• Aucun résultat trouvé

Vibrations of asymptotically and variationally based Uflyand-Mindlin plate models

N/A
N/A
Protected

Academic year: 2021

Partager "Vibrations of asymptotically and variationally based Uflyand-Mindlin plate models"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-01693909

https://hal.archives-ouvertes.fr/hal-01693909

Submitted on 31 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Vibrations of asymptotically and variationally based Uflyand-Mindlin plate models

I. Elishakoff, F. Hache, Noël Challamel

To cite this version:

I. Elishakoff, F. Hache, Noël Challamel. Vibrations of asymptotically and variationally based Uflyand- Mindlin plate models. International Journal of Engineering Science, Elsevier, 2017, 116, pp.58-73.

�10.1016/j.ijengsci.2017.03.003�. �hal-01693909�

(2)

Vibrations of asymptotically and variationally based Uflyand–Mindlin plate models

I. Elishakoff

a,

, F. Hache

a,b

, N. Challamel

b

aDepartment of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33481-0991, USA

bUniversité de Bretagne Sud (UBS), Institut de Recherche Dupuy de Lôme (IRDL), Centre de Recherche, Rue de Saint Maudé, BP92116, 56321 Lorient cedex, France

Inthispaper,weprovidealternativeUflyand–Mindlin’splateequationstakingintoaccount rotaryinertiaandsheardeformation,basedonbothasymptoticexpansionandvariational arguments.TheaimistoderivetruncatedversionsofUflyand–Mindlin’sequations,specif- icallywithoutthefourthorderderivativetermwithrespecttotime.Thetruncatedversion ofUflyand–Mindlin’splatemodelmaybederivedstartingfromthree-dimensionalelastic- ityequations,byusingasymptoticargumentsbasedonexpansionofdisplacementswith respecttoasmallgeometricalparameter.Thisexpansionmethodalsoleadstoaproper identificationoftheshearcorrectionfactor.Itisshownthatsuitablymodifiedvariational derivationleadstoanadditionaltermwhichisshowntobenegligiblefordetermination ofthefundamental naturalfrequency oftheall-round simplysupportedplates, butmay contributesignificantlyinestimationofhighernaturalfrequencies.Itisargued thatthe proposedversionofUflyand–Mindlin’splateequationsissimplerandmoreconsistentthan theoriginalUflyand–Mindlinequations.Likewise,itisadvantageousovertheequationthat stemsfromneglectingthefourthordertimederivativeinoriginalUflyand–Mindlinequa- tions.The twoalternativetruncated modelsserve asintermediate theoriesbetweenthe classicalplatetheoryandtheoriginalUflyand–Mindlintheorytheirusefulnessdepending ontheproblemathand.

1. Introduction

Initiated by Germain(1826) andcorrected by Lagrange (1828), the Classical Plate Theoryor German-Lagrange theory established the governing partial differential equations describing the mechanical behavior of thin plates in vibrations (Reismann,1988).AsexplainedbyVentselandKrauthammerintheirmonograph(Ventsel&Krauthammer,2001).“Cauchy (1828)andPoisson(1829)werefirsttoformulatetheproblemofplatebendingonthebasisofgeneralequationsoftheory ofelasticity”.Afewyearslater,Navier(1823)studiedthetheoryforaflexuralrigidityfunctionofthethicknessoftheplate.

Then, Kirchhoff (1850) broughtmanyadditionalresultsabouttheory ofthinplates.Accordingto Leissa,in hisforwardto the book ofLiew, Xiang, Kitipornchai,and Wang(1998), “a plateis typically considered to be thinwhen theratio ofits thicknesstorepresentativelateraldimension(e.g.,circularplatediameter,square plateside length)is1/20orless.Infact, mostplatesusedin practicalapplications satisfythiscriterion. Thisusually permitsoneto useclassicalthinplatetheory

Corresponding author.

E-mail addresses: elishako@fau.edu (I. Elishakoff),fhache2014@fau.edu (F. Hache),noel.challamel@univ-ubs.fr (N. Challamel).

(3)

toobtainafundamental(i.e.,lowest)frequencywithgoodaccuracy”.However,theclassical platetheory maysignificantly overestimatehigherfrequencies.Inthelastcentury,lotofefforts havebeenmadetodescribethebehaviorofthickplates.

AsLiewetal.(1998),mention,Reissner(19441945)andNavier(1823)introduced“atheoryofplatesthattakesaccountof sheardeformationonly” inadditiontoclassicaleffects(seealsoKirchhoff,1850).

In 1921, Timoshenko (1921) published his study of vibrations of beams and introduced his governing differential equation that take into account both shear deformation and rotary inertia. The beamequations derived by Timoshenko areidenticaltotheonesofBresse(1859) thatarecorrectedbya shearcorrectionfactorwhichmaydifferfromunity. The Uflyand–Mindlinplatetheory,alsolabelledasthick platetheory(Mindlin,1951;Uflyand,1948),constitutesanextensionof theclassical Kirchhoff-Lovetheory bytakingintoaccount sheardeformation androtary inertiaandthus representingthe two-dimensionalanalogueoftheBresse–Timoshenkobeamtheory.

ThecheckonGoogleScholaroftheterm“Uflyand–MindlinPlate” yields29500hitsattesting theenormouspopularity ofthistheory.Thereisa definitivemonographdevotedto Uflyand–Mindlinplates,by Liewetal.(1998). Theinaccuracies describedbyLeissa(1969)arelargelyeliminatedbyuseoftheUflyand–Mindlintheory,foritdoesincludetheeffectsofad- ditionalplateflexibilityduetosheardeformation,andadditionalplateinertiaduetorotations(supplantingthetranslational inertia).Botheffectsdecreasethefrequencies.TherearestillothereffectsnotaccountedforbytheUflyand–Mindlintheory (e.g.stretching inthethicknessdirection,warpingofthenormaltothemidplane), butthesearetypicallyunimportantfor thelowerfrequenciesuntilverythick platesareencountered.ItappearsinstructivetoquoteHerrmann(1974):“Aboveall, Mindlin’sworkismotivatedbyaconcernforphysicalreality.Hisanalyticalstudiesalwaysbeginwithanintense desireto explainandinterpret,inmathematicalterms,observedbutpoorlyunderstoodphysicalphenomena”.

Overtheyears,manyresearchersattemptedto providedifferentderivationofUflyand–Mindlinplateequations.Oneof themisbasedonan asymptoticapproachconsidering athree-dimensionalproblemandreducing ittoatwo-dimensional problem (Vashakmadze, 1999). The use of asymptotic methods to validate a model has been used in the literature for beams (Berdichevsky & Kvashina, 1974) andsome attempt haves been performed for plates (Berdichevsky, 1973). Thus, Widera(1970),withoutanyassumptionaboutthedisplacementsoverthethicknessoftheplateandneglectingtheeffectof rotaryinertia andshear deformations,derived asetofequationsforthedeterminationofthein-planedisplacements, the samethan fortheclassicalthinplatetheory.Oneoftheaimsofthepresentpaperistoderiveasymptotically aversionof theUflyand–Mindlinplatemodelthrough apowerseriesexpansion. Inparallelofthisapproach,manyarticles havebeen publishedintheliteraturededicatedtothevariationalderivationofUflyand–Mindlin’s(Uflyand,1948;Mindlin,1951)plate equations.

Among them, one should mention the definitive monographs by Liew etal. (1998) or Wang, Reddy,and Lee (2000) andnumerousreferenceslisted there(see forinstanceBrunelle & Roberts,1974;Brunelle, 1971; Sharma,Sharda,& Nath, 2005).Elishakoff (1994)andFalsone,Settineri,andElishakoff (2014,2015)suggestedtoutilizetruncatedversionofUflyand–

Mindlin’s(Mindlin, 1951) equation, neglecting the fourthorderderivative intime. In thispaper,we presenta variational derivationoftruncatedUflyand–Mindlin’sequationbasedonslopeinertia.Itturnsoutthatanadditionaltermappears.We conductcomparisonoffourtheories:(a)classicalplatetheory,(b)Uflyand–Mindlin’s(Mindlin,1951;Mindlin,Schacknow,&

Dereciewicz,1956) original theory,(c)Elishakoff (1994)truncatedsetofequations,(d)variationallyderived truncatedset.

Whereaswe refrainfromjudgingthesuperiorityoftheabovemethods,we emphasizethatforlower rangeoffrequencies thelattersetatleastleadstosimilarresultsinamuchsimplerformulation,inadditionofbeingvariationallyderivable.

2. RecapitulationoforiginalandtruncatedUflyand–Mindlin’stheories 2.1. OriginalUflyand–Mindlinplatetheoryviatheequilibriumequations

Theplateisreferredtoax,y,z-systemofCartesiancoordinates.Assumingthatthefacesoftheplateareundernormal pressuresq1andq2,theboundaryconditionsare:

τ

xz

zh 2

=

τ

yz

zh 2

=0 (1a)

σ

z

z=h 2

=−q1(x,y,t);

σ

z

z=−h 2

=−q2(x,y,t) (1b)

Thebendingandtwistingmomentsandthetransverseshearingforcesaredefinedasfollows:

M

x

My

Myx

= h/2

h/2

σ

x

σ

y

τ

yx

zdz;

Qx

Qy

= h/2

h/2

τ

xz

τ

yz

dz (2)

Foranisotropicmaterialonegets

Mx=D(x+

ν

y);My=D(y+

ν

x);Myx= D2(1

ν

)yx;Qx=

κ

Ghxz;Qy=

κ

Ghyz (3)

(4)

Fig. 1. Rotations of a transverse normal about the y axis.

where D=Eh3/12(1ν2) is the plate’s flexural rigidity, h the thicknessof the plate, ν the Poisson’s ratio,κ the shear

coefficient,Gtheshearmodulusofelasticityandx,y,yx,xz,yztheplate-strainscomponentsdefinedasfollows:

(x,y,yx)=12h−3

h 2

h2

ε

x

ε

y

γ

yx

zdz;

xz

yz

=h−1 h2

h2

γ

xz

γ

yz

dz (4)

Theusualplate-strain-displacementrelationshipsarethefollowing:

ε

x

ε

y

γ

yx

=

⎜ ⎝

u

x

∂vy

∂vx+uy

⎟ ⎠

;

γ

xz

γ

yz

=

u

z+wx

∂vz+wy

(5)

IntheMindlin(1951)platetheory,thedisplacementcomponentsareassumedtobegivenby:

u=z

ψ

x(x,y,t);

v

=z

ψ

y(x,y,t);w=w(x,y,t) (6) ψx andψy arethebendingrotations ofatransversenormalaboutthexandyaxes,respectively,asshowninFig.1.It worthnothingthattheKirchhoff-Loveplatetheorycanberecoveredbysettingψx=−w/∂xandψy=−w/∂y.

Substituting Eq. (6) into Eq. (5) and then substituting in the resulting equation in Eq. (4), the plate-displacements componentsbecome:

x=

ψ

x

x ,y=

ψ

y

y ,yx=

ψ

y

x +

ψ

x

y , xz=

ψ

x+

w

x,yz=

ψ

y+

w

y (7)

SubstitutionofEq.(7)intoEq.(3)leadsto:

Mx =D

ψ

x

x +

ν ∂ ψ

y

y

;My=D

ψ

y

y +

ν ∂ ψ

x

x

;Myx=D 2(1

ν

)

ψ

y

x +

ψ

x

y

Qx =

κ

Gh

ψ

x+

w

x

;Qy=

κ

Gh

ψ

y+

w

y

(8)

Thedynamicequilibriumequationsofthree-dimensionalelasticityread:

σ

x

x +

τ

yx

y +

τ

zx

z =

ρ ∂

2tu2

τ

yx

x +

σ

y

y +

τ

zy

z =

ρ ∂

2

v

t2

τ

zx

x +

τ

yz

y +

σ

z

z =

ρ ∂

2tw2 (9)

Multiplicationbyzandintegrationovertheplatethicknessprovide,usingEq.(2),asystemofthreeequations:

Mx

x +

Myx

y Qx=

ρ

h3

12

2

ψ

x

t2

Myx

x +

My

y Qy=

ρ

h3

12

2

ψ

y

t2

Qx

x +

Qy

y +q=

ρ

h

2w

t2 (10)

(5)

whereq=q2q1,istheresultantpressure.SubstitutingEq.(8)intoEq.(10),theequationsofmotionbecome:

D 2

(1

v

)

2

ψ

x+(1+

v

)

2

ψ

x

x2 +

2

ψ

y

x

y

κ

2Gh

ψ

y+

w

x

=

ρ

h3

12

2

ψ

x

t2

D 2

(1

v

)

2

ψ

y+(1+

v

)

2

ψ

x

x

y+

2

ψ

y

y2

κ

2Gh

ψ

y+

w

y

=

ρ

h3

12

2

ψ

y

t2

κ

2Gh

2w+

∂ψ

x

x +

∂ψ

y

y

+q=

ρ

h

2w

t2

(11)

FromEq.(11),agoverningequationofthedeflectionisobtained.DifferentiatingthetwofirstequationsofEq.(11),with respecttoxandy,respectively,andaddingtheseequations,oneobtains,setting=∂ψx/∂x+∂ψy/∂y

D

2

κ

2Gh

ρ

h3

12

2

t2

=

κ

2Gh

2w (12)

where∇2 is the Laplace operator. Substituting thisequation inthe first of the equationsof motions Eq.(11) yields the governingdifferentialequationwhichisthetwo-dimensionalanalogueofTimoshenko’sbeamequation

D

2

ρ

h3

12

2

t2

2

ρ κ

G

2

t2

w+

ρ

h

2w

t2 =

1−D

2

κ

Gh +

ρ

h3

12KG

2

t2

q (13)

Withoutanyexternalload,thisequationisreducedto:

D

4+

ρ

h

2w

t2

ρ

h3

12+ D

κ

G

2

t2

2w+

ρ

2h3

12 1

κ

G

4w

t4 =0 (14)

or:

D

4w+

ρ

h

2w

t2

ρ

h123

1+12 h3

D

κ

G

2

t2

2w+

ρ

2h3

12 1

κ

G

4w

t4 =0 (15)

2.2.DerivationoftheoriginalUflyand-–Mindlinplatemodelfromthevariationalprinciple

ItappearsinstructivetoprovidethevariationalderivationofUflyand–Mindlin’sequationaspresentedbyMindlin(1951) himselfandLiewetal.(1998).Thepotentialenergyisgivenby

V=

V

Wdxdydz (16)

whereVisthevolumeoccupiedbytheplate,Wisthestrainenergydefinedasfollows:

W= 1

2(

σ

x

ε

x+

σ

y

ε

y+

σ

z

ε

z+

τ

xy

γ

xy+

τ

yz

γ

yz+

τ

zx

γ

zx) (17)

SubstitutionofEq.(5)intoEq.(17)yields 2W =

σ

x

u

x+

σ

y

v

y+

σ

z

w

z +

τ

xy

v

x+

u

y

+

τ

yz

w

y +

∂v

z

+

τ

zx

w

x +

u

z

(18)

DefiningtheresultoftheintegrationofWoverthicknessasW¯: W¯ =

Wdz (19)

UsingEqs.(6)and(19), 2W¯ =Mx

ψ

x

x +My

ψ

y

y +Myx

ψ

y

x +

ψ

x

y

+Qx

w

x +

ψ

x

+Qy

w

y +

ψ

y

(20)

or,

2W¯ =Mxx+Myy+Myxyx+Qxxz+Qyyz (21)

SubstitutingEq.(8)intoEqs.(21)and(16),thepotentialenergyinthefollowingformissetas:

V =

W¯dxdy=

1 2

D

ψ

x

x +

ψ

y

y

2

−2(1

ν

)

ψ

x

x

ψ

y

y 14

ψ

x

y +

ψ

y

x

2

+

κ

Gh

w

x +

ψ

x

2

+

w

y +

ψ

y

2

dxdy (22)

(6)

Theexpressionofthekineticenergyisthefollowing:

T=

V

ρ

2

u

t

2

+

v

t

2

+

w

t

2

d

v

(23)

Usingtheexpressionofthedisplacementandintegratingoverthethickness

T=1 2

ρ

h

w

t

2

+

ρ

h3

12

ψ

x

t

2

+

ψ

y

t

2

dxdy (24)

whereistheareaofthemid-surfaceoftheplate.

AccordingtotheHamilton’sprinciple:

δ

t

ti

dt=0 (25)

wheretheLagrangianisgivenby:

=TV=12

ρ

h3

12

ψ

x

t

2

+

ψ

y

t

2

+

ρ

h

w

t

2

dxdy

κ

Gh

2

w

x +

ψ

x

2

+

w

y +

ψ

y

2

dxdy

−1 2

D

ψ

x

x +

ψ

y

y

2

−2(1

ν

)

ψ

x

x

ψ

y

y 14

ψ

x

y +

ψ

y

x

2

dxdy (26)

Oneobtains:

t

ti

−D

ψ

x

x +

v ψ

y

y

∂δψ

x

x +

ψ

y

y +

v ψ

x

x

∂δψ

y

y

D(1

v

)

2

ψ

x

y +

ψ

y

x

∂δψ

x

y +

∂δψ

y

x

κ

Gh

w

x +

ψ

x

δ

w

x +

δψ

x

+

w

y +

ψ

y

δ

w

y +

δψ

y

+

ρ

h

w

t

δ

w

t

+

ρ

h3

12

ψ

x

t

∂δψ

x

t +

ψ

y

t

∂δψ

y

t

dxdydt=0 (27)

Integratingbypartresultsin:

t ti

D

2

ψ

x

x2

δψ

x+

2

ψ

y

y2

δψ

y+

ν ∂

2

ψ

x

x

y

δψ

y+

μ∂

2

ψ

y

x

y

δψ

x

+D(1

ν

) 2

2

ψ

x

y2

δψ

x+

2

ψ

y

x2

δψ

y+

2

ψ

x

x

y

δψ

y+

2

ψ

y

x

y

δψ

x

κ

Gh

ψ

x

δψ

x

∂ψ

x

x

δ

w

+

ψ

y

δψ

y

∂ψ

y

y

δ

w

+

w

x

δψ

x

2w

x2

δ

w

+

w

y

δψ

y

2w

y2

δ

w

ρ

h

2w

t2

δ

w

ρ

h3

12

2

ψ

x

t2

δψ

x+

2

ψ

y

t2

δψ

y

dxdydt

dxdydt

t

ti

D

∂ψ

x

x +

ν ∂ψ

yy

δψ

xdy

∂ψ

y

y +

ν ∂ψ

xx

δψ

ydx

+D(1

μ

) 2

(

δψ

y

δψ

x)

∂ψ

x

y dy(

δψ

x

δψ

y)

∂ψ

y

x dx

+

κ

Gh

ψ

x+

w

x

dy

ψ

y+

w

y

dx

δ

w

dt=0.

(28)

(7)

Fig. 2. Rectangular coordinates, and normal and tangential directions.

whereistheboundarypath.Bygroupingthetermsintheforegoingfunctionalwithrespecttothevariationterms, t

ti

D

2

ψ

x

x2 +

ν ∂

2

ψ

y

x

y

+D(1

ν

) 2

2

ψ

x

y2 +

ν ∂

2

ψ

y

x

y

κ

Gh

ψ

x+

w

x

ρ

h3

12

2

ψ

x

t2

δψ

x

+

D

2

ψ

y

y2 +

ν ∂

2

ψ

x

x

y

+D(1

ν

) 2

2

ψ

y

x2 +

ν ∂

2

ψ

x

x

y

κ

Gh

ψ

y+

w

y

ρ

h3

12

2

ψ

y

t2

δψ

y

+

κ

Gh

∂ψ

x

x +

2w

x2 +

∂ψ

y

y +

2w

y2

ρ

h

2w

t2

δ

w

dxdydt

t

ti

D

∂ψ

x

x dy+

ν ∂ψ

yydy

D(1

ν

) 2

∂ψ

x

y dx+

∂ψ

y

x dx

δψ

x

+

D

∂ψ

y

y dx+

ν ∂ψ

xxdx

+D(1

ν

) 2

∂ψ

x

y dy+

∂ψ

y

x dy

δψ

y

+

κ

Gh

ψ

xdy+

w

xdy

ψ

ydx

w

ydx

δ

w

dt=0

(29)

Equatingthecoefficientsofthevariationtermstozeroforthefunctionalovertheplatearea,Eq.(11)areobtained,and thus,thegoverningdifferentialequationisestablishedvariationally.

Forboundaryconditions,thelineintegralofEq.(29)issettozeroandrewrittenas:

t ti

D

∂ψ

x

x +

ν ∂ψ

yy

δψ

xdyD

∂ψ

y

y +

ν ∂ψ

xx

δψ

ydx+D(1

ν

) 2

∂ψ

x

y +

∂ψ

y

x

δψ

ydy

D(1

ν

) 2

∂ψ

x

y +

∂ψ

y

x

δψ

xdx+

κ

Gh

ψ

x+

w

x

δ

wdy

κ

Gh

ψ

y+

w

y

δ

wdx

dt=0

(30)

SubstitutingEq.(8)intoEq.(30): t

ti

[Mxx

δψ

xdyMyy

δψ

ydx+Mxy

δψ

ydyMxy

δψ

xdx+Qx

δ

wdyQy

δ

wdx]dt=0 (31)

Accordingtothe Frenet–Serretformulas, thesubscriptsnandsdenotingthe normalandtangentialdirections,respec- tively(seeFig.2):

dx=−sin

θ

ds;dy=cos

θ

ds;

ψ

x=

ψ

ncos

θ

ψ

ssin

θ

;

ψ

y=

ψ

nsin

θ

+

ψ

scos

θ

;Qn=Qxcos

θ

+Qysin

θ

Mnn=Mxxcos2

θ

+Myysin2

θ

+2Mxysin

θ

cos

θ

;Mnn=(MyyMxx)sin

θ

cos

θ

+Mxy

cos2

θ

sin2

θ

(32) So,substitutingEq.(32)intoEq.(31),itbecomes:

t

ti

[Mnn

δψ

n+Mns

δψ

s+Qn

δ

w]dsdt=0 (33)

Hence,attheboundaryoftheplate:

Mnn=0 Mns=0 Qn=0

or

ψ

n

ψ

s

w

arespeci fied

2.3.TruncatedUflyand–Mindlinplatetheory

In his paper, Elishakoff (1994) stated that “the original Mindlintheory isinconsistent inthe sense that it takes into accountsecondaryeffectoftheinteractionbetweenthesheardeformationandrotaryinertia”.Consequently,thelastterm

(8)

in Eq.(15), the one with the fourthorder derivative with respect to time, must not appear andhe proposed to reduce Eq.(15)to:

D

4w+

ρ

h

2w

t2

ρ

12h3

1+12 h3

D

κ

G

2

t2

2w=0 (34)

This truncated equation is directly derivable from equilibrium considerations, by replacing 2ψx/t2 and 2ψy/t2

in Eq. (11) by 3w/xt2 and 3w/yt2, respectively, as shown by Elishakoff et al. This process is an extension for platesofthe oneused by Elishakoff etal.(Elishakoff &Livshits, 1984; Elishakoff &Lubliner,1985;Elishakoff et al.,2012; Elishakoff, Kaplunov, & Nolde, 2015; Elishakoff, 2009) to obtain the truncated version of the Bresse–Timoshenko beam model.

Eq.(34)isalsoobtainablebyasymptoticargumentsfromthree-dimensionalelasticity,followingtheworkofBerdichevsky (1973) and Kaplunov (1996), using the reduction method, in which, the displacement is expanded in an infinite series of powers of the thickness coordinate (Widera, 1970) and approximateequations are derived, introducing an error that becomessmallerbyincreasingtheorderoftheasymptoticexpansion.

Thethree-dimensionalequilibriumequationsforaplatearewrittenasfollows(Widera,1970):

(

λ

+G)

x

y

z

θ

+

w

z

+G

2+

2

z2

u

v

w

=

ρ ∂

t22

u

v

w

(35)

whereλistheLamé coefficientandθ and2 aredefinedas

θ

=

u

x+

v

y;

2=

2

x2+

2

y2 (36)

Thestressvanishingonthefreesurfaceszh/2

σ

z

x,h 2

=

σ

z

x,h 2

;

σ

yz

x,h 2

+

σ

yz

x,h 2

=0 (37)

Thedisplacementsolutionsisdevelopedinapowerasymptoticexpansion:

θ

=

k=0

θ

k(x,y,t)zk;w=

k=0

wk(x,y,t)zk (38)

Substitutingintheseequations,itbecomes

n=1

2(

λ

+2G)n

h

2

2n−1

w2n+

λ

h 2

2n−1

θ

2n−1=0

2w0+

n=1

h 2

2n

2w2n+(2n1)

h

2

2n2

θ

2n1

=0

G

2

ρ ∂

t22

w2n+(

λ

+2G)(2n+1)(2n+2)w2n+2+(

λ

+G)(2n+1)

θ

2n+1=0 (

λ

+G)2n

2w2n+

(

λ

+2G)

2

ρ ∂

t22

θ

2n−1+G2n(2n+1)

θ

2n+1=0 (39)

wherec2=G/ρ.

Considerthedimensionlessvariables:

θ

¯n=Ln

θ

n;w¯n=Ln−1wn;

¯2=L2

2;h¯ =2hL;t¯= htc2L2 =h¯tc

2L (40)

Thethreeequationsarere-expressedas:

n=0

2(

λ

+2G)(n+1)w¯2n+2+

λ θ

¯2n+1

¯

h2n=0

¯2w¯0+

n=0

¯

h2

¯2w¯2n+2+(2n+1)

θ

¯2n+1

¯

h2n=0

¯

wN+2=− G

(

λ

+2G)(N+1)(N+2)

¯2h¯2

2

t¯2

¯

wN(

λ

+G)

(

λ

+2G)(N+2)

θ

¯N+1;N=0,2,4,6,...

Références

Documents relatifs

Comme la structure de nos échantillons nous est suffisamment connue (ce sont des graphites synthétiques qui cristallisent dans le système hexagonal), nous ne nous

Après ce que j’ai proposé c’est super c’est des vélos poussins je sais pas si vous connaissez c’est pour les personnes handicapées on l’utilise

The scheme uses linear maximum-entropy basis functions for field variables approximation and is built variationally on a two-field potential energy functional wherein the shear

Undertaking numerical testing of new element designs that might have been tedious, lengthy and error prone with a traditional FE package where ‘elements’ (function spaces) and

En effet, nous pouvons relever que lorsque les savoirs référentiels sont proposés aux étudiants, ces derniers sont amenés dans le cadre de leur formation à les

I Based on these results, we have designed a novel meshfree method based on a stabilised weak form with a Local Patch Projection technique to eliminate the shear-stress unknowns

A meshless method for the Reissner-Mindlin plate equations based on a stabilized mixed weak form.. using maximum-entropy

With respect to the more complex Naghdi shell problem, stabilised mixed weak forms have been shown to be particularly useful (Bathe, Arnold, Lovadina