• Aucun résultat trouvé

AERONOMICA ACTA

N/A
N/A
Protected

Academic year: 2021

Partager "AERONOMICA ACTA"

Copied!
57
0
0

Texte intégral

(1)

i s s n 0 0 6 5 - 3 7 1 3

I N S T I T U T D ' A E R O N O M I E S P A T I A L E D E B E L G I Q U E 3 - A v e n u e C i r c u l a i r e

B • 1180 BRUXELLES

A E R O N O M I C A A C T A

A - N° 324 - 1988

Ultraviolet absorption cross-séctions of chloro-

and chlorofluoromethanes at stratospheric temperatures

»

by

P.C. SIMON, D. GILLOTAY, N. VANLAETHEM-MEUREE and J. WISEMBERG

BELGISCH I N S T I T U U T V O O R R U I M T E - A E R O IM 0 M I E 3 - Ringlaan

B • 1180 BRUSSEL

(2)

F O R E W O R D

The paper entitled "Ultraviolet absorption cross-sections of chloro- and chlorofluoro-methanes at stratospheric temperatures" is submitted for publication in "Journal of Atmospheric Chemistry".

A V A N T - P R O P O S

L'article intitulé "Ultraviolet absorption cross-sections of chloro- and chlorofluoro-methanes at stratospheric temperatures" est soumis pour publication dans le "Journal of Atmospheric Chemistry".

V O O R W O O R D

Het artikel "Ultraviolet absorption cross-sections of chloro- and chlorofluoro-methanes at stratospheric temperatures" is voorgelegd ter

• publikatie in het "Journal of Atmospheric Chemistry".

V O R W O R T

Der Artikel "Ultraviolet absorption cross-sections of chloro- and

chlorofluoro-methanes at stratospheric temperatures" ist zur Veröffent-

lichung vorgelegt im "Journal of Atmospheric Chemistry".

(3)

ULTRAVIOLET ABSORPTION CROSS-SECTIONS OF CHLORO- AND CHLOROFLUORO- METHANES AT STRATOSPHERIC TEMPERATURES

P.C. SIMON, D. GILLOTAY, N. VANLAETHEM-MEUREE and J. WISEMBERG

Abstract

Absorption cross-sections of nine halomethanes (CCl^, • CHCl^, C H

2

C 1

2

, CH^Cl, CFC1

3 >

C F

2

C 1

2

, CF

3

C1, CHFC1

2

and C H F

2

C 1 ) measured between

174 and 250 nm for temperatures ranging from 225 to 295 K, are presented with uncertainties ranging from 2 to 4 % and compared with previous determinations made for comparable temperature range.

The largest temperature effect which takes place near the absorp- tion threshold, decreases the absorption cross-section up to 50 % for highly chlorinated methanes but is negligible for molecules highly stabilized by hydrogen and/or fluorine.

Extrapolated values for temperatures of aeronomical interest are presented as well as parametrical formulas which give absorption cross- section values for given wavelength and temperature ranges.

Résumé

Les sections efficaces d'absorption de neuf halométhanes (CCl^, CHC1 , C H

2

C 1

2 >

CH

3

C1, CFC1

3 >

C F

2

C 1

2

, CF

3

1, CHFC1

2

et C H F ^ l ) mesurées entre 174 et 250 nm pour des températures variant entre 225 et 295 K, sont présentées avec une incertitude comprise entre 2 et et comparées à des déterminations antérieures réalisées dans les gammes de tempera- tures comparables.

L'effet de température le plus important, qui a lieu près du seuil d'absorption, réduit les sections efficaces d'un facteur pouvant atteindre 50? pour les méthanes fortement chlorées; il devient négligeable pour des molécules fortement stabilisées par des atomes d'hydrogène et/ou de fluor.

Les valeurs extrapolées aux températures d' intérêt aéronomique

sont présentées de même que des équations paramétriques permettant de

calculer des valeurs de sections efficaces d'absorption pour des inter-

valles de longueur d'onde et de température données. •

(4)

Samenvatting

De werkzame absorptiedoorsneden van negen halomethaanverbindingen

(cci

v

C H C I

3 >

C H

2

C I

2

, C H

3

C I , C F C I

3

, C F

2

C I

2

, C F

2

C I , C H F C I

2

en C H F

2

C 1 ) ge- * meten tussen 174 en 250 nm voor temperaturen variërend tussen 225 en 295 K, worden voorgesteld met onzekerheden die schommelen tussen 2 en 4%

en vergeleken met vorige bepalingen opgesteld voor vergelijkbare tempera- turen.

Het belangrijkse temperatuurgevolg dat plaats heeft bij de absorptiedrempel leidt tot een vermindering van de werkzame absorptiedoorsneden die wel 50$ kan-bereiken voor de sterk gechloreerde methaanverbindingen; ze is echter te verwaarlozen voor moleculen die sterk gestabiliseerd worden door waterstof- en/of fluoratomen.

Geëxtrapoleerde waarden voor temperaturen van aëronomisch belang worden voorgesteld, alsook parametrische vergelijkingen die toelaten wepkzame absorptiedoorsneden te berekenen voor gegeven temperatuur- en golflengte-intervallen.

Zusammenfassung

Die Absorptionsdurchquerschnitten von neun Halomethanverbindungen (CCljj, CHC1 , C H

2

C 1

2 >

C H

3

C 1 , C F C 1

3 >

C F

2

C 1

2 >

C F

3

C 1 , C H F C 1

2

en C H F ^ l ) gemessen zwischen 174 und 250 nm für Temperaturen die variieren zwischen 225 und 295 K , werden vorgestellt mit Ungewissheiten der wechseln zwischen 2 und und verglichen mit vorigen Bestimmungen aufgesetzt für vergleichbare Temperaturen.

Die wichtigste Temperaturfolge die auftritt an die Absorption- schwelle, leitet zu einer Verringerung der Absorptionsdurchquerschnitten der bis 50$ erreichen kann für die stark chlorierten^Methanverbindungen;

sie ist aber zu vernachlässigen für Molekülen die stark stabilisiert werden durch Wasserstoff- und/oder Fluoratomen.

Extrapolierte Werten für Temperaturen von aëronomisches Interesse werden vorgestellt, wie auch parametrische Vergleichungen die zulassen Absorptionsdurchquerschnitten zu berechnen für gegeben Temperatur- und Wellenlängeintervallen.

02

(5)

INTRODUCTION

Odd chlorine (CI, C I O , C 1 0 N 0

2

, H C 1 , H O C 1 , . ..), which plays a key roJ.e in the budget of ozone in the stratosphere, is produced essentially by decomposition of halocarbons released in the troposphere. Organic halocarbons containing hydrogen atoms such as C H C l ^ , C H

2

C 1

2

, C H ^ C l , CHFCl^» CHF^Cl, may .react rapidly with radicals such as OH and may thus be largely destroyed in the troposphere. (Singh et a l . , 1979). Fully halogenated compounds such as CFCl^, C F

2

C 1

2

, ..., are not subject to chemical destruction in the troposphere and therefore transported in the stratosphere where they are destroyed by photodissociation. (Molina and Rowland, 197 4 ) . A c t u a l l y , only molecules with appreciable tropospheric residence times are subject to the diffusion up to stratospheric altitudes; when emission data are considered simultaneously, it appears that at least C F

2

C 1

2

, CFC1 , CCl^, Cf^Cl and C H F C 1

2

play a significant role in the stratospheric chemistry.(WMO, 1985; W u e b b l e s , 1983; Schmidt

et a l . , 1985)

S i n c e a significant fraction of the ozone loss in the 30 - 50 km region is due to active chlorine resulting from the photodecomposition.of these h a l o c a r b o n s , the absorption cross-section of these molecules has to be known with high a c c u r a c y . F u t h e r m o r e , their temperature d e p e n d e n c e h a s to be carefully measured because of the temperature condition prevailing at stratospheric altitude. Preliminary measurements of temperature dependence of absorption cross-section of chlorofluoromethanes, published by Vanlaethem-Meuree et al.(1978), have shown some non negligible disagreements in the temperature dependence of cross-section with existing data (Chou et a l . , 1976', 1977, 1978; R o b b i n s , 1976 a,b,c ; Robbins and Stolarski, 1976; Bass, and L e d f o r d , 1976). Even at room temperature, discrepancies between some data are larger than the experimental uncertainties.

T h e purpose of this paper is to report new measurements of ultraviolet absorption cross-section of nine h a l o m e t h a n e s , namely : CH C I , C H

2

C 1

2

, C H C 1

3

, C C 1

V

. C F

3

C 1 , C F

2

C 1

2

, C F C 1

3

, C H F

2

C 1 and C H F C 1

2

03

(6)

performed between 1 7 a n d 250 nm., at four different temperatures over the 225 - 295 K temperature range. This new set of data allows a reliable extrapolation down to 210 K. Taking into account the temperature dependence of absorption cross-section and the stratospheric temperature profile, photodissociation coefficients are calculated showing significant departure in these coefficients relative to similar calculations made for 295 K. These data will, be helpful to quantitatively estimate the lifetime of these halomethanes and to perform more accurately chlorine and ozone budget evaluations in the stratosphere.

EXPERIMENTAL

Absorption cross-sections have been determined in the 200 nm wave- length range as a function of temperature, with a classical single beam equipment (deuterium light source, 1 m model 225 Mc Pherson monochro- mator, absorption cell, an EMR 542 P.09.18 solar blind photomultiplier as detector). A complete description of the experimental devise has been given previously by Wisemberg and Vanlaethem (1978) and by Gillotay and Simon (1988).

Two different kinds of absorption cell were used to obtain the U.V.

absorption spectra of studied gases:

1. As the condensation conditions restrict the use of fairly high gas pressure at low temperature and then to access to low absorption cross- section determination, a long absorption optical path is required. Most of the measurements have been performed by mean of a thermostatic stainless absorption cell with a 2 m optical path. It can be evacuated

-7

down to 10 torrs by an ionic pump which prevents any contamination.

Temperature regulation down to 210 K is achieved by circulation of cooled

methylcyclohexane through a double jacket. Thermal equilibrium is

obtained usually after 3-4 hours with a maximum temperature gradient

between both ends of the cell of 2 K at 220 K. Gas pressure is measured

(7)

by c a p a c i t a n c e manometers MKS Baratron d i r e c t l y coupled with the absorption c e l l which a l l o w s the measurement of p r e s s u r e ranging from 10 to 1000 torrs with a p r e c i s i o n b e t t e r than 0 . 1 % , and i t s d e c r e a s e is followed during a c o o l i n g p r o c e s s . The actual gas temperature i s determined by c o n s i d e r i n g both the c o n d i t i o n s p r e v a i l i n g at the t h r e e p o i n t s of measurement in the c e l l and the v a l u e deduced from the p r e s s u r e d e c r e a s e , according to the p e r f e c t g a s e s l a w . Both d e t e r m i n a t i o n s are in c l o s e agreement, b e t t e r then 2 K . T h e r e f o r e , the accuracy of the f i n a l temperature d e t e r m i n a t i o n is w i t h i n 2 K over the whole temperature r a n g e . For t e c h n i c a l r e a s o n s , three temperatures have been s e l e c t e d f o r absorption cross-sections measurements, namely around 2 7 0 , 255 and 225 K.

2 . Some of the experiments where performed at room temperature in a 13-5 cm o p t i c a l path absorption c e l l , in order to access to the f a i r l y h i g h absorption c r o s s - s e c t i o n s .

The agreement of the two s e t s of r e s u l t s is always w i t h i n t h e experimental u n c e r t a i n t i e s d e f i n e d below (2 % at room temperature) in the overlap wavelength r a n g e .

Determination of the absorption cross-sections is based upon at l e a s t 15 s e q u e n t i a l r e c o r d i n g s o f continyously scanned spectra of the i n c i d e n t and absorbed f l u x e s measured for . i d e n t i c a l temperature c o n d i t i o n s , using the Beer-Lambert's law :

1 ( A ) = I ( A ) exp' ( - o ( A ) n . d ) (1 ) o

where : I ( A ) and 1 ( A ) are r e s p e c t i v e l y the i n c i d e n t and transmitted o '

f l u x e s , for a given wavelength A.

n i s the number of molecules per volume u n i t , d i s the o p t i c a l path.

o ( A ) is the absorption cross-section at wavelength A.

The spectral r e s o l u t i o n is of 0 . 1 5 nm with 100pm s l i t s .

I n a l l c a s e s , measurements were performed in a wide p r e s s u r e r a n g e , for which the v a l i d i t y of Beer-Lambert's law was c o n f i r m e d .

05

(8)

All samples were of a n a l y t i c a l grade and were d i s t i l l a t e d under vacuum and thoroughly outgassed before use.

According to the error budget, presented in table 1, the accuracy on cross-section measurements is of the order of +_ 2%, at ambient tempe- r a t u r e . At lower temperatures, the u n c e r t a i n t i e s increased from + 3% to

- 2 1 2 + k% for the absorption cross-sections values lower than 2 x 10 cm molec

1

. Moreover, the standard d e v i a t i o n c a l c u l a t e d , at each wavelength, on the observed values of cross-sections (at l e a s t 15 v a l u e s ) a r e lower than 2% at ambient temperature. At the lowest temperature and for the lowest values of absorption cross-section, the standard d e v i a t i o n i s of the order of 3.5%, a f t e r "the least squares f i t on the four studied temperatures.

RESULTS

Numerical values of absorption cross-sections for selected

- 1

wavelengths between 174 and 250 nm and frequency intervals of 500 cm currently used for aeronomy modelling (Brasseur and Simon, 1981) a r e respectively given in Tables 2a-10a and 2b-10b. The absorption spectra are a l s o presented in Figures 1-6.

a) Ambient temperature ( 2 9 5 K ) .

Cross-sections measurements have been extended to lower values

—?1 2

_

1

(< 2 10 cm molecule ) than those currently a v a i l a b l e in the l i t e r a t u r e .

Chloro- and chlorofluoromethanes display continuous absorption in the 17 4-250 nm r e g i o n , with absorption cross-sections ranging from 10

— op 2 —1

to 10 cm molec . The progressive s u b s t i t u t i o n of H atoms of the basic methane by CI atoms leads to increase absorption and to extend the absorption region towards higher wavelengths. On the contrary, the presence of F atoms tends to s t a b i l i z e the molecule whose absorption spectrum is depressed and shifted towards lower wavelengths.

The r e s u l t s presented in Table 2-10 and Figures 1-3 are in c l o s e agreement, within the quoted accuracy, with those generally used in modelling c a l c u l a t i o n s (Codata p a n e l , 1982; DeMore et a l . , 1985) and confirm the previous published values for CH^Cl (Robbins 1 9 7 6 , a , b ) , for CHC1 (Robbins 1 9 7 6 c ) , for CCl^ (Rowland and Molina 1 9 7 5 , Robbins 1 9 7 6 c ) , for C F

2

C 1

2

and CFC1 (Rowland and Molina, 1975; Robbins, 1 9 7 6 c ; Robbins and S t o l a r s k i , 1976; Bass and Ledford, 1976; Chou et a l , 1 9 7 7 ) , and for

06

(9)

1 0 - * * u aj

o 1 0 - » ' E

fM E

" 1 0 ~

1 8

uj 1 0 "

1 0

i/) I i/l i/)

O a 1 0 "

2 0

u

z O

£ 10~

21

cc O ui CÛ

< 1 0 "

2 2

1 7 0

* = R o b b i n s - - 1 9 ? 6 CH3CI • CHCI

3

1 8 0 1 9 0 2 Ö 0 210 220 2 3 0 2 4 0 2 5 0 W A V E L E N G T H ( n m )

F i g . 1.- Ultraviolet absorption cross sections of C H ^ C l , C H

2

C 1

2 >

C H C l ^ and CCl^ with respect of wavelength at 295 K .

07

(10)

u <u

«N E u 2 O

1 0 ™

1 6

1 ()•••

1

1.0"

1 8

LU (/> 1 0

1 9

10 I 10 O

a LJ IQ"*«» L

£ 1.0"

2 1

O l/>

CQ <

1 0 ~

2 :

T h i s w o r k B o b b i n s - 1 9 7 6

R o w l a n d a n d N o l i n a - 1 9 7 5

CF

3

Cl

' 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0 2 3 0 2 4 0 WAVELENGTH (nm)

F i g . 2.- Ultraviolet absorption c r o s s - s e c t i o n s of CF C.L, C F ^ C L ^ , C F C i ^ and CCl^ wi respect to wave'length at 295 K .

08

(11)

1 7 0 1 8 0 1 0 0 2 0 0 2 1 0 2 2 0 2 3 0 WAVELENGTH (run)

F i g . 3.- Ultraviolet absorption cross-sections of C F ^ C l , C H F

2

C 1 and C H F C 1

2

with respect to wavelength at 195 K .

09

(12)

CHF^Cl and CHFC1

2

(Robbins 1 9 7 6 c , Robbins and S t o l a r s k i . 1 9 7 6 , Chou et al 1976) w i t h i n the experimental e r r o r s . Disagreements between 20 to 30 % at some wavelengths are c l e a r l y seen from F i g u r e s 2 , for C F

2

C 1

2

between 204 and 210 nm and from F i g u r e 4 for CHF

2

C1 between 198 and 204 nm. I n the c a s e of methylene c h l o r i d e ( C H

2

C 1

2

) , i f one excepts the data of Gordus and B e r n s t e i n ( 1 9 5 4 ) l i m i t e d to a narrow wavelength range (205-220 nm), the only a v a i l a b l e data are the v a l u e s p u b l i s h e d by Hubrich and S t u h l ( 1 9 8 0 ) which are in average \0% h i g h e r those reported h e r e . V a l u e s obtained in t h i s work for CF^Cl are s i g n i f i c a n t l y lower in the r e g i o n o f weak absorption (up to .30 % depending of the wavelength) than the ones obtained by Chou et a l . 1978 (not plotted on the f i g u r e ) with a 10 cm absorption c e l l . I t should be pointed out that the use of a 2 m absorption c e l l allows a more a c c u r a t e d e t e r m i n a t i o n s p e c i a l l y in the ranges corresponding to low a b s o r p t i o n .

With the assumption, in f i r s t approximation, of an e x p o n e n t i a l d e c r e a s e of absorption cross-sections with the wavelength in t h i s low absorption r e g i o n , the r e s u l t s presented here s u b s t a n t i a t e the h y p o t h e s i s according to which tropospheric p h o t o d i s s o c i a t i o n i s n e g l i g i b l e compared to the s t r a t o s p h e r i c c o n t r i b u t i o n ; even in the case of the most absorbing compound ( C C 1 . ) , the. absorption cross-section does not exceed

— ? — 1

10 cm molec. in the 300 nm region (Rebbert and Ausloos 1 9 7 6 ) .

b) Low temperature ( 2 2 5 . _ K _ - _ 2 7 0 _ K ) .

For each compound, a b s o r p t i o n cross-sections have been measured for d i f f e r e n t temperatures in the l a r g e s t range a f f o r d e d by vapor p r e s s u r e c o n d i t i o n s which l i m i t the maximum working p r e s s u r e . The actual- experimental c o n d i t i o n s are summarized in T a b l e . 1 1 .

As shown in F i g u r e s '4-6, absorption cross-sections d e c r e a s e with temperature by a factor which depends on both the wavelength and the chemical composition of the compound. T h i s e f f e c t i s the most s i g n i f i c a n t at low temperatures and in s p e c t r a l regions of low a b s o r p t i o n s . T h e temperature dependence is more important in the case of h i g h l y c h l o r i n a t e d s u b s t a n c e s , but v a n i s h e s p r o g r e s s i v e l y in the r e g i o n of

10

(13)

F i g .

)

J.- Ultraviolet absorption cross-sections of C H ^ C l , C H

2

C 1

2 >

CHCl^ and CCl^

versus wavelength as a function of t e m p e r a t u r e . 295 K :

250 K : 210 K :

1 1

(14)

WAVELENGTH (nm)

Fig. 5.- Ultraviolet absorption cross-sections of CF^Cl, C F

2

C 1

2 >

CFCl^ and CCl^

versus wavelength as -a function of temperature.

295 K :

250 K :

210 K : •

(15)

1 0 -

1 7 v—

1

Ü 01 O

E 1 0 - ïe M

E u

^ ^

Z 10- 10 O

»- LJ la 1

UJ \A 10- ao 1

(/) KA

O a

LJ 10- 21 z

O K 0.

a 1 0 - 22 o

00 ffi <

180 100 200 210 W A V E L E N G T H (nm)

220 230

Fig. 6.- Ultraviolet absorption cross-sections of CHF

2

C1 and CHFC1

2

versus wavelength as a function of temperature

295 K 250 K 210 K

13

(16)

higher absorptions. Temperature effect, if any, was too small to be detected in our experimental conditions in the case of CF^Cl.

For all compounds, the relationship between the absorption cross- sections and the temperature for a given wavelength is characterized by an exponential decrease depending upon wavelength and temperature values (295 K, 270 K, 255 K and 225 K). Consequently extrapolation based on four temperatures well distributed within the temperature range can easily be made down to 210 K within the accuracy range defined above.

Numerical values are presented in Tables 2-10 for selected temperatures (270, 250, 230, 210 K) which cover the usual stratospheric conditions.

Similar measurements have already been made only at two temperatures, 296 K and 223 K in the particular case of C F

2

C 1

2

and CFC1

3

by Bass and Ledford (1976) .who used optical paths up to 10 m and by Chou et al. (1977 ) with a 10 cm absorption cell at several temperatures between 212 and 296 K. ' Comparison with the available data is given on Figure 7 , 8. and 9.

For CF^Cl^, values reported in this work confirm the previous results of Bass and Ledford (1976), down to 215 nm. The results published by Chou et al.(1977) give systematically higher values than those reported by Bass and Ledford and in this work. At 220 nm where the

- 2 1 2 ' - 1

absorption cross-sections are below 10 cm molec. , the agreement between Bass and Ledford and Chou et al. seems better but both give higher values and, consequently, a less pronounced temperature dependence. Actually, this wavelength represents the lower limit in measurements given by both authors.

A similar conclusion can be drawn from Figure 8 giving the comparison between measurements performed for CFC1

3

and can be extended dow to 200 nm.

1 '4

(17)

TEMPERATURE (K)

F i g

. 7.- Absorption cross-sections of C F

2

C 1

2

versus temperature at three wavelengths

( 2 1 0 , 2 1 4 and 2 2 0 nm).

(18)

Fig. 8.- Absorption cross-sections of CFCl^ versus temperature at three wavelengths

- (210, 214 and 220 nm).

(19)

Absorption cross-sections for CH^Cl, CFCl^, C F

2

C 1

2 >

CHF

2

C1 and CHFCl^ have also been published by Hubrich et al.(1977) and Hubrich and Stuhl (1980) for only one low temperature, namely 208 K. Their results confirm qualitatively the general conclusions mentioned above. They are in fairly good agreement for C F

2

C 1

2

between 190 and 205 nm (within the experimental accuracy of 4 %) but diverges from about - 5 % at 200 nm up to +40 % at 230 nm for CFCl^. For the other compounds, differences of more than 20 % are observed with their values even at room temperature.

Discrepancies can be explained by a critical analysis of the experimental conditions reported by Hubrich et al.(1977) ?nd Hubrich and Stuhl (1980) which reveals that some measurements have been performed in less favourable conditions, namely transmitted fluxes lower than 5 % or higher than 95 %, leading to larger uncertainties than those reported in this work for which experimental measurements for transmission below 10 % and above 85 % have been eliminated in order to stay in a range where the Beer-Lambert law is applicable within the quote accuracy.

As explained above, the absorption cross-sections can be represented by an empirical function of temperature for each wavelength, according to the following expression :

log 10 o( X) = A(X) + B(X) x T (2)

where the parameters A and B were determined by a polynomial fitting of the available experimental data with respect of temperature and wavelength by means of a least squares fit algorithm developed by The Math Works Inc. (PC MATLAB) to obtain the following polynomial expression

log10 o(X,T) = A

Q

+ A X + ...+ A

n

x " + (T-273) x (B

Q

+ B ^ +...+ B

n

X

n

) ( 3 )

The computed values of the A an B parameters are given in Table 12.

17

(20)

The computed values of absorption cross-sections calculated with expression (3) represent all the experimental data with differences lower than + 4 % .

DISCUSSION

As discussed by Majer and Simons (196

1

)) and Sandorfy (1976), the continuous absorption of chloro- and chloro-fluoromethanes in the 200 nm region corresponds to the less energetic band of their electronic

*

spectrum. It is due to the existence of a (C-Cl) <— CI transition involving excitation to a repulsive electronic state (C-Cl antibonding).

Substitution of hydrogen atoms in the basic hydrocarbon entity by chlorine atoms leads to an increased absorption and a red shift of the average wavelength absorption range, while fluorine atoms play the opposite role and stabilize the molecule. Unfortunately, the complexity of the spectrum features, especially in the case of polychloro-compounds, makes a theoretical analysis of temperature dependence of their absorption cross-sections very difficult.

Relative values of absorption cross-sections o(T)/o(295) versus wavelength relationships, for a given temperature, display very similar features for all highly chlorinated compounds ( C H

2

C 1

2

, C H F C 1

2 >

CHCl^, CFCl^, CCl^ ) while a greater specificity with the chemical composition is observed in the case of CH CI, C H F

2

C 1 , C F ^ l and C F

2

C 1

2

(Fig 9).

It is currently admitted in the wavelength and pressure ranges of stratospheric interest, that the most important process for the photo- dissociation of all the halocarbons is the release of one CI atom with an unitary quantum yield, according to the general scheme :

RC1 -»• RC1 + CI (4) x x-1

The immediate reaction of RC1 .j with atmospheric 0

2

releases another CI atom leaving RC1 which in turn can be subject to photo-

18

(21)

RELATIVE ABSORPTION CROSS-SECTION : a T / a 2 9 5

WAVELENGTH (nm)

Fig. 9.- Relative absorption cross-sections o(T)/o(295 K) as .a function of wavelength for the eigth chloro-fluoro-methanes showing a temperature dependence.

-*- : This work (T = 270K, 250K, 230K and 210K) A . : Bass and Ledford (1976) (T = 223 K) 0 : Hubrich et al. (1977) (T = 208 K)

Note : valeus from Chou et al. (1976) are not plotted on this figure for sake

of clarity.

(22)

lysis. The ultimate fate of such radicals in stratospheric conditions ought to be considered in detail in order to define the production of CIO radicals due to the photodissociation of each halocarbons.

Photodissociation coefficients J for a given altitude z, zenith angle x

a n d

wavelength interval have been computed according to the relations:

j Z =

°X

q

'X

( z ) ( 5 )

t \ , , ~

T

X ( z ) (6)

q. <z) = q (®) e

T

X

( z )

= I [n(0 ) o(0

0

) + n(0 ) o(0_) + n(air)a _ ] sec x dz (7) /„ ^ ^ 3 5 scatt.

Zt

where : a are the absorption cross-sections

q (z) and q^ (») are the solar irradiance at altitude z or extraterrestrial.( z =

n

1

âre the number of particules per volume unit,

for solar zenith angles of 0° and 60° (sec x =

1

and 2)

Taking the values of a(0

2

), o(C>

3

) from WMO (1985) and Kockarts ( 1976), of ô .. from Nicolet (1984) and the values of q (=°) from WMO ( 1985) and

scatt

taking into account the actual values of cross-sections which correspond

•t'ci th'e temperature conditions prevailing at a definite altitude. (Tables 13 and 14, Figures 10 and 11).

A comparison of either temperature dependent or independent photo- dissociation coefficients for different stratospheric altitudes (15 to 50 km) is presented in Table 14 where relative photodissociation coefficients J(T)/J(295) versus altitude relationships are given for all studied compounds. Obviously, the effect is maximum at low altitudes and gradually decreases, following the temperature profile in the stratosphere. Due to the significant increase of ozone optical depth in

20

(23)

WAVELENGTH (nm)

Fig". 10.- Spectral distribution of photodissociation coefficients of CH

2

C1

2

for frequency intervals of 500 cm , z = 35 km and solar zenith angle = 60°

,(sec x =

2

)•

(*) : J(295 K), (+) : J(T).

21

(24)

W A V E L E N G T H (nm)

Fig. 11.- Spectral distribution of photodissociation coefficients of C F

2

C 1

2

for frequency intervals of 500 cm"

1

, z =.35 km and solar zenith angle = 60°

(sec x = 2 ) .

(*) : J(295 K), (+) : J(T).

22

(25)

the stratosphere at wavelength beyond 220 nm, the value of the overall, photodissociation coefficients between 20 and 35 km is mainly influenced by the 200-210 nm interval contribution.

In such conditions, a significant reduction of overall photo- dissociation coefficients is only to be expected in the case of compounds whose absorption cross-sections are strongly temperature dependent in this wavelength interval. Accordingly, important reduction factors are observed for C H

2

C 1

2

, CHCl^, C F

2

C 1

2

and CHFC1

2 >

and to a lesser extend for CH^Cl, CHF

2

C1 and CFCl^, while CCl^ photodissociation coefficient is almost temperature independent in the stratosphere.

The introduction of lower photodissociation coefficients in atmospheric models increases altitudes of photolysis, and therefore changes the altitude profile of the considered halomethane in the strato- sphere.

In conclusion, this work presents a complete and coherent set of experimental data about temperature dependent absorption cross-sections and photodissociation coefficients of chloro- and chlorofluoro-methanes, and gives fairly simple relationships to compute the absorption cross- sections values with respect of temperature and wavelength.

ACKNOWLEDGMENTS

The authors wish to thank Dr. G. Brasseur for helpful discussions and Mr. E. Falise who performed the computer calculations of the photo- dissociation coefficients. This research has been partially supported by

the European Communities Commission under contract 303-78-1.

23

(26)

REFERENCES

BASS, A.M. and LEDFORD, A.E.Jr., 1976, Ultraviolet photoabsorption cross- sections of CF^Cl^ and CFCl^ as a function of temperature, 12th Int. Conf. on photochemistry, Gaithersburg (USA), June 1976.

BAULCH, D.L., COX, R.A., CRUTZEN, P. J . , HMPSON Jr., R.F. KERR, J .A., TROE, J. and WATSON, R .T. , 1982, Evaluated kinetics and photochemical data for atmospheric chemistry : supplement I, CODATA Task Group on Chemical Kinetics, J. Phys. Chem. Ref. Data, 11, 327-496.

BRASSEUR,G. and SIMON,P.C., 1981, Stratospheric and thermal response to long-term variability in solar UV irradiance., J. Geophys. Res., 86, 73^3•

C.C., VERA RUIZ, H., MOE, K. and ROWLAND, F.S., 1976, Unpublished data, 1976, reported by WATSON, R.T. ,1977.

C.C., SMITH, W.S., VERA RUIZ, H., MOE, K., CRESCENTINI, G., MOLINA, M.J., and ROWLAND, F.S., 1977, The temperature dependences of the ultraviolet absorption cross sections of CCl^F^ and CCl^F, and their stratospheric significance, J. Phys. Chem., 8j_, 286-290.

C.C., MILSTEIN, R.J. , SMITH, W.S>, VERA RUIZ, H., MOLINA, M.J., and ROWLAND, F.S., 1978, Stratospheric photodissociation of several satured perhalo chloroflüorocarbon compounds in current technological use (Fluorocarbons-13, 113, 114, 115), J. Phys.

Chem., 82, 1-7.

DEMORE, W.B., MARGITAN , J . J . , MOLINA, M.J . , WATSON, R .T . , GQLDEN , D.M., HAMPSON, R.F., KURYLO, M.J., HOWARD, C.J. and RAVISHANKARA, A.R.,

1985, Chemical kinetics and photochemical data for use in strato^

spheric modeling, JPL publication 85~37.

FABIAN, P., BORCHERS, R., PENKETT, S.A.,and PROSSER, N.J.D., 1981, Halo- carbons in the stratosphere, Nature, 294, 733~735.

GILLOTAY,D. and SIMON,P.C., 1988, Ultraviolet absorption cross-sections of methyl bromide at stratospheric temperatures, accepted for publication in Annales Geophysicae, 6, xx.

CHOU,

CHOU,

CHOU,

(27)

GORDUS, A.A., and. BERNSTEIN, R.B., 1954, Isotope effect in continuous ultraviolet absorption spectra: Methyl bromide -d^ and chloroform-d, J . Chem. Phys., 22, 790.

HUBRICH, C., ZETZSCH, C. and STUHL, F., 1977 , Absorptionsspektren von halogenierten Methanen im Bereich von 27 5 bis 160 nm bei Temperaturen von 298 und 208 K, Ber. Bunsenges. Physik. Chem., 81 , 437-442.

HUBRICH, C. and STUHL, F., 1980, The ultraviolet. absorption of some halogenated methanes and ethanes of atmospheric interest, J . Photochem., J_2, 93~1 07 .

K0CKARTS, G. , 1976, Absorption and Photodissociation in the Schumann- Runge bands of molecular oxygen in the terrestrial atmosphere, Planet. Space Sei., 24, 589-604.

MAJER, J.R. and SIMONS, J.P., 1964, Photochemical processes in halo- genated compounds, J . Pitts, G. Hammond and W.A.Noyes, eds.

Advances in photochemistry, 2, 137.

NIC0LET, M., 1984, On the molecular scattering in the terrestrial atmo- sphere : an empirical formula for calculation in the homosphere, Planet. Space Sei., 32, 1467-1468.

MOLINA, M.J. and ROWLAND, F.S., 1974, Stratospheric sink for chloro- fluoromethanes : chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812.

REBBERT, R.E., and AUSL00S, P .J ., 1976, Gas-phase photodecomposition of carbon tetrachloride, J . Photochem., 6, 265-276.

R0BBINS, D.E., 1976a, Photodissociation of methyl chloride and methyl bromide in atmosphere, Geophys. Res. Lett.,' 3. 213

_

216.

R0BBINS, D.E., 1976b, Erratum, Geophys. Res. Lett., 3, 757.

R0BBINS, D.E., 1976c, UV photoabsorption cross sections for halocarbons, Int. Conf. on the Stratosphere and related problems, Logan, (USA).

R0BBINS, D.E. and STOLARSKI, R.S., 1976, Comparison of stratospheric ozone destruction by fluorocarbons 11, 12, 21, and- 22, Geophys.

Res. Lett., 3, 603-606.

ROWLAND, F.S. and MOLINA, M.J., 1975, Chlorofuöromethanes in the environment, Rev. Geophys. Space Phys., J_3, 1.

25

(28)

SANDORFY, C. , 1976, Review paper: U.V. absorption of halocarbons, Atm.

Environ., H), 3^3-351. .

SCHMIDT, U., KNAPSKA, D. and PENKETT, S.A., 1985, A study of the vertical distribution of methyl chloride (CH^Cl) in the midlatitude strato- sphere, J. Atmos. Chem., 3. 363"376.

SINGH, H.B., SALAS, L.J., SHIGEISHI, H., and SCRIBNER, E., 1979, Atmo- spheric halocarbon, hydrocarbons, and sulfur hexafluoride: Global distribution, sources and sinks, Science, 203• 899-903.

VANLAETHEM-MEUREE, N..WISEMBERG, J., SIMON, P.C., 1978, Influence de la temperature sur les sections efficaces d'absorption des chloro- fluoromethanes dans l'ultraviolet, Bull. Acad. Roy. Belgique, Cl, Sci. , 64, 42.

WATSON, R.T., 1977, Rate constants for reactions of CIO of atmospheric interest, J. Phys. Chem. Ref. Data, 6, 871-917.

WISEMBERG,J.,VANLAETHEM-MEUREE ,N., 1978, Mesures des sections efficaces d'absorption de constituants atmosphériques dans l'ultra-violet:

description du système experimental, Bull. Acad. Roy. Belgique, Cl. Sci. , 64, 21 .

WMO, 1985, Atmospheric ozone 1985, WMO global ozone research and monitoring project, report 16.

WUEBBLES, D.J., 1983, Chlorocarbon emission scenarios : potential impact on stratospheric ozone, J. Geophys. Res'., 88, 1 •M33

_

^3-

26

(29)

TABLE 1. Error budget

a) T = 295 K

optical path (200 cm + 0.1 cm) 0. ,05 % 3 ~3

pressure (in the range 10 - 2 x 10 torr) 0. ,1 %

impurities in the sample 0. 1 %

temperature ( + 0 . 1 K at 300 K) 0. 03 % absorbance ln(I /I) for t = 1

0 2. 0 %

Total r.m.s. error (2 o) 1

2

- 00 %

b) T = 210 K

optical path (200 cm + 0.1 cm) 0. 05 % 3

_

3

pressure (in the range 10 -2x10 torr) 0. 1 %

impurities in the sample 0. 1 %.

temperature (+ 2 K at 210 K) 1 %

cross-section dependence on temperature error 1 % absorbance ln(I

Q

/I) for i = 1 2. 0 %

= 0.6 3.3 %

. (min. value considered)

total r.m.s. error (2 a) + 2. 17 % + 3.62?

27

(30)

TABLE 2 . a . A b s o r p t i o n cross-sections at 2 nm i n t e r v a l at temperatures (295 K , 27 0 K , 250 K , 2 3 0 K , 2 1 0 K)'

s e l e c t e d

CH_C1

s ( A ) * . . 2 1 , 2 10 (cm molec. ^ )

A (nm) 295K 27 OK 25 OK 230K 21 OK

174 1110 1 110 1110 1110 1110

176 938 938 938 938 938

178 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6

180 607 607 607 607 607

182 467 467 467 467 467

184 350 350 350 350 350

186 255 255 255 255 255

188 182 182 182 182 182

190 127 127 127 127 127

192 87 . 2 87 . 2 87 . 2 87 . 2 87 . 2

194 5 8 . 8 5 8 . 8 5 8 . 8 5 8 . 8 5 8 . 8

196 4 0 . 1 4 0 . 1 4 0 . 1 4 0 . 1 4 0 . 1

198 2 6 . 6 2 6 . 6 2 6 . 1 25 .8 2 4 . 3

200 17 .6 17 .3 1 6 . 9 1 6 . 3 1 5 . 1

202 1 1 . 3 1 0 . 7 1 0 . 3 9 . 7 0 9 . 3 0

204 7 .50 6 . 9 1 6 . 6 0 6 . 1 1 5 . 7 3

206 4 . 8 3 4 . 5 0 4 . 0 5 3-75 3 . 4 5

208 3 . 1 8 2 . 8 5 2 . 5 7 2 . 3 5 2 . 1 2

210 2 . 0 6 1 . 8 2 1 .64 1 . 4 5 1 . 3 0

212 1 . 3 2 1 . 1 2 1 . 0 0 0 . 9 0 0 . 8 0

21 4 . 0 . 8 6 0 . 7 2 0 . 6 3 0 . 5 5 0 . 4 7

216 0 . 5 5 . 0 . 4 4 0 . 38 0 . 3 3 0 . 2 7

28

(31)

TABLE 2 . b . A b s o r p t i o n cross-sections over the s p e c t r a l i n t e r v a l s used in atmospheric modelling c a l c u l a t i o n s , at s e l e c t e d temperatures ( 2 9 5 K, 2 7 0 K, 250 K, 230 K, 210 K)

C H

3

CI (wavenumber i n t e r v a l s : 500 c m "

1

)

o (A ) * 1 0

2 1

(cm

2

molec.

1

)

N° X (nm) 295K 27 OK 250K 230K 21 OK

45 1 7 3 . 9 - 1 7 4 . 4 1057 1057 1057 1057 1057

46 175.4-177 .0 923 923 923 923 923

47 177 . 0 -178.6 787 787 787 787 787

48 1 7 8 . 6 - 1 8 0 . 2 656 656 656 6 5 6 6 5 6

49 1 8 0 . 2 - 1 8 1 . 8 536 536 536 536 536

50 1 8 1 . 8 - 1 8 3 . 5 429 429 4 29 4 29 •. 429

51 1 8 3 . 5 - 1 8 5 . 2 333 333 333 333 333

52 1 8 5 . 2 - 1 8 6 . 9 254 254 254 254 254

53 1 8 6 . 9 - 1 8 8 . 7 188 188 188 188 188

54 1 8 8 . 7 - 1 9 0 . 5 1 39 1 39 139 139 139

55 1 9 0 . 5 - 1 9 2 . 3 9 7 . 8 9 7 . 8 9 7 . 8 9 7 . 8 9 7 . 8 56 1 9 2 . 3 - 1 9 4 . 2 6 9 . 3 6 9 . 3 6 9 . 3 6 9 . 3 6 9 . 3 57 1 9 4 . 2 - 1 9 6 . 1 47 .7 47 .6 47 .3 4 6 . 8 4 5 . 8 58 1 9 6 . 1 - 1 9 8 . 0 3 2 . 5 3 2 . 2 31 .7 31 . 2 . 3 0 . 2 59 1 9 8 . 0 - 2 0 0 . 0 21 .6 21 .1 2 0 . 6 1 9 . 9 1 9 . 2 60 2 0 0 . 0 - 2 0 2 . 0 1 4 . 2 1 3 . 7 1 3 . 2 1 2 . 6 1 2 . 0 61 2 0 2 . 0 - 2 0 4 . 1 9 . 2 7 8 . 8 1 8 . 3 6 7 . 9 0 7 . 4 4 62 2 0 4 . 1 - 2 0 6 . 2 5 . 9 1 5 . 5 0 5 . 1 4 4 . 7 7 4 . 4 3 63 2 0 6 , 2 - 2 0 8 . 3 3 . 7 6 3-42 . 3-13 2 . 8 6 2 . 6 2 64 2 0 8 . 3 - 2 1 0 . 5 2 . 3 3 2 . 0 6 1 .86 1 .67 1 . 5 0 65 2 1 0 . 5 - 2 1 2 . 8 1 .44 1 . 2 4 1 . 0 9 0 . 9 7 3 0 . 8 5 3 66 2 1 2 . 8 - 2 1 5 . 0 0 . 8 7 4 0 . 7 26 o .634 0 . 5 5 5 0 . 4 7 4

67 2 1 5 . 0 - 2 1 7 . 4 0 . 5 2 5 0 . 4 2 4 0 . 3 6 7 0 . 3 2 0 0 . 2 6 4

29

(32)

I

TABLE 3 . a . A b s o r p t i o n c r o s s - s e c t i o n s at 2 nm i n t e r v a l at s e l e c t e d temperatures (295 K, 270 K, 250 K, 230 K, 210 K)

a(A) * 10

2 1

(cm molec. ) 2 -1

\ (nm) 295K 270K 250K 230K 21 OK

176 1850 1850 1850 1850 1850

178 1807 1807 1807 . 1807 1807

180 1695 1695 1695 1695 1695

182 1509 1509 1509 1509 1509

184 ' 1307 1307 1307 1307 1307

186 1040 1040 1040 1040 1040

188 799 799 799 799 799

190 575 575 575 575 575

192 417 417 417 409 400

194 288 288 281 271 . 263

196 197 193 186 178 171

198 136 130 124 1 18 112

200 92 .0 86. 5 82.5 7 6 . 2 7 2 . 2

202 62 .0 56.8 52.7 49.0 45.6

204 42 .2 38. 1 34.8 31 .7 29.0

206 28 .8 25. 4 22.8 20.6 18.5

208 19 .5. 16. 8 14.8 13.1 11 .8

210 12 .8 11. 0 9.70 8.50 7.36

212 8 .35 7 . 10 6.10 5.25 4.63

214 5 .40 4 . 60 3 - 9 3 3.36 2.87

216 3 .55 2. 97 2.53 2.15 1 .84

218 2 .34 1 . 93 1 .61 . 1 . 3 4 1 .12

220 1 .52 1 . 23 1 .03 0.860 0.7 20

30

(33)

TABLE 3.b. A b s o r p t i o n c r o s s - s e c t i o n s over the s p e c t r a l i n t e r v a l s used i n atmospheric modelling c a l c u l a t i o n s , at s e l e c t t e d temperatures (295 K, 270 K, 250 K, 230 K, 210 K)

CH_C1„ (wavenumber i n t e r v a l s : 500 cm

1

)

o( A ) * 10 21 , 2 . - K (cm molec. )

N° X (nm) 295K 27 OK' 250K 230K 21 OK

46 175.4-177.0 1847 1847 1847 1847 1847

47 177 .0-178.6 1812 1812 1812 1812 1812

48 178.6-180.2 1783 1783 1783 1783 1783

49 180.2-181.8 1652 1652 1652 1652 1652

50 181.8-183.5 147 0 1470 1470 - 1470 1470

51 183.5-185.2 1252 1252 1252 1252 1252

52 185.2-186.9 1040 1040 1040 1040 1040

53 186.9-188.7 801 801 801 801 801

54 188.7-190.5 621 621 621 621 621

55 190.5-192.3 457 454 450 442 435

56 192.3-194.2 335 330 325 316 309

57 194.2-196.1 238 232 226 218 211

58. 196.1-198.0 167 160 155 148 141

59 198.0-200.0 113. 108 102 96.5 91 .4

60 200.0-202.0 76.7 71-5 67 .1 62.4 58.4

61 202.0-204.1 51 .6 47.3 43.7 40.1 37.0

62 204.1-206.2 33.9 .30.5 27 .7 25.0" 22.8

63 206.2-208.3 22.2 19.6 17 .5 15.6 14.0

64 208.3"210.5 14.2 12.3 10.8 9.48 8.38

65 210.5-212.8 9.07 7 .71 6.66 5.77 5.02

66 212.8-215.0 5.64 4.71 4.02 3.43 2.95

67 215.0-217.4 3.47 2.86 2.42 2.04 1.73

68 217.4-219.8 2.06 1.69 1 .42 1 .18 0.995

31

(34)

TABLE l . a . Absorption cross-sections at 2 rim I n t e r v a l at selected temperatures (295 K, 270 K, 250 K, 23Ó K, 210 K)

3

X (nm) 29 5K

o ù ) * 27 OK

V 1 (cm

2

molec.

1

)

250K 230K 21 OK

171 17 50 1750 17 50 1750 1750

176 1930 1930 1930 1930 1930

178 1650 1650 1650 1650 1650

180 3875 3875 3875 3875 3875

182 3216 3216 3216 3216 3216

181 2125 2125 2125 2125 2125

186 1750 1750 1750 1750 17 50

188 1 395 1395 1 395 ' •1 395 1395

190 1122 1122 1 122 1122 1122

19.2 878 878 878 878 87 8

191 711 711 7 30 715 696

196 618 • 609 593 578 556

198 509 U 9 '4 17 6' 158 138

200 111 390. 371 355 339

202 332 317 302 277 259

201 265 ^ 217 228 213 198

206 201 183 170 158 H 3

208 ' 151 1 3'i 122 1 10 100

210 108 95, .0 81.8 76.0 . 67. .5

212 77 . .5 66. .8 58.8 51 .8 15, .5

211 53. .8 15. .5 39.5 31.3 29. ,7

216 36. .5 30. • 3 26.1 22 .9 19. .3

218 21. .8 20. 2 17 .3 11.7 12. 6

220 16. .7 13. .6 11 .1 9.68 8. 15

222 1 1 . 3 9. .05 7 .50 6.25 5. .20 221 7 . • 50. 5'. .95 1.91 1.10 3. 10

226 5. .00 3-95 3.25 2.67 2. 19

228 3. 38 2. ,65 2.18 '1 .77 1 . 15

230 2. 28 1. 79 1.13 1.11' 0. 900

232 1 . .52 1. 11 0.896 0.7 1 1 0. ,566

231 1 . 02 0.725 0.581 0.156 0. 361

236 '

:

0. ,680 0. 17 2 0.378- 0.291 0. 231 238 0. 160 0. 308 0.217. 0.190 ,0. 119

210 0. 310 0. 202 0.162 0.121 0.096

32

(35)

TABLE l . b . A b s o r p t i o n c r o s s - s e c t i o n s over the s p e c t r a l i n t e r v a l s used i n a t m o s p h e r i c m o d e l l i n g c a l c u l a t i o n s , at s e l e c t e d _temperatures (295 K, 270 K, 250 K, 230 K, 210 K)

CHC1, ( f r e q u e n c y i n t e r v a l s : 500 cm ^

N° X(nm)

o ( A )

295K

* 10 21 , (cm

27 OK

^ m o l e c . - l

250K

)

230K 21 OK

15 173. , 9 - 1 7 5 . 1 1850 1850 1850 1850 1850

16 175. ,1-177 .0 1929 1929 1929 1929 1929

17 177. , 0 - 1 7 8 . 6 1680 1680 1680 1680 1680

18 178. . 6 - 1 8 0 . 2 1115 1115 1115 1115 1115

19 180. , 2 - 1 8 1 . 8 3500 3500 ,3500 3500 3500

50 181 . .8-183 .5 2930 2930 2930 2930 2930

51 183. . 5 - 1 8 5 . 2 2310 2310 2310 2310 2310

52 185. . 2 - 1 8 6 . 9 1750 1750 1750 1750 1750

53 186. .9-188.7 117 0 117 0 1170 1170 1170

51 1 8 8 . 7 - 1 9 0 . 5 1 180 1 180 1 180 1 180 1 180

55 190. ,5-192.3 920 - 920 920 920 911

56 192. , 3 - 1 9 1 . 2 790 790 790 7 7 1 7 5 1

57 191. , 2 - 1 9 6 . 1 665 658 615 631 608

58 196. . 1 - 1 9 8 . 0 560 516 529 •515 193

59 1.98. .0 - 2 0 0 . 0 155 137 119 103 382

60 . 200 . 0 - 2 0 2 . 0 367 317 328 •312 295

61 202. .0-201.1. 295 27 1 257 212 226

62 201, , 1 - 2 0 6 . 2 228 209 193 180 165.

63 206 . 2 - 2 0 8 . 3 168 151 137 126 I l l

6,1 208 . 3 - 2 1 0 . 5 1 18 101 92 .6 85 .0 75. .5

65 210 .5-21 2.8 82 .0 70. .5 62 .3 56. .2 19. .2

66 212 . 8 - 2 1 5 . 0 55 .0 16 .5 10 . 1 35. .7 30. .8

67 215 .0-217 .1 35 .5 29. .5 25 .2 22. .'2 ' 18. .8

68 217 . 1 - 2 1 9 . 8 21 .8 17 .9 .15 . 1 12 .9' 10. .9 69 219 . 8 - 2 2 2 . 2 13 .5 10 .9 9 .11 7 . .69 6, .18 70 222 . 2 - 2 2 1 .7 8 - 3 5 ' 6 .61 5 .51 1 .59 3. .81 71 221 . 7 - 2 2 7 . 3 5 . 0 0 ' 3. .95 3. .25 2. .67 2. .19 72 227 . 3 - 2 2 9 . 9 2 .95 2 .29 1 .87 1 . .50 1 . .25 73 229 . 9 - 2 3 2 . 6 1 .76 . 1 . • 31 1 .08 0. .860 0. .677

33

(36)

tABLE 5.a. Absorption cross-sections at 2 nm I n t e r v a l at selected temperatures (295 K, ZJO K, 250 K, 230 K, 210 K

c c i „

21 2 - 1

o(X) * 10 (cm molec. )

X(nm) 295K 27 OK 250K 230K 210K

171 9900 9900 9900 9900 9900

176 10100 10100 10100 10100 10100

178 9750 9750 9750 9750 9750

180 7200 7200 7200 7 200 7200

182 5900 5900 5900 5900 5900

181 1100 1100 1100 1100 1100

186 3100 3100 3100 3100 3100

188 1980 1980 1980 1980 1980

190 1169 1169 1169 1169 1169

192 992 992 992 992 992

191 767 767 767 767 767

i96 695 695 695 ' 695 695

198 680 680 680 680 680

200 660 660 660 660 . 660

202 638 638 638 638 638

201 610 610 610 610 601

206 570 57 0 57 0 561 5UU

208 525 525 511 501 183

210 169 159 i]i<6 1431» 115

212 110 392 380 367 318

211 315 327 315 • 295 279

216 278 259 211 230 217.

218 221 201 189 172 163

220 175 158 116 135 125

222 136 120 109 98.0 90.0

221 102 88.0 79.5 71.1 ' 61.0

226 76. .0 61.5 57 .8 50.5 11.5

228 56.5 17 .0 11 .7 36.2 31 .6

230 12. ,8 31.9 30.1 25 .7 22.7

232 30. ,14 21.8 21 .1 17 .9 15.2

231 22.0 17 .7 11.8 12.5 10.5

236 16. .0 12.7 10.5 8.72 7 .23

238 11 , .6 9.06 7.13 6.10 5.00

210 8. • 30 6.10 5.19 1.22 3.12

212 5. .90 1.19 3-62 2.91 2.31

211 1. .13 3.11 2.18 1 .98 1 .58

216 2, ;90 2.17 1 .72 1.36 1 .08

218 2, .10 1 .56 1 .23 0.968 0.762

250 1 .18 1 .09 0.858 0.67 3 0.528

34

(37)

TABLE 5.b. A b s o r p t i o n p r o s s - s e c t i o n s over the s p e c t r a l I n t e r v a l s used In atmospheric m o d e l l i n g c a l c u l a t i o n s , at s e l e c t e d temperatures (295 K, 270 K, 250 K, 230 K, 210 K)

CC1. (wavenumber i n t e r v a l s : 500 cm ' )

\ (nm)

o U ) * 295K

21 ? 10* (cm

27 OK

molec.

1

)

250K 230K 21 OK

15 173 . 9 - 1 7 5 . 1 10000 10000 10000 10000 10000

1)6 175 .1-177 .0 10000 10000. 10000 10000 10000

17 177 . 0 - 1 7 8 . 6 9800 9800 9800 9800 9800

18 178 .6-180.2, 8150 8150 8150 8150 8150

19 180 . 2 - 1 8 1 . 8 6550 6550 6550 . 6550 6550

50 181 .8-183.5 5350 5350 5350 . 5350 5350

51 183 . 5 - 1 8 5 . 2 . 1200 1200 1200 1200 1200

52 185 . 2 - 1 8 6 . 9 3100 3100 3100 3100 3100

53 186 .9-188-7 1999 1999 1999 1999 1999

51 188 .7-190.5 1510 1510 1510 1510 1510

55 190 .5-192.3 1076 1076 ' 1076 1076 1076

56 192. .3-191.2 868 868 868 868 868

57 191. .2-196.1 719 719 719 . 719 719

58 196. .1-198.0 687 687 687 687 687

59 198. . 0 - 2 0 0 . 0 670 670 670 670 670

60 200. .0-202 .0 619 619 619 619 619

61, 202. ,0-201.1 619 619 619 619 619

62 201. ,1-206.2 598 598 598 591 577

63 206. ,2-208.3 518 511 537 529 513

61 208. 3 - 2 1 0 . 5 183 172 163 151 135

65 210. ,5-212.8 113 397 386. 371 355

66 212. ,8-215.0 339 321 308 292 277

67 215. .0-217 .1 270 251 238 222 209

68 217 . 1 - 2 1 9 . 8 207 188 176 162 15.1

69 219. 8 - 2 2 2 . 2 155 138 127 115 105

70 222. 2-221.7 113 98.1 88.9 ' 7 9 . 1 71 .7

71 221. 7-227 .3 . 77 .9 6 6 . 1 59.1 51.9 16.1

72 227 . 3 - 2 2 9 . 9 52.7 11.0 38.1 33.2 29.0

73 229. 9 - 2 3 2 . 6 3 3 . 1 27 .2 2 3 . 1 19.8 17 .0

7 1 232. 6 - 2 3 5 . 3 2 2 . 6 18.1 15.3 12.8 10.8

75 235. 3 - 2 3 8 . 1 11.2 11.1 9.23 7 . 6 1 6.31,

76 238. 1-211 .0 8 . 8 3 6.81 5.56 1.52 3.69

77 211 . 0 - 2 1 3 - 9 5.30 1.02 3.23 2.59 2.08

78 213. 9 - 2 1 6 . 9 3 . 2 1 2.13 1 .93 1 -53 1.21

79 2 1 6 . 9 - 2 5 0 . 0 1.93 1.13 1.13 0.886 0.696

35

(38)

TABLE 6.a. Absorption cross-sections at 2 rim interval at selected temperatures (295 K, 270 K, 250 K, 230 K, 210 K)

cf

3

CI

2 - 1

a(X) * "(cm molec. )

A(nm) 295K

17 2 11 .0

174 9.70

176 8.25

17 8 6.81 180 5.42

182 4.25

184 3.26 186 2.44 188 1 .75 190 1 .28 192 0.900 194 0.610 196 . 0.410

198 0.280

200 0. 190

36

(39)

TABLE 6 . b . A b s o r p t i o n c r o s s - s e c t i o n s over the spectral intervals used in atmospheric m o d e l l i n g c a l c u l a t i o n s , at selected t e m p e r a t u r e s (295 K , 270 K , 250 K , 230 K , 210 K)

CF^Cl (wavenumber intervals : 500 cm

1

)

o U ) * 1 0

2 1

( c m

2

m o l e c .

- 1

)

N° A (nm) 295K

U3 169.5-172.4 11 .7 .44 . 172.4-173.9 10.3 45 17 3- 9-175.4 9.25 46 175.4-177.0 8.10 47. 177 .0-178.6 6.95 48 178.6-180.2 5.80 49 180.2-181.8 4.80 50 181.8-183-5 3.90 51 183.5-185.2 3.10 52 185.2-186.9 2.44 53 . 186.9-188.7 1 .80 54 188.7-190.5 1 .36 55 190.5-192.3 0.990 56 192.3-194.2 0.700 57 194.2-196.1 0.480 58 196.1-198.0 0.320 59 198.0-200.0 0.220 60 200.0-202.0 0.150

37

(40)

TABLE 7.a. Absorption cross-sections at 2 nm interval at selected temperatures (295 K , 270 K , 250 K . 230 K . 210 K)

oU) » 10 (cm moiec. )

l (nm) 295K 27 OK 250K 230K 21 OK

171 1620 1620 1620 1620 1620

176 1810 1810

-

1810 1810 1810

178 1870 1870 1870 1870 1870

180 1790 1790 1790 1790 1790

182 1600 1600 1600 1600 1600

181 1310 1310 1310 1310 1310

186 1070 1070 1070 1070 1070

188 828 828 815 807 793

190 632 600 576 552 529

192 155 119 397 377 358

191 315 286 265 216 228

196 211 188 172 157 1114

198 139 121 109 98. , 1 88, .2

200 88, .9 75.5 66.3 58. .2 51 . . 1

202 55. . 1 15. .9 39.7 31. • 3 29. .7

201 • 31. .14 27 . .7 23.2 ' 20, .0 16, .9

206 20. .9 16 , .8 11.1 1 1 . .8 9. .89

208 12 .7 9. .91 8.19 6. .75 5 .57

210 . 7 . .59 5. .90 1.81 3-.96 3. .21

212 i) , .51 3. .17 '2.80 2. .26 1 , .83

211 2.7 1 2. .05 i .65 1 . .32 1. ,06

216 1 , .58 1 . . 17 0.926 0.731 0, .577

218 1 . .00 0 .7 20 0.550 0. .120 0. .330

220 0 .600 0. .120 0.320 0. .210 0. . 180

222 0. .360 0, .252 0.189 . 0, . 110 , 0. . 105'

221 0, .220 0. .152 0.112 0, .081 0. .060

226 0, . 1 30 0. .092 0.067 0. , 017 0. .031

38

(41)

TABLE 7 . b . A b s o r p t i o n c r o s a - s e c t i o n a o v e r t h e s p e c t r a ] I n t e r v a l s used in a t m o s p h e r i c m o d e l l i n g c a l c u l a t i o n s , a t s e l e c t e d t e m p e r a t u r e s (295 K, 270 K, 250 K, 230 K, 210 K

CF_C1_ (wavenumber I n t e r v a l s : 500 cm

1

)

o U ) « 10 (cm* molec. 1

N° X (nm) 295K 27 OK 250K 230K 210

15 173 . 9 - 1 7 5 ,U 17 00 17 00 17 00 1700 17 00

16 175 .1-177 .0 1822 1822 1822 1822 1822

17 177 . 0 - 1 7 8 •6 1860 1860 1860 i860 i860

18 178 .6-180 . 2 1817 1817 1817 1817 1817

19 180 .2-181 .8 17 00 1700 1700 1700 1700

50 l ft l .8-183 .5 15?fi 15?R 15 ?fl i ? ? 8

51 183 . 5 - 1 8 5 . 2 1310 1 310 1310 1310 1310

52 185 .2-186 .9 1070 107 0 107 0 107 0 1070

53 186 .9-138 .7 817 817 827 816 803

51 188 .7-.190 .5 . 683 612 621 600 580

55 190, .5-192 -3 502 17 0 i)16 !|21 103

56 1.92 .3-191

. 2

365 335 313 293 271

57 191 .2-196 . 1 253 227 209 193 177

58 196, .1-198 .0 171 150 ' 136 123 1 12

59 198 .0-200 .0 111 9 5 . 2 81. .6 75.

.14

67. . 1

60 200 .0-202 .0 7 0 . , 1 59.1 51 , .6 15.

, 2

39. .6

61 202, .0-201, . 1 13. .6 3 6 . 0 31 • .0 26. .7 23. .0

62 201. . 1-206,

. 2

' 26. ,1 . 21 .1 '7 • .9 15.

. 2

12. .8

63 206. .1-208 .3 15. .5 12.3 10.

, 2

8. •53. 7 . . 11

61 208, .3-210 .5 8. .81 6 . 8 8 5. .61 1. .63 3. .81

65 210. .5-21 2 . 8 5. ,03 3 . 8 5 3- 10 2. 51 2. 03

66 212, .8-215, .0 2 , .79 2 . 0 9 1 . ,66 1 . 32 1 . ,05

67 215, .0-217 , .1 1. 55 1.11 0. ,890 0. 691 0. 515

68 217 . .1-219 .8 0. .816 0 . 6 0 6 0 . 167 0 . 357 0 . 275 69 219, .8-222.

, 2

0. 167 0 . 3 2 6 0. 217 0 . 181 0 . 139 70 . 222, ,2-221 .7 0 . 262 0.177 0 . 131 0 . 0951 0 . 0701 71 221.7-227 , • 3 0 . 113 0.0927 0 . 067 2 0 . 017 1 0 . 0337

39

(42)

T A B L E 8 . a . A b s o r p t i o n c r o s s - s e c t i o n s a t 2 nm i n t e r v a l a t s e l e c t e d t e m p e r a t u r e s ( 2 9 5 k , 27 0 K , 250 K , 2 3 0 K , 210 K)

C F C 1

o U ) * 1 0 " (cm m o l e c . )

X (nm)

295K 27 OK 250K 230K 21 OK

1 7 1 3 1 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3 1 3 0

176 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

178 3235 3235 3235 3235 3235

180 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0

182 2 9 6 0 2 9 6 0 2 9 6 0 2 9 6 0 2 9 6 0

181 2 7 2 0 27 20 27 20 27 20 27 20

186 2 1 3 0 2 3 8 5 2 3 6 0 ? 3 3 5 ?3fin

188 2 1 3 0 2 0 9 0 2 0 7 0 2 0 1 5 2 0 2 0

190 1790 1760 1715 1 7 2 5 ' 17 05

192 . 1510 1195 1165 1110 1112

•191 1213 1218 1 198 1 1 7 1 1151

196 9 9 1 9 5 9 915 9 2 5 9 0 5

198 7 8 0 7 6 2 717 7 3 3 7 18

200 6 1 5 6 2 2 600 5 7 9 5 5 8

202 500 176 1 5 1 111 120

20M 3 7 1 318 330 316 300

206 280 256 211 225 2 1 6

208 197 182 170 159 119

210 118 133 120 1 10 9 9 . 1

212 105 91 . .8 8 2 . 6 7 6 . 7 6 6 . 3

21M 7 5 . 6 6 1 . . 1 5 6 . 2 19 .2 1 3 . 1

216 5 3 . 8 1 1 . • 3 37 .9 3 2 . 1 27 .8

218 37 -9 30. ,3 2 5 - 3 21 .2 17 .7

220 2 6 . 1 2 0 . .5 1 6 . 8 1 3 - 8 1 1 . 3

222 1 8 . 2 13. .8 1 1 . 1 8 . 9 0 7 . 1 1

2 2 1 1 2 . 1 9 . 25 7 .30 5 . 7 6 1 . 5 1

226 8 . 1 2 6. ,16 1 . 7 9 3 . 7 3 2 . 9 1

228 5 . 6 5 1. ,08 3 . 1 5 2 . 1 3 1 .88

230 3 - 7 5 2. 7 0 2 . 0 8 1 . 6 0 1 . 2 3

40

(43)

TABLE 8 . b . A b s o r p t i o n c r o s s - s e c t i o n s o v e r t h e s p e c t r a l I n t e r v a l s used i n a t m o s p h e r i c m o d e l l i n g c a l c u l a t i o n s , a t s e l e c t e d t e m p e r a t u r e s (295 K. 270 K, 250 K, .230 K, 210 K)

CFC1, (wavenumber i n t e r v a l s : 500 cm ' ) 3

0 (X ) * 10 ^ (cm^ molec.

1

)

N° X(nm) 295K 27 OK 250K 230K 21 OK

15 173. 9-175. ,1 3180 3180 3180 3180 3180

16 175. 1-177 . .0 3210 3210 3210 3210 3210

147 177 . 0-178. ,6 3238 3238 3238 3238 3238

18 178. .6-180. 2 3160 3160 3160 3160 3160

19 180. 2-181 .8 3050 3050 3050 3050 3050

5U i S I . ,8-183. .5 2000 2000 2880 2880 2880

51 183- 5-185. .2 2670 2670 267 0 2670 2670

52 185. 2-186. .9 2130 2385 2360 2335 2300

53 186. ,9-188.7 2155. 2123 2111 2097 2079

51 188. .7-190, .5 ' 1891 1871 1858 1813 1827

55 190. .5-192, • 3 1612 1590 1577 1563 1518

56 192. .3-191. ,2 1360 1339 1325 1312 1 296

. 57 191. ,2-196, . 1 1118 1097 1081 1068 1052

58 196. ,1-198 .0 905 882 865 851 831

59 198. .0-200, .0 712 689 67.1 656 638

60 200 .0-202 .0, 552 528 510 191 177

61 202 .0-201, . 1 122 398 380 365 318

62 201. .1-206 .2 313 291 271 260 211

63 '206. .2-208 • 3 229 209 191 181' 167

6 1 208 .3-210 .5 , 163 115 132 1 21 110

65 210 .5-212 .8 111 99.3 88.7 79 .7 71 , .0

66 212 .8-215 .0 77 • 6 65.7 57 .1 50 .5 11, .0

67 . 215 .0-217 .1 52 . 1 12.9 • 36.6 31 , .1 26, .8

68 217 .1-219 .8 31 .0 27.1 22 .6 18 .9 15 .7

69 219 .8-222 .2 21 .8 16.9 . 13.8 1 1 • 3 9 .15

70 222 .2-221 .7 13 .9 10.5 8.33 6 .66 5, • 30

71 221 .7-227 • 3 8 .12 6.16 1.79 3.73 2. .91

72 227 .3-229 .9 5 .00 3 .60 2 .77 2, .12. 1 .61

41

(44)

TABLE 9.a. Absorption cross-sections at 2 nm interval at

temperatures (295. K, 270 K, 250 K, 230 K, 210 K) selected

CHF

2

CI

21 2 - 1

o(X) * 10 (cm molec. )

X(nm) 295K . 270K 250K 230K 210K

174 57.2 57.2 57.2 57.2 57.2 176 40.1 40.4 40.4 40.4 40.4 17 8 27 . 6 27 . 6 . . 27 .6 27 .6 27 .6

180 19.1 19.1 19-1 19.1 19.1 182 12.8 12.8 12.8 12.8 12.8 184 8.42 8.42 8.42 8.42 8.42 186 5.76 5.76 5.76 5.76 5.76 188 3-72 3.72 3.72 3-72 3.72 190 2.45 2.45 2.45 2.45 ' 2.42 192 1.56 1.56 1.56 1.52 1.48

194 1.03 1.02 0.99 0.96 0.93 196 0.72 0.69 0.67 0.64 0.62

198 0.48 0,.45 0.43 0.41 . 0.39 200 0.32 0.29 0.278 0.259 0.246 202 0.220 0.192 0.184 0.169 0.159 204 0.142 0.121 0.114 0.104 0.096

42

(45)

TABLE 9.b. Absorption cross-sections over the spectral intervals used in atmospheric modelling calculations, at selected temperatures (295 K, 270 K, 250 K, 230 K, 210 K) .

2

C1 (wavenumber intervals : 500

1

)

o U ) * . ,.21 , 2 -1 > 10 . (cm molec. )

N° X (nm) 295K 27 OK 250K 230K 21 OK

45 173.9-175.4 51 .7 51 .7 51 .7 51 .7 51 .7 46 175.4-177.0 38.0 38.0 38.0 38.0 38.0 47 177 .0-178.6 28.8 28.8 28.8 28.0 20.8 48 .178.6-180.2 21.2 21.2 21 .2 21 .2. 21 .2 49 180.2-181.8 15.5 15.5 15.5 15.5 . 15.5 50 181.8-183.5 .11.3 11.3 11 .3 11 .3 11 .3' 51 183.5-185.2 8.03 8.03 8.03 8.03 8.03 52 185.2-186.9 5.65 5.65 5.65 5.65 5.65 53 186.9-188.7 3.88 3.88 3.88 3.88 3.88 54 188.7-190.5 2.72 2.72 2.72 . 2.72 2.72 55 190.5-192.3 1.83 ' 1.82 1 .80 1.77 1 .72 56 192.3-194.2 1.26 1 .24 1 .22 1 .19 1.15 57 194.2-196.1 0.850

1

0.825 0.806 0.778 0.7 47 58 196.1-198.0 0.576 0.548 0.532 0.508 0.484 59 198.0-200.0 0.385 0.357 0.344 0.324 0.307 60 200.0-202.0 0.259 0.233 0.223 0.207 0.194 61 202.0-204.1 0.177 0.153 0.144 0.132 0.123

43

(46)

TABLE 10.a. Absorption cross-sections at 2 nm interval at temperatures (295 K, 270 K, 250 K, 230 K, 210 K)

selected

CHFC1 2

o(Jt) * i o (cm m o l e c . )

A(nm) •295K 27 OK 250K 2 3 0 K 21 OK

174 1660 1660 1660 1660 1660

176 1645 16-45 1645 1645 1645

178 1550 1550 1550 1550 1550

180 1380 1300 1380 1 380 1380

182 1160 11 60 1160 1160 1160

184 924 924 924 924 924

186 7 1 5 7 1 5 7 1 5 7 1 5 7 1 5

188 5 3 2 5 3 2 529 5 2 5 5 2 0

190 384 381 376 371 365

192 269 264 259 254 247

194 184 179 173 168 162

196 123 1 18 113 109 104

198 81 .0 76 .2 7 2 . 4 6 8 . 9 6 5 . 0

200 52 .4 48 .5 4 5 . 6 42 .9 3 9 . 9

2 0 2 33 .5 30 .5 2 8 . 3 2 6 . 3 2 4 . 2

204 21. .2 19 .0 17 .4 1 5 . 9 14 .5

2 0 6 . 13 .4 11 .7 1 0 . 6 9 . 6 1 8 . 6 7

208 8 .36 7 .20 6 . 4 5 5 . 7 8 5 . 1 6

210 5 .22 4 . 4 3 3 . 9 2 3 . 4 7 3 . 0 8

2 1 2 . 3 .25 . 2 .72 2 . 3 9 2 . 1 0 1 .84

214 2 .03 1 .68 1 .46 1 .27 1 . 1 1

216 1 .27 1 .04 0 . 9 0 4 0 . 7 8 2 .0.681

218 0 .797 0 .654 0 . 5 6 4 0 . 4 8 7 ' 0 . 4 2 3

220 0 .503 0 .414 0 . 3 5 7 0 . 3 0 8 0 . 2 6 8

2 2 2 0 .319 0 . 2 6 6 0 . 2 2 9 0 . 1 9 9 0 . 1 7 4

Références

Documents relatifs

Nitric oxide is formed in the lower thermosphere as a result of ionospheric reactions (Norton and Barth 111] ; Strobel et al [13]; Nicolet [6]) and occurs in the stratosphere

1 shows the transmission versus wavenumber of a portion of the v 3 band computed for the laboratory conditions used by Guttman The positions of water vapor lines are shown at

The determination of the absorption cross-sections xo is made after sequential recordings of incident and transmitted radiation fluxes, measured in the same temperature conditions

1, Comparison between absorption cross-section values obtained for one pressure condition with an unlimited range of transmitted fluxes (e), and for various pressure

A comparison of either temperature dependent or independent photodissocia- tion coefficients for different stratospheric altitudes (15 to 50 km) is presented in

Ultraviolet absorption cross-sections of bromoform (CHBr^) have been measured for temperatures ranging from 295 to 240 K with two different experimental equipments: a) with a

(1) As the condensation conditions restrict the use of fairly high gas pressures at low temperatures, a long absorption optical path is required to gain

In conclusion, this work presents a new set of experimental data about absorption cross-sections of methyl bromide in stratospheric conditions, which present a non