• Aucun résultat trouvé

Near infrared reflectance spectroscopy and molecular tools to evaluate land use impact on soil quality. A case study in a tropical ecosystem (altitude plains, Lao PDR)

N/A
N/A
Protected

Academic year: 2021

Partager "Near infrared reflectance spectroscopy and molecular tools to evaluate land use impact on soil quality. A case study in a tropical ecosystem (altitude plains, Lao PDR)"

Copied!
25
0
0

Texte intégral

(1)

Near infrared reflectance spectroscopy and molecular tools 

to evaluate land use impact on soil quality

to evaluate land use impact on soil quality

A case study in a tropical ecosystem (altitude plains, Lao PDR)

Pascal Lienhard, Richard Joffre, Pierre‐Alain Maron, Florent Tivet, Lucien Séguy, André  Chabanne, Jean Claude Legoupil, Sengphanh Sayphoummie, Bounma Leudphanane, 

b él l è d l d

Abou Lam, Mélanie Lelièvre and Lionel Ranjard

Soil Interfaces in Changing world – ISMOM 2011       f g g Montpellier, 26th June ‐1st July 2011

(2)

CONTENT

CONTENT

ƒ Recent land use changes in the Plain of 

Jars, Lao PDR

Jars, Lao PDR

ƒ Monitoring of land use changes impact on 

soil properties

soil properties

ƒ Main outputs regarding Near Infrared 

Reflectance Spectroscopy (NIRS) 

predictive potential 

ƒ Conclusions

(3)

Plain of Jars (900‐1200m)

ƒ 3 western districts (Pek, Phoukout and Paxay) of Xieng Khouang

(4)

Plain of Jars (900‐1200m)

ƒ About 80.000 ha of savannah grasslands  with pine trees on hills summit ƒ Main farming system: rice production in  paddy fields ƒ Limited possibilities to extend paddy areas d l l d h ƒ Limited agricultural production in the  upland due to soil constraints (low pH,  d fi i i i i t i t deficiencies in main nutrients, severe  aluminium toxicity)

ƒ Only 5% of total surface is cultivated

ƒ Only 5% of total surface is cultivated,      80% in paddy rice fields

ƒ Extensive livestock system in the uplands ƒ Extensive livestock system in the uplands

(5)

Main changes in the uplands

ƒ Since 1990’s

Reforestation (pine trees) policy and upland rice  production attempts based on plowing with disks production attempts based on plowing with disks

ƒ Since 2000’s

Attribution of large concessions to private Attribution of large concessions to private  companies for cash crops production (cassava,  corn, jatropha); land preparation based on deep  soil plowing ƒ Since 2005 Conception and promotion of Conservation  Agriculture (CA) / Direct‐seeding Mulch‐based  Cropping (DMC) systems based on:

Cropping (DMC) systems based on:  • Permanent / maximum soil cover

• Minimum soil disturbance (no‐tillage)( g ) • Diversified crops rotations

Little information regarding agricultural Little information regarding agricultural  practices impact on soil quality…

(6)

ƒ Ban Poa experimental site Soil sampling: PAS CV DMC1 Soil sampling: PAS CV DMC1 DMC1 DMC2 DMC3 DMC1 DMC2 DMC3 Ban POA Experimental Site Ban POA Experimental Site

(7)

Land Use Rep Description

PAS 17 Savannah grassland dominated by Themeda triandra and Cymbopogon nardus species PAS 17 Savannah grassland dominated by Themeda triandra and Cymbopogon nardus species CV 27 Land preparation based on ploughing using discs and burying of crop residues

DMC No-tillage; direct seeding after mechanical and chemical control of cover crops DMC 1 27 Year 1: "fing+pig", then 3y rotation rice+sty / corn+fing+pig / soy bean +oat+buck DMC 2 27 Year 1: "fing+sty", then 3y rotation rice+sty / corn+sty / soy bean +oat +buckf g y , y y y y

DMC 3 27 Year 1 "ruzi+pig", then 3-year rotation rice+sty / corn+ruzi / soy bean +oat +buck

ƒ Treatments PAS

(8)

ƒ 1 single experimental site but covering a high variability of: – soil textural classes – Soil colors CV CV DMC 1 DMC 2 C 3 DMC 1 DMC 2 DMC 3 PAS DMC 3 PAS

(9)

ƒ Indicators

= variables allowing to translate a complex reality into more simple and  readable forms (Mitchell et al, 1994)

Indication Approach Variables / tools

Soil texture and chemical Texture pH Organic C total N avail Soil texture and chemical  properties Soil analysis in laboratory Texture, pH, Organic C, total N, avail  P, CEC, Base (Ca, Mg, K, Na), BS Soil structure quality S il i U di b d il l B lk d i (D )

‐ Soil macroporosity Undisturbed soil samples Bulk density (Da) ‐ Soil aggregate stability Wet sieving method  (Yoder) Water stable aggregates,  aggregation indexes Soil microbial abundance  & diversity Molecular tools  (qPCR, B‐RISA) Total soil DNA, bacterial and fungal  DNA, bacterial fingerprints

(10)

ƒ Indicators of soil structure quality  – Bulk density (Da) measured on 

undisturbed soil samples        (3 replicates /treatment)

(11)

W bl

ƒ Indicators of soil structure quality

– Water stable aggregates 

– Yoder method (1936) adapted by different authors  (Haynes Castro Filho et al Madari et al)

(Haynes, Castro Filho et al, Madari et al)

– 7 classes of aggregates obtained after wet sieving  of soil samples through 6 sieves (mesh of 8, 4, 2, 1, p g ( , , , , 0.5 and 0.25 mm) – 3 replicates per treatment – 4 aggregation parameters: • Macro (0.25‐19mm) and micro (<0.25mm)  t t t aggregate content • Mean Weight Diameter (MWD) • Mean Geometric Diameter (MGD)Mean Geometric Diameter (MGD) • Aggregate Stability Index (AS)

(12)

ƒ Indicators of microbial abundance and diversity

Total microbial community

Soil DNA quantification (agarose) = total soil microbial biomass

Molecular fingerprint (B‐ARISA) Bacterial and fungal abundance (qPCR 16 et 18S rDNA) Principal  component  l i Genetical structure of  bacterial communities analysis

(13)

ƒ Indicators

= variables allowing to translate a complex reality into more simple and  readable forms (Mitchell et al, 1994)

Indication Approach Variables / tools

Soil texture and chemical Texture pH Organic C total N avail P Soil texture and chemical  properties Soil analysis in laboratory Texture, pH, Organic C, total N, avail P,  CEC, Base (Ca, Mg, K, Na), BS Soil structure quality S il i U di b d il l B lk d i (D )

‐ Soil macroporosity Undisturbed soil samples Bulk density (Da) ‐ Soil aggregate stability Wet sieving method  (Yoder) Water stable aggregates, aggregation  indexes (MWD, MGD, AS) Soil microbial abundance  and diversity Molecular tools  (qPCR, B‐RISA) Total soil DNA, bacterial and fungal  DNA, bacterial fingerprints

(14)

ƒ Near infrared reflectance spectroscopy – Soil sampling in June 2009 – Bulk of 5 soil samples for each treatment  – In situ air‐dried and passed through 2mm mesh sieve –NIRS analysis in France (CNRS‐CEFE) –Crushing of soil samples using a Cyclotec crusher (1mm mesh sieve) –Soil placement in reading cells (quartz ) and then measurement of  reflected light in a spectrophotometer (NIRSystems 6500)

(15)

ƒ Near infrared reflectance spectroscopy

– Spectral field from 400‐2500 Nm, interval of measurement every 2  Nm, producing a spectrum made up of 1050 values of absorptance – Predictions using winISI II software (v 1.50)

(16)

NIRS ability to predict soil texture 

C tit t Nb Mi M M SD SEC R2 SECV 1 VR RPD Math

Constituent Nb Min Max Mean SD SEC R2 SECV 1-VR RPD Math

treatment

Clay (%) 108 13,80 65,20 38,57 14,93 3,27 0,95 3,72 0,94 4,02 2, 10, 10, 1 Silt (%) 106 11,80 34,40 17,71 4,07 1,84 0,80 2,21 0,71 1,84 2, 10, 10, 1 Silt (%) 106 11,80 34,40 17,71 4,07 1,84 0,80 2,21 0,71 1,84 2, 10, 10, 1 Sand (%) 106 13,50 72,80 43,70 15,77 2,58 0,97 4,00 0,94 3,95 2, 10, 10, 1

SD: Standart deviation; SEC: Standart Error of Calibration

d f l d f l d b d l

SECV: Standart Error of Cross Validation; 1‐VR: % of variance explained by model RPD: ratio SD/SECV; Math treatment: Derivate, Gap, Smooth 1, Smooth 2

ƒ Highly satisfactory for clay and sandg y y y

(17)

70 Linear regression between lab and NIRS values for Clay (%) 60 70 y = 1,0098x ‐ 0,3768 R² = 0,9545 40 50 u e  lab 30 40 lay % _va lu 10 20 C l 0 10 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Clay%_prediction NIRS

(18)

NIRS ability to predict chemical analytes

Constituent Nb Min Max Mean SD SEC R2 SECV 1-VR RPD Math

treatment Org C (%) 106 2,18 4,40 3,36 0,45 0,14 0,90 0,20 0,80 2,21 2, 10, 10, 1 Total N (‰) 106 1,71 3,42 2,36 0,35 0,14 0,84 0,17 0,76 2,02 2, 10, 10, 1 pH (1:5) 108 4,40 6,13 5,42 0,29 0,21 0,48 0,26 0,22 1,12 2, 10, 10, 1 Ca (me/100g) 108 0 11 5 44 2 50 1 17 0 53 0 80 0 71 0 63 1 64 2 10 10 1 Ca (me/100g) 108 0,11 5,44 2,50 1,17 0,53 0,80 0,71 0,63 1,64 2, 10, 10, 1 Mg (me/100g) 108 0,04 2,18 0,90 0,43 0,21 0,77 0,27 0,61 1,60 2, 10, 10, 1 K (me/100g) 106 0,05 0,51 0,18 0,08 0,05 0,58 0,07 0,37 1,25 2, 10, 10, 1 Σ base (me/100g) 108 0,35 8,10 3,63 1,66 0,69 0,83 0,98 0,66 1,70 2, 10, 10, 1 CEC (me/100g) 108 1,05 8,28 4,02 1,53 0,76 0,75 0,96 0,61 1,60 2, 10, 10, 1 Polsen (mg/kg) 108 2,00 18,56 8,96 3,70 2,30 0,61 3,03 0,33 1,22 2, 10, 10, 1

SD: Standart deviation; SEC: Standart Error of Calibration SD: Standart deviation; SEC: Standart Error of Calibration

SECV: Standart Error of Cross Validation; 1‐VR: % of variance explained by model RPD: ratio SD/SECV; Math treatment: Derivate, Gap, Smooth 1, Smooth 2

ƒ Satisfactory for organic C and total N

ƒ Moderately satisfactory for CEC, Ca, Mg and Sum of base  ƒ Poor prediction for Polsen, K, Na and pH

(19)

Linear regression between lab and NIRS values for orgC (%) 4 4,5 5 y = 0,9155x + 0,2988 R² = 0,852 3 3,5 4 u e  lab 2 2,5 rgC%_v al u 0 5 1 1,5 O r 0 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 OrgC%_prediction NIRS

(20)

ƒ Trends of changes given by coinertia analysis

NIRS ability to predict overall chemical changes

g g y y PCA NIRS, select clay, PC1xPC2  PCA text&chem, select clay, PC1xPC2  Significant coinertia analysis  (Montecarlo test  p‐value: 0.000999001) 

(21)

NIRS ability to predict structural elements

ƒ Moderate (Da, 1‐VR=0,62) to poor (WSA, 1‐VR <0,45) predictions( , , ) p ( , , ) p ƒ But trends of changes given by coinertia analysis PCA Structure, select clay, , y, PC1xPC2  PCA NIRS, select clay, PC1xPC2  Significant coinertia analysis g y (Montecarlo test  p‐value: 0.000999001) 

(22)

NIRS ability to predict microbial abundance and diversity

ƒ Poor predictions for abundance (1‐VR <0,35)  ƒ But trends of microbial diversity changes given by coinertia analysis  PCA NIRS, select clay, PC1xPC2  PCA RISA, BG analysis, select clay, PC1xPC2  Significant coinertia analysis g y (Montecarlo test  p‐value: 0.000999001) 

(23)

Conclusions

Conclusions

ƒ NIRS predictive potential difficult to assess on  single case study since: ‐ 1 sampling site x 1 sampling period      p g p g p (1 soil matrice vs diversity of soil matrices and  analytes forms)y ) ‐ Unique samples processing       (air‐dried vs stove, cyclotec vs mortar,...)

( , y , )

‐ Unique samples analysis methods for chemical  elements and NIRS (laboratory vs in situ)

(24)

ƒ As described by other authors (review by Malleyy ( y y et al, 2004) the study confirmed the possibility to  successfully determine by NIRS soil texture (clay,  sand) and 2 main soil chemical components  (organic C and total N) ƒ Qualitative information (trends) provided by  NIRS regarding soil chemical properties

NIRS regarding soil chemical properties, 

structure and microbial diversity changes were  satisfactory since all coinertia analysis were

satisfactory since all coinertia analysis were  significant (Monte carlo test p‐value <0.001)  P i l b d ( l ) f il ƒ Potential to be used (at least) for soil pre‐ screening  and be integrated into sampling and  l i t t analysis strategy ƒ Need of more spectral libraries to link NIRS p spectrum with structural and microbiota data

(25)

Thank you for your attention !

Thank you for your attention !

Références

Documents relatifs

The best predictive ability was found using minced presentation and set with 80% of the samples for the calibration and the remaining 20% for the external validation test for

Keywords: rice, aromatic rice, adulteration, near infrared spectroscopy, partial least square

Sayaboury Xieng Khouang Transfert progressif et durable aux DAFOs 2010 PRONAE Sayaboury Xieng Khouang Sustainable transfer to the DAFOs Structure providing services 2010

On the other hand, seed treatment resulted in reduced damage on both soil management systems (mean damage rate at harvest of 2.2 on control plots, compared to 1.8 on treated

Main dryland crops are : maize, rice-bean, job’s tears, peanut, rice and sesame Land allocation has started since 1996.. Cropping system is largely opportunistic, no particular

Agro-economic results on conventional and direct seeded rice on lowland ecosystem Direct seeding on upper terrace Conventional transplanting on lower terrace Operations

Implementing direct seeding techniques and rotations with cash crops for the upland rice system. Two systems of direct- seeded rice were conducted : i) on former crop residues, ii)

For these reasons, near infrared spectroscopy is used for the building of the forecasting model of amylose and protein content of rice, the non- destructive