• Aucun résultat trouvé

An indicator of pesticide leaching risk to groundwater

N/A
N/A
Protected

Academic year: 2022

Partager "An indicator of pesticide leaching risk to groundwater"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-01137065

https://hal.archives-ouvertes.fr/hal-01137065

Submitted on 30 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An indicator of pesticide leaching risk to groundwater

Anna Lindahl, Christian Bockstaller

To cite this version:

Anna Lindahl, Christian Bockstaller. An indicator of pesticide leaching risk to groundwater. Ecolog-

ical Indicators, Elsevier, 2012, 23, pp.95-108. �10.1016/j.ecolind.2012.03.014�. �hal-01137065�

(2)

ContentslistsavailableatSciVerseScienceDirect

Ecological Indicators

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l i n d

An indicator of pesticide leaching risk to groundwater

Anna M.L. Lindahl

a,b,∗

, Christian Bockstaller

c

aEquipeAgriculturedurable,INRA,BP20507,68021Colmar,France

bDepartmentofSoilandEnvironment,SwedishUniversityofAgriculturalSciences,P.O.Box7014,75007Uppsala,Sweden

cINRA,UMR1121Nancy-Université– INRA,IFR110,BP20507,68021Colmar,France

a r t i c l e i n f o

Articlehistory:

Received23December2011 Receivedinrevisedform6March2012 Accepted14March2012

Keywords:

Data-mining Fuzzyinferencesystem I-Phyindicator MACROmodel Pesticideleaching Preferentialflow

a b s t r a c t

Sincethe90sanincreasingnumberofassessmentmethodsusingoperationaltoolslikeindicatorshave beenproposedforenvironmentalissueslinkedtopesticides,amongthem,groundwatercontamination bypesticidetransfer.Toourknowledgenoneoftheseindicatorsaddresspreferentialflow,animpor- tantprocessdeterminingpesticideleaching.Theobjectiveofthisstudyistwofold:(i)todevelopanew groundwatersubindicatorforanexistingindicator,I-Phy(formerIpest),thatexplicitlytakepreferential flowintoaccount,and(ii)totestthepossibilityofdevelopinganindicatorbymeansofdata-mining methodsusingsimulationsofamechanisticmodel.Thegroundwatersubindicatordevelopedisinthe formofdecisiontreesbasedonfuzzyinferencesystems.Itwasderivedthroughneuro-adaptivelearning ondatasetsfromsimulationsrunningtheprocess-basedMACROmodel.Unlikethepreviousversion,the newindicatorconsiderspreferentialflow,climaticdifferencesanddifferencesinsoiltexturewithdepth.

Otherbenefitsarelessdependencyonexpertknowledgeandthepossibilitytointegrateabroadrange ofconditions.

©2012ElsevierLtd.Allrightsreserved.

1. Introduction

Theintensiveuseofpesticidesinmodernagriculturehavehad animpactonhumanhealth,livingorganisms,ecosystemfunction- ing,waterquality,etc.(Perrin,1997).Duringthelasttwodecades, thishasledtoagrowingconcernamongdifferentgroupsofstake- holders.Developmentofdifferentkindsofsolutions,suchasnew technologies, newresistant cultivars, redesign of plant protec- tionsystemsand croppingsystems, isontheagendatoreduce the dependency on chemicals (e.g. ENDURE, 2011). A general agreementisthatthereductionofpesticiderisksinconventional agriculturegoeshandinhandwiththedevelopmentofassessment toolsofpesticideriskandimpact(Bockstalleretal.,2009).Sincethe 90sanincreasingnumberofassessmentmethodsusingoperational toolslikeindicatorshavebeenproposedforenvironmentalissues linkedtopesticides.Theseindicatorsaremoreadvancedthanthe formerassessmentsbasedsolelyofpesticidesweightandvolume (Levitan,2000).Toourknowledge,noneoftheexistingpesticide environmentalriskindicatorsaddresspreferentialflowasamech- anisminvolvedingroundwatercontamination(seee.g.reviewsby ReusandLeendertse,2000;Maudetal.,2001;Bockstalleretal., 2009).Nevertheless,preferentialflowisimportantinarangeof

Correspondingauthor.Presentaddress:DepartmentofSoilandEnvironment, SwedishUniversityofAgriculturalSciences,P.O.Box7014,75007Uppsala,Sweden.

Tel.:+4618671169;fax:+4618673156.

E-mailaddress:anna.lindahl@slu.se(A.M.L.Lindahl).

differentsoils(Flury,1996)andoccursinstructuredsoilsthrough macropores(BevenandGermann,1982),asfingerflowinwater repellentsandysoils(Ritsemaetal.,1993;DekkerandRitsema, 1996)orlayeredsoils(HillandParlange,1972),orasfunnelflow (Kung,1990).Simulationstudieshaveshownareducedinfluenceof pesticidepropertiesonleachinginthepresenceofmacroporeflow (LarssonandJarvis,2000).Infieldstudies,thesimultaneousarrival ofvariouspesticidesintiledrainsdespitetheirdifferentsorption characteristics(Kladivkoetal.,1991;Traub-Eberhardetal.,1994) hasbeenattributedtopreferentialflow.Insituationsofpreferen- tialflow,indicatorsbasedonasimpleindexconsideringpesticide properties onlyare unabletocorrectlyassess thefateofpesti- cideconsideredas‘non-leachable’.AnexampleistheGUS-index (Gustafson,1989),commonlyusedforestimatingtheleachability ofpesticidesthroughweighingtheeffects ofthepartition coef- ficienttosoilorganiccarbon(Koc)andthedegradationhalf-life (DT50)ofthepesticide. Preferentialflow occurringshortly after applicationcancausehighlossesevenforfastdegradingpesticides.

Furthermore,experimental(Reichenbergeretal.,2002)andmod- elingevidence(McGrathetal.,2008)suggestthatrapidpreferential transportincreaseswithincreasingsorptioncapacity.Thismaybe duetothatweaklysorbingpesticideswillbetransportedawayfrom thesoilsurfacebymatrixflowfollowingsmallamountsofgentle rain.Atsuchweatherconditions,morestronglysorbingpesticides willbemoresusceptiblefortransportbypreferentialflowincase ofarainstormatalaterdatesincetheyareretainedinthesoil nearthesurfaceforalongerperiodoftime(McGrathetal.,2008).

Soilwatercontentatthetimeofapplicationandthesubsequent 1470-160X/$seefrontmatter©2012ElsevierLtd.Allrightsreserved.

doi:10.1016/j.ecolind.2012.03.014

(3)

precipitationpatternarethusimportantfactorssincetheyregulate whetherpreferentialflowistriggeredornotandtowhatextent.

Approachesfordeterminingworst-casepesticidepropertiesfora specificsoil,withrespecttoleaching,thereforeneedtotakeinto accountnotonlypesticidespropertiesbutalsofactorsdetermining andregulatingpreferentialflow.

Deterministicsimulation modelsof pesticidefateand trans- portinthesoilthataccountformacroporeflowareavailable(e.g.

MACRO;Larsboetal.,2005;Köhneetal.,2009).However,exten- sivedatarequirementsmakethesemodelsdifficult,orimpractical, touseforsite-specificexposureassessments.Awaytoovercome thismajordrawbackcouldbetoderiveindicatorsfromcomplex dynamicmodelsusingmeta-modelingapproaches(Pi ˜nerosGarcet etal.,2006;Bockstalleretal.,2008a).Amajoradvantageofsuch model-based indicators is that the causesof an impactcan be deduced(i.e.,mainfactorsresponsibleforaneffectcanbeiden- tified)whensimulatingdifferentscenarios.Inthedevelopmentof suchmeta-modelsitshouldbeconsideredthatsimulationmod- elsofpesticidefateandtransportarenon-linearintheirresponse to changes in soil and pesticide parameters. Simulation meta- models using linear regression techniques are therefore likely tofail(Bouzaheretal.,1993).Approachesaddressingnon-linear relationsin meta-modeling are however available.Examples of meta-modelingtechniquesusedtoassesstheprocessesofpesti- cidefateandtransportinthesoilsareneuralnetworks(Stenemo etal.,2007)andlook-uptablesoftheMACROmodel(Holmanetal., 2004),andthefittingofsimulationstoasimplemathematicalfunc- tion(asdonebyBouzaheretal.(1993)fortheRUSTICmodeling system(Deanetal.,1989)).

I-Phy(formernameIpest)(vanderWerfand Zimmer,1998;

Bockstalleretal.,2008b)isawell-documentedpesticideindicator and a constituent ofthe INDIGO methodfor assessing sustain- abilityofagriculturalsystems(Bockstalleretal.,1997,2009).It has been compared to other European indicators (Reus et al., 2002), adapted andimplemented indifferentsituations aswell asin researchprojects (Bues et al.,2004; Arregui et al., 2010;

Chikowo et al., 2009) and more than 130 extensions projects (e.g. Novak et al., 2009). But, in common with many other indicators,itsgroundwatermoduleforassessingpesticideleach- ing risk neglects preferential flow and heavily relies on the GUS-index. Consequently, there is a risk that I-Phy underesti- mate thepesticide leaching risk for soilsprone to preferential flow.

Theobjective of this study istwofold: (i) todevelop a new groundwatersubindicatorofI-Phyaddressinginanexplicitway preferentialflow,and(ii)totesttheapproachstatedbyBockstaller etal.(2008a),i.e.,developinganindicatorbymeansofdata-mining methods usingsimulations of a mechanistic model. Toachieve theseobjectives,wedecidedtobasethenewindicatoronsimu- lationscarriedoutwiththeprocess-basedmacroporeflowmodel MACRO (Jarvis, 1994; Larsbo et al., 2005). To avoid creating a

‘blackbox’ofstatisticalempiricalfunctionslackinganyclearmean- ing,ascanbetheproductofmetamodeling(e.g.Pi ˜nerosGarcet etal., 2006;Stenemo et al.,2007), wechoseto keepthe I-Phy structurewhich isin theformof decisiontrees usinglinguistic rulesthatareeasytounderstandand freefromcomplexmath- ematicalfunctions. We alsodecided toapply fuzzysubsets for continuousinputvariablestoavoidknife-edgeeffectsattheclass boundaries(Prato,2005).Wetherebyretainedthedesignchoice oftheoriginalI-Phyindicatorasitalsoisafuzzyinferencesys- tem.Adata-miningmethodofneuro-adaptivelearningtypewas appliedtoallowfortheparameterizationofthemanymember- shipfunctionsandrulesoftheinferencesystemdeveloped.The resultingscoresofthenewindicatorwerecomparedtothat of theformerforsomecommonscenariosofpesticideapplicationin France.

2. Materialsandmethods

2.1. Indicatordesign

2.1.1. Overviewoftheformerindicator

I-Phy(vanderWerfandZimmer,1998;Bockstalleretal.,2008b) isanexpertsystemforcalculatingindicatorsreflectingthepoten- tialenvironmentalimpactoftheapplication ofa pesticidein a field crop. The model is basedon literature,experimentaldata andexpertknowledge,addressinguncertaintyusingafuzzylogic approach.I-Phycompriseseveralmodules(e.g.forestimatingthe riskofcontaminationofsurfacewatersortheair)offuzzyinference systemtype.Themodulesarestructuredintheformofdecision treesrepresentingtheextremesituationsofcombinationsoftwo fuzzysubsets;favorable andunfavorablestatesofthevariables.

A membershipfunction is associated witheach variable ofthe decisiontreesothatafuzzyclasscanbecalculatedforvariable values thatfallbetweentheextremes.The finaloutputof each moduleisanindicatorscorecalculatedusingtheSugeno’sinfer- encemethod(Sugeno,1985)alsoimplementedbyvanderWerf andZimmer(1998)aswellasbyFragoulisetal.(2009).Adetailed descriptionofI-Phy,withcalculationexamples,isgiveninvander WerfandZimmer(1998).InthelatestversionofI-Phy(Bockstaller etal.,2008b),theindicatorscoresrangeonascaleofenvironmental performance,from0(representingahigh-riskscenario)to10(rep- resentingano-riskscenario),withanacceptableriskdefinedat indicatorscore7.Thesamescaleisusedforallindicatorsincluded intheINDIGOassessmentmethod(Bockstalleretal.,1997,2009).

ThechoiceofthegeneralscaleofINDIGOwasdrivenbytheneedto provideuserswithascalethatiseasytounderstand.Toimprovethe farmers’perceptionoftheassessmentmethods,apositivescalewas chosenratherthanariskscale.Thereferencevalueof7allowstoset anoperationalandacceptable(betterthanaverage)targetwhich isnotthe“ideal”targetof“zeroimpact”,sometimesimpossibleto reachinshortterm.

2.1.2. Indicatordesignworkflow

The development of the groundwater indicator module (referredtoastheindicator)consistedofthefollowingfoursteps (seeFig.1):

Step1.Selectingrelevantinputvariables:

Theselectionof variables isanimportant step.Allvariables, whichhaveasignificantimpactonthepesticidedynamicsrele- vantforthespecificconditionsforwhichthedevelopedindicator istobeapplied,needtobeidentified.Potentialinputvariables wereselectedaccordingtoourexpertknowledgeofthepesticide leachingprocessandpesticideuse,soilandcroppingconditions withinagriculturalsystemsinFrance.Furthermore,theinputvari- ablevaluesshouldbereadilyavailableindatabases(e.g.pesticide properties)orknowntotheendusers(e.g.information onsoil properties,pesticideapplication,climate,etc.).Thiscriterionfacili- tatestheuseoftheindicator.Togiveinsightintohowpesticideloss relatestotheinputvariables,itisalsodesirablethattheindicator iseasytounderstandandinterpret.Avastnumberofinputvari- ableswouldproduceoverlycomplexdecisiontrees.Wetherefore strivetolimittheirnumber.Thevariablestakenintoconsider- ationwhendevelopingtheindicatoraresummarizedinTable1.

Differenttypesofcroppingarealsoconsideredbutareexcluded fromTable1sincethecropsarefixedtothevariableseasonof application(i.e.,springapplicationonmaizeandwinterorautumn applicationonwinterwheat).Allinall,theMACROmodelwas parameterizedforfivediscreteandfivecontinuousvariables.The assessmentofthesensitivityofseveralMACROinputvariablesin apre-studyof1944simulationrunsenabledustorejectsomeof them.

(4)

Fig.1. Theworkprocessflowchart.Actionsinsquareswithgraydottedbordersandoutputsinsquareswithblacksolidborders.

Step2.Choosingthestructureoftheindicator,settingupthesim- ulationscenariosandrunningthemechanisticmodel:

Tolimitthecomplexityoftheindicator,adecisionwasmadeto treatsomeinputvariablesasdiscrete(e.g.seasonofapplication andclimaticzone).Asaconsequence,thestructureoftheindica- torconsistofanumberoftreesthattheuserhastochoosefrom dependingonthescenarioreflectedbythecombinationofthese variables(e.g.springapplicationinsouthernFrance).TheMACRO modelwasparameterizedusingthelistofpotentialinputvari- ables(establishedinstep1)usingpedotransferfunctionswhen necessary,reasonableworst-caseassumptionsanddefaultvalues.

Foreachcontinuousvariable,weselectedvaluesthatweapriori consideredtocorrespondtofavorableandunfavorableconditions inregardsofpesticideloss(seeTable1).Anumberofintermediate valueswerealsoselectedwithintheseintervals.Abroadrangeof differentcombinationsofcontinuousinputvariablevaluescould therebybeexecutedforalldiscretescenariospossible.Thedetails ofthissteparegiveninSection2.3below.

Step3.Assessingthepesticideleachingrisk:

Table1

Theselectedpotentialinputvariablesandtheirranges.a

Variable Type Variablevalues

Depthofsoilprofile(cm) Continuous 40–100

foc(%) Continuous 1–3

Stoninessb(%) Continuous 0–10

DT50(days) Continuous 5–60

Koc(cm3g−1) Continuous 27–600

Topsoiltexture Discrete Coarse,medium,fine

Subsoiltexture Discrete Coarse,medium,fine

Tillagec Discrete Primarytillage,notillage

Seasonofapplication Discrete Winter,spring,autumn

Climaticzoned Discrete 1,2,11

afoc=topsoilorganiccarboncontent,DT50=degradationhalf-life,Koc=partition coefficienttosoilorganiccarbon.

bAppliestocoarsetexturedsoils.

c Appliestotopsoilsofmediumandfinetexture.

d FOOTPRINTclimaticzones(seeCentofantietal.,2008).

Itisnecessarytodefinewhattheindicatorscorescorrespondto inregardsofpesticideleachingrisktogroundwater.Wemadetwo choicesregardingthemeaningoftheindicatorscores:

(i)Wesettheacceptablelevelofpesticidelossto0.1gha1,cor- respondingtotheindicatorscoreof7(Table2).Thislevelof pesticidelossmaygenerateaconcentrationof0.1␮gL−1(cor- respondingtotheEUdrinkingwaterlimit(EuropeanUnion, 1991))foradrainageof100mm.Thisisprobablyaconserva- tiveassumptionifweassumethatinmostsituations,drainage variesbetween50and650mm(ChoisnelandNoilhan,1995).

(ii)Wesettherelationshipbetweenthepesticidelossand the valueoftheindicatorscoresothattwoindicatorscoreunits correspondtoalog10changeinpesticideloss.Thisgivesan indicatorcoveringabroadrangeofpossiblepesticideloads scoring0forpesticidelossesof550gha−1ormoreto10for lossesof0.0055gha−1orless.Thisapproachisjustifiedbythe uncertaintyofmodeloutputs.Thepointhereisnottodetect minordifferencesin pesticidelossbut rathertoassess the orderoftheloss(Lewisetal.,1999).

Step4.Derivingthefuzzyinferencesystem:

Theinput/outputdatasetsof4752MACROsimulationswere usedtoestimatemembershipfunctionsrepresentativeofthefea- turesofthedata.However,theoutputoftheMACROmodelhadto betranslatedtoindicatorscoresfirst,producinginput/outputindi- catordatalearningset.AfuzzyinferencesystemofSugeno-type

Table2

Relationshipbetweenpesticidelossandindicatorscores.

Pesticidelosses(gha−1y−1) Associatedscore

Lessthan0.0055 10

From0.0055to0.01 From10to9

From0.01to0.1 From9to7

From0.1to1 From7to5

From1to10 From5to3

From10to100 From3to1

From100to550 From1to0

Morethan550 0

(5)

wascreatedthroughapplyingtheMATLABFuzzyLogicToolbox (MathWorks,2002)algorithmsforneuro-adaptivelearningtothe dataset.A Sugeno inferencesystemis well suited for model- ingnon-linearsystems(Sugeno,1985;BabuˇskaandVerbruggen, 2003). During the learning process, theparameters associated withthemembershipfunctionsandassociatedrulesareadjusted accordingtoachosenerrorcriterion.Twomembershipfunctions arederivedforeachinputvariable,onefordeterminingthedegree towhichtheinputbelongstotheunfavorablefuzzysetandthe otherfordeterminingthedegreeofmembershiptothefavorable fuzzyset.Thepossiblecombinationsoffavorableandunfavorable valuesoftheindicatorinputvariableseachmakeuparule.The outputofeachruleismultipliedbyaweight(w)thatreflectsits strengthwithinthefuzzyinferencesystemforaspecificcombina- tionofvariablevalues.Theoutput,ofthefuzzyinferencesystem, Ibase, is the weighted average(the only option for the neuro- adaptivelearningalgorithmoftheMATLABFuzzyLogicToolbox) ofallruleoutputs(zitozN):

Ibase=

N

i=1wi·zi

N

i=1wi

, for 0≥Ibase≤10. (1)

Auniquefuzzyinferencesystemwasdevelopedfrom44simu- lationsforeverycombinationofdiscretevariablesinfluencingthe pesticideleaching.However,somecombinationscouldbepruned awaysincesomedatasetswerevalidatedbyfuzzyinferencesys- temsbasedondifferentdatasets(inregardsofdiscretevariables).

Thenumberoffuzzyinferencesystemscouldtherebybereduced.

Aspruningcriterion,arootmeansquareerror(rmse)≤0.5indica- torscoreswasjudgedasasufficientmatchbetweenadatasetand aninferencesystem.

2.2. Simulationmodel

MACRO(Jarvis,1994;Larsboetal.,2005)isaone-dimensional dual permeability model simulating a full water balance and the fate and transport of pesticides at the column scale. The pore system is divided into two domains, the micropore and themacroporedomain,whichhavetheirownsoluteconcentra- tion, pressure head, water content and hydraulic conductivity.

In the micropore domain, water flow is described using the Richard’sequation(Richards,1931).Waterflowinthemacropore domainisdescribedbyamodifiedkinematicwaveequation,which containstwoparameters,macroporeconductivityandanexponen- tialreflectingmacropore connectivityand tortuosity(Germann, 1985).The water retentionfunction isdescribed by a modified formofthevanGenuchtenfunction(vanGenuchten,1980).The advection–dispersion equation (van Genuchten and Wierenga, 1976)isusedtodescribesolutetransport inthemicropores.An advectiveflow of solute, neglecting dispersion,is used for the macropores. Pesticide sorption is described using a Freundlich isotherm,whiledegradationisdescribedusingfirstorderkinetics, withtheratecoefficientgivenasafunctionofsoiltemperatureand moisturecontent(BoestenandvanderLinden,1991).Approximate first-orderexpressionsareusedtocalculatewatertransferfrom themacroporestothemicroporesandsoluteexchangebetween thetwodomains.Thistransferiscontrolledbythestrengthofthe macroporeflow, describedbytheeffectivediffusionpathlength whichisan‘effective’parameterreflectingsoilstructuraldevel- opment.

2.3. Simulationscenariosandparameterization

TheMACROmodelwasparameterizedfromsoilorganiccarbon content,soiltexture,pesticideproperties,cropproperties,tillage operationsand climaticproperties.Adetaileddescriptionofthe

Table3

TheeightclimaticfactorsdefiningtheclimaticzoningofEuropewithintheFOOT- PRINTproject,andtheirmeanvaluesforgridcellswithineachclimaticzone.

Climaticfactor Climaticzone

1 2 6 11

MeanApriltoJune temperature(C)

13.4 11.5 5.9 13.0

MeanSeptembertoNovember temperature(C)

11.7 9.8 4.8 13.0

MeanOctobertoMarch precipitation(mm)

485 368 765 606

Meanannualprecipitation (mm)

936 733 1695 942

Numberofdays(ApriltoJune) wheretotalprecipitation

>2mm

30.5 32.5 36.5 27.4

Numberofdays(ApriltoJune) wheretotalprecipitation

>20mm

2.6 1.5 3.3 1.7

Numberofdays(ApriltoJune) wheretotalprecipitation

>50mm

0.1 0.1 0.1 0

Numberofdays(Septemberto November)wheretotal precipitation>20mm

3.3 2.1 3.2 3.1

DatafromBlenkinsopetal.(2008).

parameterizationofsoilphysicalandhydraulicpropertiesisgiven inAppendixA.Thesimulationperiodwas26years,inwhichthe firstsixyearsareusedasawarmingupperiodinordertominimize theinfluenceoftheinitialconditions,andthelast20yearsareused asoutput.Pesticideamountlosttogroundwaterwascalculatedand the80thpercentileyearlyamountlost(i.e.,thefourthlargestofthe 20simulatedyearlyamountsofpesticidelost)wasidentifiedasthe targetoutputtobasetheindicatorupon.Thesimulationswerecar- riedoutintwosteps.Thesimulationsofthefirststepwereused asanaidinthedeterminationoftheindicatordesign.Thesesimu- lationswerealsousedforderivingtheparametersoftheindicator incombinationwithcomplementarysimulationscarriedoutina secondsimulationstep.

2.3.1. Climaticscenarios

A climatic zoningof Europe based on eight climaticfactors (Table 3), foundtomostlyaffect pesticidelossbyleaching and drainage,havepreviouslybeenperformed(Blenkinsopetal.,2008) withintheFOOTPRINTproject(FOOTPRINT,2011).Accordingto thisclassification,Europeisdividedintoatotalof16climaticzones ofwhich four(zone1,2,6and 11,following thenumberingof Centofantietal.(2008))arefoundwithinFrance(Fig.2).Themean valuesoftheeightclimaticfactorsofthesefourzonesarepresented inTable3.The‘NorthMediterraneanclimate’(zone1)canbesum- marizedaswarmandwithmoderateprecipitation.The‘Temperate maritimeclimate’(zone2)alsohaveamoderateprecipitationbut consistoffewerextremes.The‘Alpineclimate’(zone6)arecool andwetandcharacterizedbyrelativelymanyextremeevents.The

‘Modifiedtemperatemaritimeclimate’(zone11)iswarmandwet butwithratherrelativelyfewwetdaysinthespring.Zone6was excludedfromtheindicatorasapotentialclimaticscenariosince thecultivatedareainthispartofFrance(theAlps)isnegligible.

Modifiedclimaticseriesof26years(1975–2000)obtainedfrom weather stations that are representative of the climatic zones (Blenkinsopetal.,2008)foundinFrancewereusedasdrivingdata intheMACROmodel.Themodificationconsistedofdisaggregating dailyprecipitationtotalsintohourlyprecipitationusingascaling cascademodel(Olsson,1998)andsettingtheprecipitationto0mm onthedayofpesticideapplicationsincesprayingonadayofheavy rainfallisnotinaccordancewithgoodmanagementpractices.

(6)

Fig.2. ThefourclimaticzonesofFrance.Zone1:‘NorthMediterraneanclimate’,zone 2:‘Temperatemaritimeclimate’,zone6:‘Alpineclimate’,andzone11:‘Modified temperatemaritimeclimate’.

2.3.2. Cropandpesticideapplicationscenarios

Twodifferentcropscenarios wereconsidered,winterwheat sown in autumn and maize sown in spring. These crops were selectedsincetheyarethemaincropsregardingsownsurfacearea inFrance(Agreste,2010).Threedifferentseasonsofpesticideappli- cationwereconsidered,autumnapplicationonwinterwheaton the20thofSeptember,winterapplicationonwinterwheatonthe 1stofMarchandspringapplicationonmaizeonthe30thofApril.

Thecombinationsofclimaticzonesandseasonsofapplicationgive atotalofnineuniqueweatherregimes.

Themaximumrootdepthofthecropswaslimitedtothedepthof thesoilprofileexceptforsubsoilsofcoarsetexture(sandcontent

>65%andclaycontent<18%,accordingtoCEC(1985))forwhich therootpenetrationwasconsideredtobelimitedto45cm.The otherMACROcropparameters usedfollowsthoseoftheFOOT- PRINTproject(Jarvisetal.,2007)andMACROdefaultvalues.

Eventhoughthespringapplicationsoccurpost-emergence,all ofthepesticidewassimulatedassprayeddirectlyonthesoil,i.e., interceptionofcanopywasnotaccountedforintheMACROsimula- tions.Instead,thepesticidedosereachingthesoilsurface(referred toastheeffectivedose),Doseeff,isgivenby:

Doseeff=Doseappl·Fint, (2)

whereDoseapplisthepesticidedoseappliedonthefieldandFint isafactorcorrespondingtotheproportionofthepesticidethat actuallyreachthesoilsurface(deductingfore.g.winddriftand cropinterception).

2.3.3. Pesticidescenarios

The leaching of sevenhypothetical pesticides withdifferent DT50 and Koc was simulated for an effective dose of 1kgha−1 (Table4).Thepesticidesvariedwithinaspanrangingfromhigh risk leachers (as they were both mobile (Koc=27cm3g1) and moderatelypersistentinthesoil(DT50=60days))tolowriskleach- ers(beingslightlymobile(Koc=600cm3g1)andnon-persistent (DT50=5days)).Threeof thepesticideswereusedasanaidfor determiningtheindicatordesign(Table4a),theotherfourwere simulatedascomplementarypesticidesforderivingthemember- shipfunctionsoftheindicator(Table4b).

Pesticidedegradation usuallydecreaseswithdepth(Boesten andvanderLinden,1991).Tocapturethischaracteristic,thedegra- dation ratecoefficients of the second and third horizonswere calculatedbymultiplyingthecorrespondingparametervaluefor

Table4

Propertiesof(a)thepesticidessimulatedfordeterminingtheindicatordesign,(b) thecomplementarypesticidessimulated.a

a)

Pesticidevariant DT50(days) Koc-value(cm3g−1)

A 5 300

B 30 130

C 30 600

b)

Pesticidevariant DT50(days) Koc-value(cm3g−1)

D 5 27

E 5 600

F 60 27

G 60 600

aAbbreviationsasinTable1.

Table5

Texturalcompositionofsoilsselectedtorepresentsoilsofdifferenttexturetype.

Texturetype Textureclass Claycontent(%) Siltcontent(%) Sand content(%)

Fine Siltyclay 45 50 5

Medium Loam 25 40 35

Coarse Loamysand 5 15 80

thefirsthorizonwiththefactor0.5and0.3,respectively.Thesefac- tors,basedonaliteraturereview,areusedinleachingassessments forpesticideregistrationintheEU(FOCUS,2000).

Thesorptionwasmodeledasinstantaneouslinearandthesorp- tioncoefficientwasobtainedby multiplyingKoc (cm3g1)with theorganiccarboncontent.Therationaleforadoptingasimulation setupassuminglinearsorptionanddegradationisthatvariations inpesticidedosecaneasilybeaccountedforbyscalingtheleaching predictedatadoseof1kgha1.Giventherelationshipsbetween indicatorscoresandpesticidelossinTable2andthelinearrelation betweenpesticidelossandapplicationrate,indicatorscores(Ieff) foranyDoseeffiscalculatedas:

For10y≤Doseeff<10(y+1)kgha1,whereyisaninteger, ify≥0(i.e.,Doseeff≥1kgha−1)

Ieff=MAX

Ibase−2·

y+Doseeff·10y−1 9

;0

(3a) ify≤−1(i.e.,Doseeff<1kgha1)

Ieff=MIN

Ibase−2·

y+Doseeff·10−y−1 9

;10

(3b) whereIbase,istheoutputofthefuzzyinferencesystem(i.e.,the indicatorscoreobtainedforaneffectivepesticidedoseof1kgha−1) calculatedaccordingtoindicatorequation(1)giveninSection2.1.2 above.

2.3.4. Soilscenarios

Threedifferenttexturalcompositionsofclay,siltandsandcon- tents(Table5)wereselectedtorepresentsoiltypesoffine,medium andcoarsetexture(fordefinition,seeTable6).Thesechoiceswere

Table6

Classificationofsoilsofdifferenttexturetype.

Texturetype Texture(USDA)

Fine Clay,clayloam,siltyclayandsiltyclayloam Medium Sandyclay,sandyclayloam,loam,sandyloam,siltand

siltloam

Coarse Loamysand,sand

(7)

Fig.3.Modelstructureoftheindicatorinferencesystems.

basedonapre-studyof MACROsimulationsofonerepresenta- tivesoilfromeachofthe12USDAtexturalclasses(USDA,2011) (resultsnotshownhere).Forfinetexturedsoils,thesiltyclaygave themostpesticideleachingandwasthereforechosentorepresent thesetypesofsoils.Amongthemediumtexturedsoils,theloamand thesandyclaywerefoundtobethemostsensitivetothedegree ofsusceptibilitytopreferentialflowandaretherebyalsopoten- tiallysensitivetotillageoperations(seeAppendixA).Ofthesetwo soilstheloamwasselectedtorepresentsoilsofmediumtexture.

Eventhoughthesandysoilgavethehighestpesticideleaching,the loamysandwaschosentorepresentcoarsetexturedsoilssinceit isuncommonthatsandysoilsarecultivatedforarablecrops.

In the first simulation step, the MACRO model was param- eterizedfor soil profiles of either 40cm or 100cm depth. The soilprofiles weredividedinto two orthree horizons(0–30cm, 30–60cmand60–100cm).Thesecondandthirdhorizons(jointly referredtoasthesubsoil)ofeachsoilprofilewerealwaysassigned the same textural composition while the textural composition ofthefirsthorizon(referredtoasthetopsoil)coulddifferfrom that of the subsoil. Allin all,nine textural combinations were simulated. For the topsoils, an organic carbon content of 1%

and3% weresimulated,whereas theorganiccarboncontent in thesubsoils wasfixedto 0.5%.These values were alsoused in the second simulation step, supplemented with soil scenarios having topsoil organic carbon contents of 2% and soil depths of70cm.

Itiscommonthatsandysoilscontainaratherhighpercentageof stonesandconsequentlycontainlessactivesoilmaterialfordegra- dationandadsorption.Asaneffect,suchsoilshaveapotentialto leachmorethanacomparablesoilwithoutstones.Inapre-study, theleachingofthepesticidesdefinedinTable4awerethereforealso simulatedforsoilprofilesofcoarsetexturedtopsoilwithastone contentof10%,overlayingeithercoarsetexturedsubsoilcontaining thesamestonecontent,ormediumorfinetexturedsubsoilwithout stones.

2.4. Comparisonofthenewandtheoldindicator

Acomparisonofthenewandoldgroundwaterindicatormodule wasconducted.Thecomparisonwascarriedoutfortwodifferent

soils,ashallow,finetexturedsoilandadeep,mediumtextured soil,locatedinclimatezone1.Theorganiccarboncontentis2%

forbothsoils.Thecomparisoncomprisesthetwocrops,maizeand winterwheat.Twomaizeherbicideswereappliedinspringand onewheatherbicidewascomparedforautumnorwinterapplica- tion.Additionally,glyphosatewascomparedonmaizeinspring and onwinter wheatinautumn. Dataonpesticidecharacteris- ticswerederivedfromthedatabaseusedfortheI-Phyindicator (non-published).Thisdatabaseisbasedonacompilationbetween theFrenchdatabasefor registrationAGRITOX(2011),andother sources (e.g.Tomlin, 2009). Twodifferent doses wereused for eachpesticide.Thesedosesareinlinewiththoserecommended bythemanufacturersandconsistentwithlevelsimplementedby farmers.

Fig.4.Inputmembershipfunctionplotforsoilprofiledepth(cm)foranautumn applied,mediumtexturedsoilprofile,locatedinclimatezone1.

(8)

Fig.5. Ruleoutputparameters,z,ofthefuzzyinferencesystemforautumnapplied,untilledmediumtexturedsoilprofile,locatedinclimatezone1.Lcorrespondtoa 1membershipofthelefthandmembershipfunctionand0membershipoftherighthandmembershipfunctionandRcorrespondtoa1membershipofthelefthand membershipfunctionand0membershipoftherighthandmembershipfunction.AbbreviationsasinTable1.

3. Results

3.1. Decisiontreevariableselection

Accordingtothepre-study,pesticideleachingwasonlyslightly affectedby stonecontent incoarsetextured topsoil and tillage practiceonfinetexturedtopsoil.Forstoniness,thedivergencein pesticideleachingriskbetweensoilswithnostonecontentand soilswithastonecontentof10%exceeded0.5indicatorscoreunits for14outof324pairsofcomparisoncases(3pesticidevariants, 9weatherregimes,3subsoiltextures,2soildepthsand2topsoil organiccarboncontents).Theaverageandmaximumdivergence were0.1 and 1.2 indicator scoreunits, respectively. Thecorre- spondingvaluesforthedifferenttillagesystemsonfinetextured soilwerenineoutof324pairsofcomparisoncases(3pesticide variants,9weatherregimes,3subsoiltextures,2soildepthsand2 topsoilorganiccarboncontents)divergingmorethan0.5indicator scoreunits,withanaverageandmaximumdivergenceof0.1and1.4 indicatorscoreunits,respectively.Thesedifferenceswerejudged nottobesignificantenoughtojustifytheirinclusionintheindicator design.Stoninessincoarsetexturedsoilsandtheploughedoption forfinetexturedsoilswerethereforeexcludedfromtheindicator designatanearlystageofthedevelopingprocess.Thenumberof MACROsimulationsneededwastherebyreduced.Combiningthe ninetexturalscenarios(i.e.,allthetexturecombinationsoftopsoil andsubsoilpossible)withthetwooptionsoftillageforsoilprofiles havingamediumtexturedtopsoilandthenineweatherregimes consideredgiveatotalof108discretescenarios.

3.2. Fuzzyinferencesystems

Allthepredefinedtypesofmembershipfunctionsandweight functionsavailableintheMATLABFuzzyLogicToolboxwerecon- sidered.Foreachdiscretescenario,thedatalearningsetcomprised 44 uniquecombinationsof inputvariables and theirassociated indicatorscores.Thelearningprocesswascarriedoutuntilnofur- therimprovementwasachievedoruntilamaximumof100,000 adjustmentshadbeencarriedout.Asufficientfitbetweendatasets andinferencesystemswasdefinedasamaximumrootmeansquare errorof0.5indicatorscores.Allfuzzyinferencesystemsderivedful- filledthisrequirementwithregardtotheirassociateddatalearning

sets.Thestructureoftheinferencesystemsderivedispresentedin Fig.3.

Thesmallesterrors wereachievedforGaussian membership functions(e.g.,seeFig.4)withbackpropagationalgorithmincom- binationwithaleastsquaretypeofmodelasoptimizationmethod.

Theperformance(assessedbyrmse)offuzzyinferencessystems withweights calculated astheproduct (prod)ortheminimum ofvariablesdegreeofmembershiptotherelevantfuzzysetwere compared.Theprodweightingfunctionperformedbestandwas thereforeselectedtobetheindicatormethodofweighting.

TheGaussianmembershipfunctiondependsona variable,x, (e.g.soildepthasinFig.4)andtwoparameters,cand,asgiven by

fmb(x)=e((gmb(x)cmb)2/(2·mb2 )) (4) wheremb=Lforthelefthandmembershipfunctionandmb=Rfor therighthandmembershipfunctionand

gL(x)=max(cL,x) (5)

and

gR(x)=max(cR,x). (6)

Ruleswerederivedforthe16possiblecombinationsoffavorable andunfavorablemembershipforthefourcontinuousvariablescon- sidered.Duetoconstraintsintheavailablenumberofsimulations (44)foreachdiscretescenario,constantoutputmembershipfunc- tionswerechosenforeachruleinfavorofthemoredatademanding linearoption.Eachofthefuzzyinferencesystemsconstructedcom- prise32parameters.Theindicatordevelopedisorganizedinsuch awaythateachfuzzyinferencesystemisrepresentedbyatable containing16membershipfunctionparametersandatreeofwhich eachpathmakesuponerule,givingatotalof16ruleoutputparam- eters(e.g.,seeTable7andFig.5).Fromthesedata,indicatorscores (foranydosage)canbecalculatedusingthesixindicatorequations givenabove.

3.3. Indicatorfinalizationthroughpruning

TheMACROoutputdatasetswerecomparedtoinferencesys- temsforwhichthesubsoildivergedfromthatofthedataset.Forsoil profileswithfinetexturedtopsoilthesimulatedleachingresultwas

(9)

Table7

Themembershipfunctionparametersetofthefuzzyinferencesystemforautumnapplied,mediumtexturedsoilprofile,locatedinclimatezone1.a

Variablenumber Variablename cL L cR R

1 Topsoilorganiccarboncontent(%) 0.809 0.684 2.87 0.929

2 Depthofsoilprofile(cm) 36.2 21.0 97.6 27.1

3 Koc(cm3g−1) 27.1 243 600 243

4 DT50(days) 1.89 20.3 57.7 25.2

aAbbreviationsasinTable1.

sensitivetosubsoiltexture(Fig.6)especiallyforautumnapplica- tion.Forclimatezone2,thedatasetsforsoilprofileswithmedium texturedtopsoilandsubsoilfittedthefuzzyinferencesystemsof thecorrespondingdatasethavingacoarsesubsoil,evenincase ofadivergingtillageoptions(rmse≤0.3indicatorscores)(e.g.,see Fig.7).

EachMACROoutputdatasets ofsoil profileswithploughed mediumtexturedtopsoilwascomparedtothefuzzyinferencesys- temsderived forthecorrespondinguntilledscenarios. Theroot meansquarederivationsdidnotexceedourpruningcriterionof 0.5indicatorscores.Thevariableconcerningtillagewastherefore completelyexcludedfromtheindicator.

Forsoilprofileswithcoarsetexturedtopsoil,indicatorscoresfor mediumtexturedsubsoilfittedthefuzzyinferencesystemdevel- oped (rmse≤0.5 indicator scores) fromthe data setfor coarse textured subsoil for all climateand application scenarios (data notshown).Asufficientlygoodmatchwasalsoachievedforfine texturedsubsoilsexceptforwinterapplicationinclimatezone1 (rmse=0.7indicatorscores)andspringapplicationinclimatezone 11(rmse=0.6indicatorscores)(datanotshown).Thesizeofthe indicatorcouldthereforebedecreasedto62uniquefuzzyinfer- encesystemstochoosefromdependingontheprevailingsituation regardingsoiltexture,climaticzoneandseasonofapplication.

Comparisonsofsimulatedpesticideleachingriskfordifferent climaticzonesshowedthatzone2and11differthemost(aver- agermseof1.3indicatorscores),especiallyforautumnapplication (averagermseof1.8indicatorscores).Thelargestresemblanceis foundfor climatezone1and 11(average rmseof0.9indicator scores),especially forspring appliedpesticide(average rmseof 0.6indicatorscores).Similarcomparisonfordifferentapplication

Fig.6.Rootmeansquareerrorfordatalearningsetsofsoilshavingafinetopsoil andsubsoilwhenappliedforfuzzyinferencesystemsbasedondatalearningsetsof soilshavingafinetopsoilandacoarsesubsoilfordifferentapplicationseasons.

seasonsshowedthatmostresemblanceinleachingriskwasfound forspringandwinterapplication(averagermseof 0.6indicator scores).Thelargestdifferencewasfoundforautumnandspring application(averagermseof1.7indicatorscores),especiallyforcli- matezone11(averagermseof2.1indicatorscores).Toretainagood indicatorstructure(i.e.,avoidingnumerousspecialcases),nofuzzy inferencesystemwasexcludedfromtheindicatorduetomatches foundbetweendifferentseasonsofapplicationorclimates.

3.4. Variablesensitivity

Theclimaticstatisticsaremorefavorableforzone2thanfor theother climatic zones(Table 3).This characteristic wasalso expressedbytheindicator,forwhichclimatezone2generallypro- ducethelowestpesticideleachingrisk(forexampleontheeffect ofclimateonindicatorscores,seeTable8a).

Accordingtotheresults,autumnapplicationgenerallypresents ahigherriskofpesticideleachingthanwinterorspringapplica- tion(forexampleontheeffectofseasonofapplicationonindicator scores,see Table8b).This is presumablydue to themore fre- quenteventsofhighdailyprecipitationamountduringtheautumn (Table3).

Theindicatordevelopedissensitivetopreferentialflow.Itcap- turesthecharacteristicsofpreferentialflowasbeingstrongestin finetexturedsoilsandmosteffectiveintopsoils(forexampleonthe effectofsoiltextureonindicatorscores,seeTable8c).Therefore, thereisariskforlargelossesforsoilspronetopreferentialflow underclimaticconditionsthattriggersuchflowsevenforpesti- cideshavingaverylowGUS-index(e.g.0.85forapesticidewitha DT50of5daysandaKocof600cm3g−1).Afastflowthroughthesoil matrix,suchasinthecaseofcoarsetexturedsoils,canalsocausea

Fig.7. IndicatorscorecalculatedforMACROoutputs(blackdiamonds)forautumn applicationinclimatezone2onaploughedmediumtexturedsoilprofileandthe resultforthefuzzyinferencesystem(graysquares)forauntilledsoilprofilewith amediumtexturedtopsoilandacoarsetexturedsubsoilforthesameclimateand seasonofapplication.Thermseofthevaluesofthedatasetandtheresultingvalues ofthefuzzyinferencesystemis0.2indicatorscores.

(10)

Table8

Theresultingindicatorscoresforfourdifferentpesticidesandaneffectivedoseof1kgha−1(a)appliedinspringonfourdifferentfinetexturedsoilprofileslocatedinthe threedifferentclimaticzonesofFrance,(b)appliedinthreedifferentseasonsonfourdifferentfinetexturedsoilprofileslocatedinclimatezone11and(c)intheautumnon 112soilprofilesofdifferenttexture,organiccarboncontentandsoildepthlocatedinclimatezone1.a

a)

Continuousinputvariables Climaticzone

DT50(days) Koc-value(cm3g−1) Soildepth(cm) Organiccarboncontent(%) 1 2 11

60 27 40 1 1 1 1

3 1 1 1

100 1 2 2 1

3 2 3 2

600 40 1 2 2 2

3 3 3 2

100 1 2 3 2

3 3 5 3

5 27 40 1 4 6 4

3 5 9 7

100 1 5 9 6

3 6 10 10

600 40 1 6 10 9

3 10 10 10

100 1 10 10 10

3 10 10 10

b)

Continuousinputvariables Season

DT50(days) Koc-value(cm3g−1) Soildepth(cm) Organiccarboncontent(%) Autumn Winter Spring

60 27 40 1 0 1 1

3 0 1 1

100 1 1 1 1

3 1 1 2

600 40 1 1 2 2

3 1 3 2

100 1 1 2 2

3 1 3 3

5 27 40 1 2 1 4

3 2 2 7

100 1 2 1 6

3 3 3 10

600 40 1 2 6 9

3 4 10 10

100 1 3 9 10

3 5 10 10

c)

Continuousinputvariables Topsoiltexturesubsoiltexture

DT50(days) Koc-value(cm3g−1) Soildepth(cm) Organiccarboncontent(%) CbAll McC MM MFd FC FM FF

60 27 40 1 0 0 0 0 0 0 0

3 0 0 1 1 0 0 1

100 1 0 0 1 1 1 1 1

3 1 1 1 1 1 1 1

600 40 1 5 3 2 2 2 1 1

3 8 6 5 4 2 2 1

100 1 9 7 5 2 5 3 1

3 10 10 8 6 7 4 2

5 27 40 1 2 2 2 2 2 2 1

3 4 3 3 3 2 2 2

100 1 4 5 5 3 5 4 2

3 6 6 6 4 5 4 3

600 40 1 10 7 5 4 5 3 3

3 10 10 10 9 7 5 5

100 1 10 10 10 6 10 7 4

3 10 10 10 10 10 10 7

Shadedscoresarejudgedtoindicateunacceptablepesticideleachingrisks.

aAbbreviationsasinTable1.

bCoarse.

c Medium.

d Fine.

(11)

highriskforpesticideleaching,especiallyformobilepesticidesin shallowsoils.

Regardingthecontinuousvariables,theindicatorismoresen- sitivetopesticidecharacteristicsthansoilproperties(forexample, seeTable8a–c).

3.5. Comparisonofthenewandtheoldindicator

A comparison of the new groundwater indicator and the former one shows that the newindicator is more sensitiveto soilconditions(Table9).DuetothelowGUS-indexofglyphosate (GUS-index=1.5),theoldindicatorclassifiestheriskforhighcon- centrationsofthispesticideinthegroundwaterasverylow.On thecontrary,byincludingtheprocessesofpreferentialflow,the newindicatorclassifiestheriskofglyphosatelossestogroundwa- terashightoveryhighforunfavorablesoilconditions.Thisresult issupportedbypreviousstudiesperformedatfieldandlysimeter scales(Vereecken,2005;Kjaeretal.,2005).Additionally,sincethe newindicatortakestheinfluenceofweatherpatternsintoaccount (affectedbythevariables climaticzoneand,asinthis compari- son,theapplicationseason),thedifferenceincontaminationrisk becomeslargerbetweenseasonsincomparisontotheriskaccord- ingtotheoldindicator.Fortheoldindicator,thedifferencesin riskbetweenapplicationseasons(seeindicatorscoresforisopro- turonfor winterandautumnapplicationin Table9)aresimply duetochangesintheeffectivedosecausedbydifferenceincrop development.

4. Discussion

Themain improvement ofthe newindicatordeveloped is a reduceddependencyontheexpertknowledgeof thedesigners.

TheimplementationoftheMACROmodelenabledustoexplore abroaderrangeof situationsofpesticideleachingthanwhat is availableintheliteratureonexperimentaldataabouttheeffect of different factors. Furthermore, this method allowed for an inclusionofnon-linearprocessesof whichsomeareinterlinked andtherebyimpossibletopredictsufficientlyenoughbyexperts.

Anotherimprovementoftheindicatoristhat,incomparisontothe oldversionthenewindicatortakesmorevariablesintoaccount andconsidersenvironmentalparametersetsonclimateandsoil structure.

Wateristhedominanttransportmediumofpesticidesinsoil.

Consequently,precipitationpatternfollowingapplicationisavery importantfactorgoverningpesticidelosses.Alsoofimportanceis thesoilwatercontentatthetimeofapplication,especiallyifthesoil ispronetopreferentialflow(Jarvis,2007).Pesticideleachingisthus governedbybothpreviousandcurrentclimateconditions.Their interactionsarestillpoorlyunderstoodandtheeffectsofprecipi- tationintensityanddurationonpesticideleachingdependalsoon soilpropertiesandpesticidecharacteristics(McGrathetal.,2008;

Nolanetal.,2008).MACROsimulationstudieshavebeenperformed toidentifykeyclimaticfactorsgoverningthetransportofpesti- cideleaching(Lewanetal.,2009;Blenkinsopetal.,2008;Nolan etal.,2008).Manyoftherelevantfactorsareassociatedwithrain- falleventsinafarfuture.Suchfactorscannotbepredictedandare thereforeunfittingasindicatorvariablesunlesssupplementedwith sitespecificfactorsofrisk(e.g.reflectingtheriskofexceedingcer- tainrainfallamountsduringthewintermonths).Additionally,to includeallthesignificantclimaticfactorsforspecificsoil-pesticide combinationsas separate indicatorparameters would result in averycomplex decisiontree.Instead,precipitationpattern and soilwatercontentatthetimeofapplicationareimplicitlytaken intoaccountbytheindicator.Thiswasachievedthroughbasing theindicatoronthe80thpercentileyearlyamountpesticidelost

calculatedfromMACROsimulationsof20yearsofweatherdatafor eachFrenchclimaticzone(basedontheeightsignificantclimatic factorsidentifiedbyBlenkinsopetal.(2008))andapplicationsea- sonconsidered(i.e.,spring,autumnandwinter),Consequently,the indicatortaketheoverallriskofbothpreviousandcurrentclimate conditionsintoaccountforeachcombinationofclimaticzoneand applicationseason.

Thepreviousversionoftheindicatordidnotaccountfordif- ferences in texture with depth. For the new indicator, subsoil texturecansignificantly affecttheresulting score.For example thepesticideleachingfromsoilswithfinetexturedtopsoilisvery sensitivetosubsoiltextureregardlesstheclimaticzoneorappli- cation season. Soil data are thus more explicitly introduced in thisnewversion.Theformerversionincludesavariablereflect- ing the overall soil leaching potential instead. This variable is assessedeitherinaseparatedecisiontree(Bockstaller,2004)or by expertise in thefield (e.g.according to themethod of Réal (2004)).In acomparison,theassessmentbymeansofthedeci- siontreehasbeenfoundtobeweaklyrelatedtofieldassessment ofleaching risk(Novaketal., 2009).Theadvantageof allowing for integrationof field assessmentsis not availablein thenew version.

Preferentialflowistakenintoaccountbytheindicatorthrough itslinktotheMACROmodel.Sincethepreviousversionignoresthis process,itconsidersfinetexturedsoilstopresentasmallerriskof pesticideleachingthancoarsetexturedsoilsandcategorizespesti- cidesoflowGUS-indexasnon-leachers.Onthecontrary,thenew indicatorshowsthatfinetexturedsoilsmaypresentahigherrisk forpesticideslossestothegroundwatercomparedtocoarsetex- turedsoils.Additionally,duetotheinfluenceofpreferentialflow, thenewindicatordoesnotrelyontheGUS-indexforestimating thepesticideleachabilitybuttakesboththepesticidecharacteris- ticsDT50andKocintoconsiderationseparately.Intheoldversion, pesticidedosewasnot consideredbythegroundwatermodule itself,butwasdealtwithinaseparatemodule.Thedoseisnow moreexplicitlyintegrated,inquantitativeinteractionwithinter- ception,takingintoaccounttheassumptionoflinearsorptionand degradation.

Neithertheoldnorthenewversionallowsforanymanipula- tionoftillagebytheenduser.Forthenewindicator,anoptionof tillage/notillagewastestedasapotentialinputvariable.But,asa consequenceofthetransformationofpesticidelossintoindicator score(alog10changeinpesticidelosscorrespondtoachangeof twoindicatorscoreunits)tillageimplementsdidnotsignificantly affecttheresultingoutput.Thetillage/notillageoptioncouldthus beprunedaway.Fieldstudies(Allettoetal.,2010)haveshownthat suppressionofploughingcanincreaseleachingbyafactorof60%in average(N=21,atotalof11differentpesticidesreviewedinnine studies).Hence,onecanexpectapositiveeffectoftillageonpes- ticidelosstogroundwaterbutitisnotasignificantfactorwhen assessingtheriskofpesticideleachinginaworst-casescenario.

Thenewindicatorisapplicablefor62scenarioscomprisinga broadrangeofconditions.Foreachofthesescenarios,thestructure ofthedecisiontreeisthesame(seeFig.5)buttheshapeoftheir membershipfunctions(determinedbytheirmembershipfunction parameterset)andtheirsetofruleoutputparametersareunique.

Thestructureofthenewindicatoristherebymorecomplexthan theformerindicatorwhichconsistsofasinglesetofmembership functionparametersandruleoutputparameters.Bygroupingthe scenariosintonineschemesaccordingtoclimaticzoneandappli- cationseason,theindicatorbecomeseasiertohandlewhenlooking upwhichparametersettochooseforaparticularsituationofpesti- cideapplication.Itisalsopossibletoreducethenumberofscenarios bysomeadditionalpruningofclimaticzonesincombinationwith applicationseasons.Thiswouldhowevernotfacilitatetheuseofthe indicatorsincethesetwovariablesshouldalwaysbeknowntothe

Références

Documents relatifs

Figure 1 shows the result of the algorithm for computing the conjunction of FTV, obtained in accordance with [8] for fuzzy sets with membership functions, given in

In this proposal, we have developed a semi-analytical forward model to calculate the dimensionless hoop stress (DSCF) but also the radial and orthoradial displace- ment fields both

These measurements, provided every second, are the vehicle counts made on each entrance and exit of the junction and the number of vehicles stopped at each inner section of

leaching risk indicator was calculated by using the soil water potential gradient and the nitrate concentration of the soil solution below the rooting zone.. This approach

As these metadata projects grow horizontally, with more databases and types of data sets, as well as vertically, with more documents, the ecologist will need information

The speci fi c coef fi cient, presented here, classi fi es invasive exotic plant species (IEPS) according to three factors: (1) The impact on human health of the species, (2) The

Variational data assimilation, soil water movement, quasilinear parabolic problem, solvability, numerical analysis.. 1 LMC-IMAG, 38041 Grenoble Cedex

Fuzzy Inference Systems (FISs) are fuzzy classifiers that can learn fuzzy “if-then” rules able to classify data [4].. They exhibit several interesting properties that may address