b = P

s

B (s) ˜b (s) S ˜ 1 (s) = ˜ K bb (s) − ˜ K bi (s) ( ˜ K ii (s) ) −1 K ˜ ib (s)

˜b (s) = ˜ f b (s) − ˜ K bi (s) ( ˜ K ii (s) ) −1 f ˜ i (s)

(12)

Theexpressionofthematri esandve torsaboveistheexpansionofequation(6):

K ˜ ii (s) K ˜ ib (s) K ˜ bi (s) K ˜ bb (s)

!

= K ii (s) − K ip (s) K pp (s)

−1 K pi (s) K ib (s) − K ip (s) K pp (s)

−1 K pb (s) K bi (s) − K bp (s) K pp (s)

−1 K pi (s) K bb (s) − K bp (s) K pp (s)

−1 K pb (s)

!

f ˜ i (s) f ˜ b (s)

!

= f i (s) − K ip (s) K pp −1 f p (s)

f b (s) − K bp (s) K pp −1 f p (s)

!

(13)

(6)

Noteaboveall thattheresultingstinesss aling

D ˜ (s)

isbuiltfromthediagonal

K ˜ (s) bb

,thatisto

sayfromthediagonalofthematrix

(K bb (s) − K bp (s) K pp (s)

−1 K pb (s) )

.

Howeverifwedonot ondensethepressure,wehave:

K (s) =

K ii (s) K ip (s) K pi (s) K pp (s)

! K ib (s) K pb (s)

!



K bi (s) K bp (s) 

K bb (s)

(14)

Su = b

with

 

 

 

 

 

 

 

 

S = P

s

B (s) S 1 (s) B (s)T b = P

s

B (s) b (s)

S 1 (s) = K bb (s) − 

K bi (s) K bp (s)  K ii (s) K ip (s) K pi (s) K pp (s)

! −1

K ib (s) K pb (s)

!

b (s) = f b (s) − 

K bi (s) K bp (s)  K ii (s) K ip (s) K pi (s) K pp (s)

! −1

f i (s) f p (s)

!

(15)

Notethats alingmatrix

D (s)

asso iatedtothenon- ondensedpressureproblemisthendire tly builtfromthe

K bb (s)

matrix.

Bothproblems(whetherthepressureis ondensedornot)areequal:

S = S ˜

,

˜b = b

. Itisthen

abnormalthats alingmatri es shoulddier

D ˜ (s) 6= D (s)

. Infa tthe ondensation ofthe pressure nodesleadstoanoverestimationofthe stiness;we thenpropose twodierents alingswhi hwork

newhether the materials are ompressible or not. Therst one is built from the

K bb (s)

diagonal

(before ondensation). Sin eobtainingthis informationmaynotbe easywhenusingelement-s ale

ondensation,weproposease onds aling, simplerbutevenbetter,whi hisbasedontheshearing

modulus

µ

ofthedierentmaterials

D (s) j = µ

(s) P j

k µ (k) j

.

Table (1)summarizes the performan e of the dierent s alings for the industrialstru ture de-

s ribedse tion(5). Theelementusedisanhexahedra

Q 2 −P 1

(

27

displa ementnodes,

4

internalpres-

surenodes). Thenews alingsshowtheire ien y,theyevenmanagetoa hievebetterresultsthan

the omputationof thehomogeneousstru ture. Theee tof theperturbation (

−K bp (s) K pp (s)

−1 K pb (s)

)

introdu ed by the ondensation anbeobservedonthe usualstiness s aling: the perturbation is

biggerforthese ondsystemthenitrequiresmu hmoreiterationsto onverge.

De omposition Typeofs aling Numberofiterations

Firstsystem Se ondsystem

6a-1r(6pro .) Topologi al

290

>

1000

6a-1r(6pro .) Usualstiness

( ˜ D) 120 726

6a-1r(6pro .) Stinessbefore ondensation

48 44

6a-1r(6pro .) Shearingmodulus

43 39

6a-1r(6pro .) Homogeneousstru ture

93 116

Table1: A tionofthes aling-mixedelement

Q 2 − P 1

Remark: Of ourse,thesameanalysis anbe ondu tedfromthedualdomainde ompositionmethod

(FETIalgorithm). Newduals alings anbedenedonthebasisofthesameprin iple,theyproved

similare ien y.

4 Krylov a eleration strategy: GIRKS

The ontextofthestudyistheresolutionofasu essionoflinearsystems,letus onsiderthesolving

ofthe

(k + 1) th

system

S k+1 u k+1 = b k+1

,theaimofthefollowingstrategyistoreusetheinformation generatedduringtheresolutionofprevioussystemstosolvethe urrentsystem. Theresolutionofa

linearsystemwithaKryloviterativesolverleadsto the onstru tionofatleastonebasis

W k+1

of

theKrylovsubspa efor whi hthe

Γ k+1 = W k+1T S k+1 W k+1

matrixiseasilyinvertible. Inthe ase ofaConjugateGradient,notethat

W k+1

isthenthesetofresear hdire tionsand

Γ k+1

adiagonal

matrix.

The GIRKSalgorithm is ageneralization of augmentedKrylov subspa e methods for multiple

right hand sides [14 ℄ to the ase of non-invariant matri es (multiple left hand sides). It has two

distin ta tions,rstaninitializationIRKSanda orre tionofthepre onditionerGKC.

TheIRKSalgorithm(IterativereuseofKrylovsubspa es[11 ℄)isbaseduponaniterativeapproa h

makingitpossibletoevaluateatlow ostarelevantinitializationofalinearsystemwithrespe tto

previously generated Krylov subspa es. On e the initialization stage is omplete, the algorithm

is subje t to a restarting pro edure whi h an be onsidered as a Conjugate Gradient algorithm

augmentedwiththeKrylovsubspa egeneratedduringtheinitializationstage. TheGKC(Generalized

(7)

pre onditioningproblem.

Figure (4) gives the omplete algorithm of proje ted pre onditioned onjugate gradient with

GIRKSa eleration.

5 Study of the exible bearing

5.1 Des ription

Theorientationofthenozzleofaboosterisa hievedwithaexiblebearing. Thisbearingisastratied

stru turewiththinspheri al steeland elastomerlayers,it is maintainedbytwometalli supports.

Theexiblebearingwestudy(g. 2)wasproposedbySNECMAMoteurs,itwasdesignedtoletthe

bu klingofsteellayersappear. Thisbu klingwasobservedwhenperforminganexperimentalstudy

ofthesolidpropellant boosterofAriane5ro ket.

Thestru tureis lampedononeexternalring,aradialdispla ementimposedononepointatthe

bottomofthe nozzlemodelsthe turningloading(5 degrees),a

4

MPapressure duetothe gasesis

imposedatthetopoftheexiblebearing(g. 3). Theresolutionis ondu tedintwosteps: rstthe

turningproblemissolvedusingtwononlinearin rements(

10

linearsystems),thenthe ompression problem is solved with

4

nonlinear in rements (

37

linear systems) or

10

nonlinear in rements(

48

linearsystems)whetherwewantthebu klingtoappearornot.

Resultingfrom theidenti ationofthematerials,simple onstitutive lawswere hosen. Steelis

denedusingaSaint-VenantKir homodel(Youngmodulus

E = 2.10 5

MPa,Poisson's oe ient

ν = 0.3

). Nearlyin ompressibleelastomerisdenedusingaMooney-Rivlin elasti potential(

C 10 = 0.2

MPa,

C 01 = 0.

MPa,

K = 2000

MPa).

Many di ulties arisewhen arryingout thenumeri alsimulation ofthis exiblebearing,rst

non-linearitiesdueto thelargestrains,theinstabilitiesandthebehaviouroftheelastomer,se ond,

thehighheterogeneities(

5

degreesofmagnitudeseparatetheshearingmoduli)andlastthelargeand

massiveaspe tofthis

3

Dproblem. Thesimulationis ondu tedusinga

Q 2

hexahedralniteelement

(

20

displa ementnodes)forsteelanda

Q 2 − Q 1

hexahedralniteelement(

20

displa ementnodes,

8

pressurenodes)forelastomer,whi hleadsto

75900

degreesoffreedom.

5.2 Me hani al results

A ordingtoexperimentalresults,thebu klingis omputedundera

3

MPapressure. Bu kling auses

bifur ationsofthedispla ementofsomepoints(g. 5,6).

5.3 De ompositions used for the parallel simulation

Thegeometryofthe stru tureis axisymmetri (whilethe loadingisnot). Substru turesare hand-

made de omposing eitherthe axial se tion or the rotation. Thenomen latureof a de omposition

reads

N

a-

M

rwhere

N

standsforthenumberofsubstru turesintheaxialse tion,

M

forthenumber

ofsubstru turesintherotation.

Inthe aseofrotation-de omposedsubstru tures,pressureisdis ontinuousattheelastomer/elastomer

interfa eand ontinuousinsidesubstru tures.However,me hani alresultsareidenti alwhateverthe

de omposition.

6 Numeri al results

All omputationspresentedherewererealizedontheSGIORIGIN

2000

ofthePledeCal ulParis

Sud. We ompareperforman elevelsforthebu klingandnon-bu klingproblems,of lassi alprimal

approa h, GIRKS-primal approa h and dire t sequential approa h. The dire t sequential solver

requires

8667

stosolveonelinearsystem.

6.1 Non-bu kling problem

As said before, this loading history leads to the omputation of

48

linear systems with dierent

matri esand right handsides. Thedire tsequentialapproa his ompletedin

115

h

30

min. Parallel

performan eresultsaregivenintable(2).

As anbeseen,performan elevelsstronglydependonthe hoi eofthede ompositionthoughthe

numberofsubdomainsisalmost onstant. Twofa torsjustifythesevariations,rsttheheterogeneity

ofthe interfa e (de ompositions giving bestresults ontain onlymono-materialsubstru tureswith

dierent materialsfa ing, while lesse ientde ompositionspossessmulti-materialsinterfa eswith

samematerialsfa ing),se ondtheaspe tratioofsubstru tures(duetothelowersparsityofmatri es,

massivesubstru turesinvolvelonger omputationtimeformatrixmanipulation).

(8)

k

linearsystems

(S q u q = b q ) q=1,...,k

weresolved

forthe

(q) th

linearsystem,wenote

W q = {w q 0 , . . . , w q r q−1 }

setofresear hdire tions

r q = dim(W q )

Γ q = W q T S q W q

(diagonalmatrix)

s q

ponderationterm(mostoften1)

Solution to the (k + 1) th system 1. IRKS approach

1.1 Initialization ˆ

u 0 = G(G T SG) −1 G T b + P χ ˆ

r 0 = b − S ˆ u 0

1.2 Iterations i = 0, . . . , p /ˆ z p = 0 ˆ

z i = P

"

k

P

q=1

W q Γ q −1 W q T

# ˆ r i

ˆ

w i = ˆ z i + i−1 P

j=0

ˆ

γ ij w ˆ j ( ˆ w 0 = ˆ z 0 ) ˆ γ ij = − ( ˆ w z i j ,S ,S w ˆ w ˆ j j ) ) ˆ

x i+1 = ˆ x i + ˆ α i w ˆ i

ˆ

r i+1 = ˆ r i − ˆ α i S ˆ w i

ˆ

α i = ( ˆ w r i z i )

i ,S w ˆ i )

1.3 End of IRKS V = {w 0 , . . . , w p−1 }

Λ = V T SV

(diagonalmatrix)

Q = Id − V Λ −1 V T S

proje tionmatrix

2 . Conjugate Gradient with GKC

2 .1 Initialization x 0 = ˆ x p+1

r 0 = ˆ r p+1

2.2 Iterations i = 0, . . . , s y i = M −1 r i

Successive corrections q = 1, . . . , k

˜

r q i = s q W q Γ q −1 W q T r i − W q Γ q −1 W q T S q y i q−1 y q i = y q−1 i + ˜ r i q

z i = QP y k i w i = z i + i−1 P

j=0

γ ij w j (w 0 = z 0 ) x i+1 = x i + α i w i

r i+1 = r i − α i Sw i

γ ij = − (w (z i j ,Sw ,Sw i j ) ) α i = (w (r i i ,Sw ,z i ) i )

Figure1: Algorithm: GIRKSwithProje tedPre onditionedConjugateGradient

(9)

stru ture

The turning stiness (g. 4) de reases

when the pressure inside the booster in-

reases, it anevenbe ome negative(the

exible bearing is then driving). This

evolution, aused by the displa ement of

pie es, is properly simulated during the

omputation.

1000 1200 1400 1600 1800

0 0.5 1 1.5 2 2.5 3 3.5 4

Turning stiffness (Nm/deg)

Pressure (MPa)

Buckling case Non buckling case

Figure4: Turningstiness

Problem Aver. CPUtime(s) /sys It. nb Gain

De omposition Method Fa torization Total Aver/sys Seq./Par.

17a-1r(17pro .) Primal 14.5 140.7 164 61.6

17a-1r(17pro .) GIRKS 14.5 78 50 111.1

6a-3r(18pro .) Primal 22.4 412.8 398 21

6a-3r(18pro .) GIRKS 22.4 256.7 183 33.7

3a-6r(18pro .) Primal 144 939.2 362 9.2

3a-6r(18pro .) GIRKS 144 400.9 120 21.6

Table2: Numeri alperforman eParallel/Sequential(non-bu kling)

TheKrylova elerationstrategyleadstosigni antspeed-up.TheCPUtime,thankstotheuse

ofGIRKS,in reasesfrom

38%

to

58%

. GIRKSenablestosolveupto

111

timesfasterthenon-linear

problemthanthesequentialapproa husingonly

17

pro essors.

Figures(9)and(10)respe tivelyshowtheevolutionoftheaveragenumberof onjugategradient

iterationsandtheasso iatedaverageCPUtimetosolveea hlinearsystem. Duetotheverylow ost

ofGIRKS,iterationsandCPUtimegraphsarequite similar. As anbeseen,thea tionofGIRKS

grows as the nonlinear system number in reases due to the in reasing size of the stored Krylov

subspa es. In the ourseof the non-linearresolution, it may o ur that the information stored in

Krylovsubspa esbe omesnon-relevantandleadstoaperturbationleadingtostagnation. Thelinear

resolutionisthenrestartedwithdeletionofthesta kofKrylovsubspa es. Therestartingpro edure

anbeobservedongure(9)whentwopointsareasso iatedtothesamelinearsystem.

6.2 Bu kling problem

Thisloadinghistoryleadstothe omputationof

37

linearsystemswithdierentmatri esandright

hand sides. The dire tsequential approa h is ompletedin

89

h. The performan e results of the parallelapproa hesaregivenintable(3). Forthebu klingproblem,GIRKSisnotase ientasfor

thepreviousproblem,butitstillhasapositiveimpa t. Thebestresultisthenaresolution

67

times

fasterthanthesequentialapproa husingonly

17

pro essors.

7 Con lusion

Inthispaperwe onsideredtheresolutionofhighlyheterogeneousstru turesinvolvingquasi-in ompressible

materialswith aprimaldomainde ompositionmethod. We extendedthe denitionofs alingma-

(10)

Figure5: Bu klingofonereinfor ement

10.5 10.6 10.7 10.8 10.9 11 11.1 11.2 11.3

0 0.5 1 1.5 2 2.5 3 3.5 4

u_y (mm)

Pressure (MPa) Buckling case Non buckling case

Figure6: Radialdispla ementofaninternalbound-

arypointofareinfor ement

Figure7: 17ade omposition Figure8: 3a-6rde omposition

Problem Aver. CPUtime(s) /sys It. nb Gain

De omposition Method Fa torization Total Aver/sys Seq./Par.

17a-1r(17pro .) Primal 14.9 139 162 62.3

17a-1r(17pro .) GIRKS 14.9 130 102 66.7

Table3: Numeri alperforman eParallel/Sequential(bu kling)

tri esto the ase wherepressure is ondensed, restoringthe s alability ofthe methodto this lass

ofproblems. Theresolutionofthe hallengingassessmentwassu essfullya hievedusingaNewton-

Krylov approa h. WeshowedthatthereuseofKrylovsubspa eswiththeGIRKSalgorithmalways

lead to better performan e, the speed-up ompared to the lassi al primal approa h an be

60%

.

Comparedtothe dire tsequentialapproa h,theresolution is ondu tedinthebest ase

111

times

fasterusingonly17pro essors. Inordertoavoidstagnationandrestartingasso iatedtoGIRKS,we

nowdevelopnewKrylovreusestrategiesbasedonanexa t oarsegridsolver. Duetothesigni ant

omputational ostofthisnewapproa hwe oupleitwithasele tivereuseofKrylovsubspa esbased

onaspe tralanalysisofthelinearsystems[4 ℄.

A knowledgements: The authors a knowledge support of omputational resour es by the Centre

InformatiqueNationalEnseignementSupérieurandthePledeCal ulParisSud.

Referen es

[1℄ Pro eedings of the 14th international onferen e on domain de omposition methods, mexi o,

2002.

[2℄ F.BrezziandM.Fortin. Mixedandhybridniteelementmethods. SpringerseriesinComputa-

tionalMathemati s,1991.

[3℄ CharbelFarhatandFrançois-XavierRoux. Impli itparallelpro essing instru turalme hani s.

ComputationalMe hani s Advan es,2:124,1994.

(11)

0 50 100 150 200

1 5 9 13 17 21 25 29 33 37 41 45

Average iteration number

Linear system Primal GIRKS

Figure9: GIRKS:nbof iterations

60 80 100 120 140 160

1 5 9 13 17 21 25 29 33 37 41 45

Average CPU time (s)

Linear system Primal GIRKS

Figure10: GIRKS:CPUtime

[4℄ PierreGosseletand ChristianRey. Onasele tive reuseof krylovsubspa esfor newtonkrylov

approa hes innon-linearelasti ity. In 14thinternational onferen e ondomain de omposition

methods,Mexi o,2002.

[5℄ JulieLambert-Diani andChristianRey. New phenomenologi albehavior lawsfor rubbersand

thermoplasti elastomers. Eur.J.Me h.A/Solids,18:10271043, 1999.

[6℄ P. LeTalle . Domainde ompositionmethods in omputationalme hani s. In Computational

Me hani sAdv.,volume1.1994.

[7℄ Patri kLeTalle . Numeri almethodsfor non-linearthree-dimensionalelasti ity. InCiarletPG

andLions JL.,editors,Handbookof numeri alanalysis,volume3.Elsevier,1994.

[8℄ J.Mandel. Balan ingdomainde omposition. Comm.Appl.Numer.Meth.,9:233241,1993.

[9℄ ChristianRey.Unete hniqued'a élérationdelarésolutiondeproblèmesd'élasti iténon-linéaire

pardé ompositiondedomaines. InComptesrendus del'a adémie dess ien es,volume322of

IIb,pages601606.1996.

[10℄ ChristianReyandFran kRisler.Arayleigh-ritzpre onditionerfortheiterativesolutiontolarge

s alenonlinearproblems. Numeri alAlgorithms,17:279311, 1998.

[11℄ Fran kRislerandChristianRey.Iterativea eleratingalgorithmswithkrylovsubspa esforthe

solutiontolarge-s alenon-linearproblems. Numer.Algorithms,23:130,2000.

[12℄ R.S.RivlinandD.W. Saunders. Largeelasti deformation ofisotropi materials. experiments

onthedeformationofrubber. Phil.Trans.Roy.So .,A243:251288, 1951.

[13℄ DanielRixen and CharbelFarhat. A simple ande ient extension ofa lassof substru ture

based pre onditioners to heterogeneous stru tural me hani s problems. Int. J. Num. Meth.

Engrg.,44,1999.

[14℄ YoussefSaad. Onthelan zos methodforsolvingsymmetri linearsystemswithseveral right-

handsides. Math.Comp.,48:651662,1987.

Références

Documents relatifs

We propose a Schwarz-based domain decomposition method for solving a dis- persion equation consisting on the linearized KdV equation without the ad- vective term, using simple

From left to right, time step size, number of Krylov spaces used by the GMRES solver, average time required for a single time step, average of the GMRES linear iterations and

We first extend artificially the crack to split the domain into two subdomains with a nonpenetration condition (negative relative normal displacement) on the crack, a

Reduced basis element methd based on Lagrange multiplier (FETI) method.. Static condensation reduced basis element Reduced basis hybrid

We are using herein a dual and multilevel domain decomposition method — the FETI method [20] (for Finite Element Tearing and Interconnecting) — and we take into account the

selon laquelle des peptides longs ayant un résidu hydrophobe ou chargé positivement sont produits dans le cytosol sous l'action des pro­ téasomes LMP• puis

3 Explicit/implicit and Crank-Nicolson domain decomposition meth- ods for parabolic partial differential equations 49 3.1 Model problem and DDM finite element

The resolution is conducted in two steps: first the turning problem is solved using two nonlinear increments (10 linear systems), then the compression problem is solved with 4