• Aucun résultat trouvé

FINITE-AMPLITUDE ACOUSTIC WAVE PROPAGATION THROUGH GAS-DROPLET MIXTURES : A BURGERS' EQUATION MODEL

N/A
N/A
Protected

Academic year: 2021

Partager "FINITE-AMPLITUDE ACOUSTIC WAVE PROPAGATION THROUGH GAS-DROPLET MIXTURES : A BURGERS' EQUATION MODEL"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00219511

https://hal.archives-ouvertes.fr/jpa-00219511

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FINITE-AMPLITUDE ACOUSTIC WAVE PROPAGATION THROUGH GAS-DROPLET MIXTURES : A BURGERS’ EQUATION MODEL

G. Davidson

To cite this version:

G. Davidson. FINITE-AMPLITUDE ACOUSTIC WAVE PROPAGATION THROUGH GAS-

DROPLET MIXTURES : A BURGERS’ EQUATION MODEL. Journal de Physique Colloques, 1979,

40 (C8), pp.C8-29-C8-34. �10.1051/jphyscol:1979806�. �jpa-00219511�

(2)

FINITE-AMPLITUDE ACOUSTIC WAVE PROPAGATION THROUGH GAS-DROPLET MIXTURES : A BURGERS' EQUATION MODEL G.A. Davidson

Department of Meohanieal Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L SGI.

Prepared for the 8th International Conference on Nonlinear Acoustics, Paris, July 3-6, 1978 Shortened title for page heading : acoustics in gas - droplet mixtures.

Résumé.- Une équation modifiée de Burger est présentée, qui convient pour des milieux qui possèdent à la fois l'absorption thermovisqueuse acoustique ainsi que divers mécanismes d'absorption par relaxation.

L'équation est appliquée au problème spécifique de propagation d'une onde plane à travers le brouillard air-eau, un milieu qui possède des sources de relaxation qui ont pour origine des mouvements de molé- cules de gaz et des interactions de transfert de masse, moment, et énergie entre le gaz et les goutte- lettes d'eau suspendues. Cette méthode, utilisant l'équation de Burger, donne des renseignements sur l'atténuation et da dispersion d'ondes infinitésimales ainsi que sur les effects d'amplitude finie dans les brouillards du type air-eau.

Abstract.- An extended Burgers' enuation, suitable for media which exhibit both thermoviscous acoustic absorption as well as various mechanisms °f relaxational absorption, is presented. The equation is applied to the specific problem or piane wave propagation through an air-water fog, a medium which contains relaxation sources arising both from gas molecular motions and from mass, momentum, and ener- gy transfer interactions between the gas and the suspended water droplets. The Burgers' equation approach provides information on infinitesimal wave attenuation and dispersion, and on finite-amplitude wave effects in air-water fogs.

1. List of symbols.

A 1 + CVL ( L - 1 ) ( YV- 1 ) HV

B RY-lCL-lJ-llKYv-lJCL-ilHy-Ry/RgirYAj-

1

3 3 C ( d r o p l e t mass/cm ) / ( f o g mass/cm )

3 3 Cv (water vapour mass/cm ) / ( f o g mass/cm )

c speed o f sound i n fog c s p e c i f i c heat o f d r o p l e t c speed o f sound i n a i r = (yRgT-% 1/2

C l-c/c

0

D diffusivity of water vapour in air f sound frequency

g dimensionless retarded time =io(t-x/c) H droplet specific heat/air specific heat at

p

constant volume

H

v

ratio of water vapour to air specific heats at constant volume

h droplet heat of vaporization 1 (-D

1/2

K. relaxation strength of relaxation process j k velocity attenuation per wavelength

L h/R

v

T

Q

a dimensionless distance = ux/c

n droplet number density P Pra.ndtl number

R„

v

ideal gas constants of air and water vapour r water droplet radius

T equilibrium temperature of fog t time

u velocity perturbation due to acoustic field/c

Q

x distance

a sound attenuation coefficient Y specific heat ratio of air

Y

v

specific heat ratio of water vapour n (u/2p

0

c

Q2

) |4/3+(

Y

-l)/P

r

|

K thermal conductivity of air u absolute viscosity of air p equilibrium density of air p density of droplet material

T

C

mass transfer relaxation time =pr /3Dp _ 2 ir, momentum relaxation time = 2 pr /9y _ 2 ij heat transfer relaxation time = per / 3 K 2 T . relaxation time of relaxation process j co sound frequency (radians/sec.)

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979806

(3)

JOURNAL DE PHYSIQUE C8- 30

2. I n t r o d u c t i o n . - Wave propagation processes have been successtul l y s t u d i e d using s i n g l e , r e l a t i v e l y simple d i f f e r e n t i a l equations t o model t h e f u l l s e t o f f l u i d mechanical conservation equation. Whitham

!

1

1,

f o r example, discusses t h e d e r i v a t i o n o f t h e wave equation, Korteweg

-

Devries equation, and Burgers'equation from more general conservation laws.

These equations can then be used i n the t h e o r e t i c a l study o f v a r i o u s types of wave problems. For f i n i t e - amplitude, plane wave propagation through gaseous media, such authors as L i g h t h i l l (21, Blackstock

13)

,

and Lesser and C r i g h t o n 141 have demonstrated tne u t i l i t y o f t h e Burgers' equation approach.

I n previous papers, t h e Burgers' equation technique has been extended t o describe wave propa- g a t i o n through aerosol media. I n i t i a l l y , aerosols c o n s i s t i n g of monodisperse, s o l i d p a r t i c l e s suspen-

ded i n an i d e a l gas were considered 15

1.

Subsequent- l y , mass t r a n s f e r e f f e c t s were i n c l u d e d f o r aerosols made up o f l i q u i d d r o p l e t s suspended i n an i d e a l gas m i x t u r e o f 1 iq u i d vapour and an i n e r t gas 16 (

.

F i n a l l y , t h e technique was extended t o i n c l u d e d r o p l e t p o l y d i s p e r s i t y and gas molecular r e l a x a t i o n , two e f f e c t s which should be i n c l u d e d i n a r e a l i s - i c model f o r most fogs171.

This l a t t e r equation has so f a r o n l y been a p p l i e d t o i n f i n i t e s i m a l , plane wave propagation through a i r z w a t e r fogs 171. The aim o f t h i s paper i s t o use t h e Burgers' equation approach t o study f i n i te-amplitude e f f e c t s i n such media.

3. e o b l e m f o r m u l a t i o n . - A dimensionless Burgers' equation f o r a i r - w a t e r fogs may be shown t o be

16,71

u

a -

c ' u g

-

Eq.1 describes t h e a c o u s t i c p e r t u r b a t i o n v e l o c i t y u as a f u n c t i o n o f d i s t a n c e % and r e t a r d e d t i m e g.

D i s p e r s i o n e f f e c t s appear through t h e c ' parameter.

The f i r s t term on the r i g h t s i d e o f Eq.1, which represents absorption due t o gas molecular e f f e c t s , may be w r i t t e n as

uexp (g/w-r j)dg-u

I

( 2 )

Fol lowing 18

1 ,

f o u r r e l a x a t i o n a l terms a r e i n c l u d e d i n t h i s f o r m u l a t i o n , t h r e e a r i s i n g from molecular v i b r a t i o n , and one from molecular r o t a t i o n . F o r most frequencies o f p r a c t i c a l i n t e r e s t , however, r o t a - t i o n a l r e l a x a t i o n s a t i s f i e s t h e r e s t r i c t i o n w 4 < < l For plane wave studies, i n t r o d u c t i o n o f t h i s r e s t r i c t i o n i n t o Eq. 2 a l l o w s the r o t a t i o n a l r e l a - x a t i o n term t o be reduced t o

I t can f u r t h e r be shown t h a t t h e K u term repre- 4 g

sents a d i s p e r s i o n e f f e c t which i s n e g l i g i b l e except a t extremely h i g h frequencies. Accordingly, t h e r o t a t i o n a l r e l a x a t i o n term may be simp1 i f i e d t o t h e s i n g l e term wKR1ugg.

A s i m i l a r a n a l y s i s a l l o w s t h e s i m p l i f i c a t i o n o f one o f t h e t h r e e v i b r a t i o n a l r e l a x a t i o n terms. The gas a b s o r p t i o n terms o f Eq. 1 t h e r e f o r e become

wbere the term i n square brackets i s d e f i n e d i n Eq.2. I n t h i s equation, t h e

n

parameter represents c l a s s i c a l thermoviscous absorption, w h i l e r l may be c l o s e l y l i n k e d w i t h v i b r a t i o n o f n i t r o g e n mole- c u l e s and -r2 w i t h v i b r a t i o n o f oxyqen molecules ) 8 \ . Numerical values o f these constants a r e l i s t e d i n Table I f o r a i r a t 100% r e l a t i v e humidity.

The second term on t h e r i g h t s i d e o f Eq.1, which represents a b s o r p t i o n due t o gas-droplet i n t e r a c - t i o n s , may a l s o be w r i t t e n i n a r e l a x a t i o n a l form f o r m a l l y i d e n t i c a l t o t h e m o l e c u l ~ r ~ r i 2 l a x a t i o n t e r n s o f Eq .4.

The t h r e e terms i n t h e summation o f Eq. 5 describe r e s p e c t i v e l y momentum, heat, and mass t r a n s f e r between t h e gas and suspended water d r o p l e t s . The r e l a t i o n s h i p between t h e constants o f Eq. 5 and aerosol p r o p e r t i e s i s l i s t e d i n Table 11. Numeri- c a l values a r e a l s o t a b u l a t e d f o r a monodisperse f o g c o n t a i n i n g water d r o p l e t s o f r a d i u s 5 microns and number d e n s i t y 250 d r o p l e t s c n ~ ' ~ .

Plane wave propagation through a i r - w a t e r fogs may t h e r e f o r e be described by t h e Burgers'

(4)

equation

w i t h t h e a b s o r p t i o n terms

3. Plane wave propagation.- To study plane wave propagation, Eq.6 i s solved using a p e r t u r b a t i o n expansion i n terms o f t h e a c o u s t i c Mach number E:

The boundary c o n d i t i o n s d e s c r i b i n g a s i nusoi d a l e x c i t a t i o n a t t h e o r i g i n (R=O) which d i e s o u t a t i n f i n i t y a r e approximately

u(') (0,g) = E s i n g u("') (o,g) =

o

f o r m22

u("') (a,g) .+

o

as

n.

-t f o r m,l

-

(9b)

The f i r s t - o r d e r problem, which describes i n f i n i - tesimal plane waves, becomes

To conform w i t h Eqs.9, wave s o l u t i o n s o f t h e form ( 1 )

u(')=e" 's-ing(')=1m exp[i (cj(')+i k(')']] (11)

The conventional sound a t t e n u a t i o n c o e f f i c i e n t a ( u n i t s o f d e c i b e l s p e r u n i t l e n g t h ) may be o b t a i - ned from Eq. 12 u s i n g

where co i s t h e speed o f sound.Eqs. 13 and 14 a r e p l o t t e d as f u n c t i o n s o f frequency i n Figures 1 and 2 using t h e numerical values o f Tables I and 11.

Gas and d r o p l e t components a r e a l s o i d e n t i f i e d . Good agreement has been found between p l o t s o f t h i s k i n d and experimental data [7,9]

.

F I G . l : The sound a t t e n u a t i o n c o e f f i c i e n t a , i n u n i t s o f 10- dB/cm, versus frequency 4 f i n h e r t z . The s o l i d l i n e i n d i c a t e s a t t e n u a t i o n i n fog, w h i l e the broken l i n e s i n d i c a t e s a t t e n u a t i o n i n an a i r - water vapour m i x t u r e w i t h o u t d r o p l e t s .

a r e sought, where t h e g(l) n o t a t i o n i s i n t r o d u c e d s i n c e c ' = c ( l ) appears i n the d e f i n i t i o n o f g.

S u b s t i t u t i o n of Eq. 11 i n t o Eq. 10 produces a complex a l g e b r a i c equation which may be solved f o r t h e a t t e n u a t i o n parameter k(') and d i s p e r s i o n parameter c(')

FIG.2 : The sound d i s p e r s i o n parameter c ' versus frequency f i n h e r t z . The s o l i d l i n e i n d i c a t e s d i s p e r s i o n i n fog, w h i l e t h e broken l i n e i n d i c a t e s d i s p e r s i o n i n an a i r - w a t e r vapour m i x t u r e w i t h o u t d r o p l e t s .

(5)

C8- 32 JOURNAL DE PHYSIQUE

F i n i t e - a m p l i t u d e e f f e c t s appear i n t h e second- o r d e r problem :

This eqbation i s solved by f i r s t seeking a p a r t i c u - l a r s o l u t i o n p r o p o r t i o n a l t o t h e inhomogeneous term.

Eqs. 9 then l e a d t o t h e a p p r o p r i a t e homogeneous s o l u t i o n , and

u(2)=p(2yexp[2i ( g ( 2 ) + i til(')&j -exp[qig(l)+ik(l)ajJ}

( 16) where

Parameters k(') and c ( ~ ) may be obtained from Eqs. 12 and 13 by r e p l a c i n g w by 2w.

The u ( ~ ) s o l u t i o n describes n o n l i n e a r growth o f t h e second harmonic and accompanying waveform

I t can be shown t h a t t h e l i m i t i n g forms o f b o t h Eq. 17 and Eq. 20 f o r t h e cases o f no d i s s i p a t i o n and no r e l a x a t i o n a b s o r p t i o n agree w i t h p r e v i o u s l y published r e s u l t s f o r l o s s l e s s gases and f o r gases e x h i b i t i n g o n l y thermoviscous a b s o r p t i o n /3,10/.

I n F i g u r e 3, t h e growth o f t h e second harmonic w i t h propagation d i s t a n c e i s i l l u s t r a t e d , u s i n g Eq. 20 w i t h t h e a i r - w a t e r f o g constants o f Tables I and

11.

as propagation proceeds. The nature of

FIG. 3 : The i t u d e of t h e dimensionless second t h e s o l u t i o n can be c l a r i f i e d by s e p a r a t i n g t h e harmonic s o l u t i o n versus dimensionless

imaginary p a r t o f Eq. 16 : propagation distance, f o r e x c i t a t i o n f r e -

quencies f = 10 h e r t z and f = 100 h e r t z . The broken l i n e i n d i c a t e s t h e d i s s i p a t i o n -

u(2)=sin2g l e s s gas l i m i t Y+I

4

( 2 )

-

~ ~ ( ~ )' S ~ ~ Z Q Q e - ~

+

~ An i n d i c a t i o n o f when f i n i t e - a m p l i t u d e e f f e c t s a r e l i k e l y t o be i m p o r t a n t may be obtained by exa- (1) (2)e-2k(2)ecosBa -PI(2)e-2k(1)~

+cosZg [PI m i n i n g t h e maximum value o f t h e amplitude r a t i o o f

t h e f i r s t two terms o f expansion (8) :

where

Nonlinear e f f e c t s remain i n s i g n i f i c a n t as l o n g as Eq. 17 can be f u r t h e r s i m p l i f i e d by n o t i n g t h a t , f o r t h i s maximum i s small r e l a t i v e t o

1 ,

t h e value t h e parameter values o f Tables I and 11, terms i n v o l - t h a t t h e r a t i o would a t t a i n if nonfinearities 'were

vfng S2 a r e n e g l i g i b l y small

-

The second o r d e r ~ 0 1 ~ - s u f f i c i e n t l y s t r o n g to d i s t o r t t h e initially sinu- t i o n thus may be reduced t o s o i d a l wave i n t o a sawtooh. F i g u r e 4 has been

-2k(2)~-e-2k(1)g) c o n s t r u c t e d on t h i s b a s i s t o show decibel-frequency

,(2) = Y+1 1

( e combinations where f i n i te-amp1 i tude e f f e c t s a r e 8 k(1),k(21

l i k e l y t o be s i g n i f i c a n t i n a i r - w a t e r fogs. The

sin^^(')

(20) data o f Tables I and I 1 were used i n these compu-

(6)

t a t i o n s , along w i t h t h e r e l a t i o n s h i p between t h e a c o u s t i c Mach number and t h e sound pressure l e v e l i n d e c i b e l s

/ l o /

:

SPL = 194

+

2010g10 ( y ~ / / ? )

FIG. 4 : Regions where n o n l i n e a r e f f e c t s w i l l be s i g n i f i c a n t i n a i r - w a t e r fogs. Along the curve, t h e p e r t u r b a t i o n s o l u t i o n s a t i s f i e s

Accordingly, i n f i n i t e s i m a l a c o u s t i c r e s u l t s w i l l be accurate i n t h e l o w e r p a r t o f t h e f i g u r e , w h i l e n o n l i n e a r c o r r e c t i o n s w i l l become i m p o r t a n t i n t h e upper p a r t .

4. Concluding Remarks.- Plane wave propagation through a i r - w a t e r f o g has been s t u d i e d u s i n g a p e r t u r b a t i o n s o l u t i o n of an extended ~ u r g e r s ' equation. Acoustic parameters have been d e r i v e d from t h e p e r t u r b a t i o n s o l u t i o n f o r constant values r e p r e s e n t a t i v e of r e a l atmospheric fogs.

The Burgers's equation was developed from t h e f u l l s e t o f conservation equations f o r an i d e a l gas-monodisperse d r o p l e t fog, a s e t o f t e n coupled p a r t i a l d i f f e r e n t i a l equations c o n t a i n i n g gas- d r o p l e t mass, momentum, and energy t r a n s f e r i n t e r a c t i o n s / 6 / . The s i m p l i f i c a t i o n o f d e a l i n g w i t h one equation i n p l a c e o f the o r i g i n a l t e n n o t o n l y a l l o w s a n a l y t i c a l s o l u t i o n s t o be found f o r f i n i te-amp1 i tude wave problems, b u t a1 so a1 lows t h e i n c o r p o r a t i o n o f such effects as gas molecular r e l a x a t i o n and d r o p l e t p o l y d i s p e r s i t y /7/. The p h y s i c a l mechanisms o f a c o u s t i c absorption, d i s p e r - sion, and waveform d i s t o r t i o n i n fogs a r e thus c l a r i f i e d . The v a l i d i t y o f t h e fog Burgers' equation.

i s supported by good agreement found between theo-

r e t i c a l p r e d i c t i o n s and experimental measurements o f i n f i n i t e s i m a l wave a t t e n u a t i o n /7,9/.

The p e r t u r b a t i o n s o l u t i o n o f t h e f o g Burgers' equation i s u s e f u l i n i d e n t i f y i n g the l i m i t s o f i n f i n i t e s i m a l acoustics. However, i t i s unable t o d e s c r i b e t h e a c t u a l waveform under those c o n d i t i o n s when n o n l i n e a r d i s t o r t i o n i s s i g n i f i c a n t . T h e Hopf- Cole t r a n s f o r m a t i o n , which leads t o an e x a c t solu- t i o n o f t h e p e r f e c t gas Burgers' e q u a t i o n /1,3/, does n o t enable t h e s o l u t i o n o f t h e f o g Burgers' equation. Accordingly, so f a r o n l y approximate s o l u t i o n s f o r t h e d i s t o r t e d waveform i n fogs have been found /6/.

5. Acknowledgments.- F i n a n c i a l support has been p r o v i d e d by t h e N a t i o n a l Research Council o f Canada and a U n i v e r s i t y o f Waterloo Research Grant.

Thanks a r e a l s o extended t o Miss Colleen Male f o r p r e p a r a t i o n o f t h e manuscript.

TABLE I Sound a b s o r p t i o n constants f o r a i r a t 100% r e 1 a t i v e h u m i d i t y

TABLE I 1 Sound a b s o r p t i o n constants f o r water d r o p l e t s i n a i r (r=5p,no =250 d r o p l e t s

~ m - ~ .

(7)

JOURNAL DE PHYSIQUE

References.

/ I / dnitharp,G.B. L i n e a r and Nonlinear Naves, ( K i l e y , New York) 1974,

/ 2 i L i g h t h i l l , M.J., i n Surveys i n Mechanics, e d i t e d by G. K. B a t c h e l o r (Cambridge Univer- s i t y Press) 1956, 250.

/3/ Blackstock, D.T., J. Acoust. Soc. Am.

36

(1964), 534.

/4/ Lesser, M.B., and Crighton, D.G.,

i n Physical Acoustics, Vol. X I , e d i t e d by U.P. Mason and R.N. Thurston (Academic Press, New York) 1975, 69.

/5/ Davidson, G.A., J. Sound. Vib.

38

(1975), 475.

/6/ Davidson, G.A., J. Sound. Vib. 45 (1976), 473.

/7/ Davidson, G.A., J. Acoust. Soc. Am. - 62 (1977), 497.

/8/ Bass, H.E., Bauer, M.J., and Evans, L.B., J. Acoust. Soc. Am. 52 (1972), 831.

/9/ Davidson, G.A., J. Atm. Sci., 32 (1975), 2201

/ l o /

Blackstock, D.T.

,

Technical Memorandum No. 43, Acoustics Research Laboratory, Harvard U n i v e r s i t y (1960).

Références

Documents relatifs

On the other hand, the existence of spatial resonances in nonuniform plasmas, such as the Alfv&amp;n wave resonance or the ion-ion hybrid resonance, exhibited mathematically

The goal of this note is to construct a class of traveling solitary wave solutions for the compound Burgers-Korteweg-de Vries equation by means of a hyperbolic ansatz.. Equation (1)

Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting

A first lemma for a general barrier is derived in Subsection 3.1. The barrier to be used in the proof of the theorem is constructed in Subsection 3.2. The main error estimate

Nonlinear parabolic equation model for finite- amplitude sound propagation in an inhomogeneous medium over a non-flat, finite-impedance ground surface.. Acoustics’08, Second

More precisely, we wish to reconstruct an obstacle characterized by a Dirichlet boundary condition from lateral Cauchy data given on a subpart of the boundary of the domain and over

- A = 10,6 um : sans brouillard, on trouve la tache bien connue montrant l'effet de défocalisa- tion thermique et avec brouillard on voit nettement le percement de celui-ci causé