• Aucun résultat trouvé

Can dendritic cells see light?

N/A
N/A
Protected

Academic year: 2021

Partager "Can dendritic cells see light?"

Copied!
8
0
0

Texte intégral

(1)

Can dendritic cells see light?

The MIT Faculty has made this article openly available.

Please share

how this access benefits you. Your story matters.

Citation

Chen, Aaron C.-H. et al. “Can dendritic cells see light?.”

Biophotonics and Immune Responses V. Ed. Wei R. Chen. San

Francisco, California, USA: SPIE, 2010. 756504-7. ©2010 SPIE--The

International Society for Optical Engineering.

As Published

http://dx.doi.org/10.1117/12.842959

Publisher

Society of Photo-optical Instrumentation Engineers

Version

Final published version

Citable link

http://hdl.handle.net/1721.1/57500

Terms of Use

Article is made available in accordance with the publisher's

policy and may be subject to US copyright law. Please refer to the

publisher's site for terms of use.

(2)

Can Dendritic Cells See Light?

Aaron C-H Chen

a

, Ying-Ying Huang,

a,b,c

Sulbha K Sharma

a

, Michael R Hamblin

a,b,d,* a Wellman Center for Photomedicine, Massachusetts General Hospital,

b Department of Dermatology, Harvard Medical School,

c Aesthetic and Plastic Center of Guangxi Medical University, Nanning, P.R China d Harvard-MIT Division of Health Sciences and Technology,

* corresponding author: BAR414, 40 Blossom Street, Massachusetts General Hospital, Boston, MA02114. email: Hamblin@helix.mgh.harvard.edu. Fax :617-726-8566

ABSTRACT

There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is

pro-inflammatory or anti-pro-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

Keywords: photobiomodulation, low level laser therapy, bone marrow derived dendritic cells, markers of

maturation and activation, confocal microscopy, flow cytometry

INTRODUCTION

Dendritic cells are known to be efficient stimulators of T and B-lymphocytes, and they play an important role as antigen presenting cells (APC) in initiating and modulating immune response. Langerhans cells were the first type of dendritic cells discovered in the skin back in 1868, but modern understanding of DC only started about 25 years ago.

A human has about 109 Langerhans cells locating above the proliferating keratinocytes in the skin, and

most of DC remain in an immature state, characterized by the lack of migration mobility and their inability to stimulate T cells. Although they lack co-factors for T or B lymphocyte activation, including CD40, CD54 and CD86, they are capable of capturing antigens and expressing them in the context of MHC class II. Only a few DC are necessary to provoke strong T-cell response. With more and more evidence, many immune-related symptoms have revealed the importance of DC, which has been long overlooked before.

Photobiomodulation or low-level light therapy has been proven to have many significant effects in enhancing healing and preventing tissue death [1, 2]. Karu’s laboratory has reported that mitochondria are a principal intracellular target of red and near-infra-red light [3], and cytochrome c oxidase is proposed to be a photoreceptor that absorbs light as far into the infra-red as 1000-nm [4]. There have been reports

(3)

of increased cytochrome c oxidase activity after low level light [5] and by stimulating the mitochondrial electron transport train, increased intracellular ATP after light delivery to isolated mitochondria [6] has been observed.

Many genes have been shown to have their transcription upregulated (or down regulated) after illumination of cells with various wavelengths and fluences of light. For instance, illumination of human fibroblasts with 628-nm light emitting diode led to altered expression of 111 genes of 10 functional groups [7]. Studies have shown that this one mechanism of light-mediated gene regulation is related to the activation of the pleiotropic transcription factor NF-kB [8] probably via generation of mitochondrial reactive oxygen species [9].

Nuclear factor kappa B (NF-kB) is a transcription factor regulating multiple gene expression and has been shown to govern various cellular functions, including inflammatory and stress-induced responses and survival [10]. NF-kB activation is governed by negative feedback by IkB, an inhibitor protein that binds to NF-kB, but can undergo ubiquitination and proteasomal degradation [11] thus freeing NF-kB to translocate to the nucleus and initiate transcription [12].

In addition, NF-kB also plays an important role in activation of inflammation. Many studies have shown that red or near infrared light can reduce inflammatory conditions such as arthritis [13, 14] or gingival inflammation [15].

MATERIALS AND METHODS

Bone Marrow-derived Dendritic Cells Culture

All animal procedures were approved by the Subcommittee on Research Animal Care of the

Massachusetts General Hospital and met the guidelines of the National Institutes of Health. Bone marrow-derived DC were prepared from 5- to 7-weak-old male C57 mice purchased from Jackson Laboratories (Bar Harbor, ME).

Femurs from mice were dissected, and muscle and tissue were removed. Cleaned bones were washed twice with Hank’s Buffer Salt Solution, and placed into culture media composed of RPMI-1640 (Gibco) with 1% penicillin–streptomycin (Cellgro), 0.1% 2-mercaptoethanol (Invitrogen), with 10% heat inactivated fetal bovine serum (Invitrogen) (murine DC media). Bones were cut and bone marrow was flushed with at least 5 mL of media. The bone marrow suspension was strained with a 70 mm cell strainer (Becton Dickinson), cells collected by centrifugation at 1500 rpm for 5 min, and erythrocytes were lysed with ammonium chloride (155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA). Bone marrow cell

suspension was resuspended at 1.5x105 / ml in murine DC media with 20 ng/ mL GM-CSF (Sigma). Cells were plated at 3 ml / well in six well plates (Corning), and incubated at 37°C with 95% relative humidity and 5% CO2. On day 3, cells were fed by exchanging half of the media with fresh murine DC media.

Purity and yield of CD3 and CD4 positive cells were inspected by flow cytometry. In addition, cell death was quantified by propidium iodide by flow cytometry. To assure the consistency of cell population, plates with over 85% purity and less than 10% cell death were selected for experiments. On day 8, loosely adherent and non-adherent cells were collected and washed twice in PBS, centrifuged and resuspended at 2 x 105/mL in 60mm cell culture treated dishes (Corning), and incubated at 37°C with 95% relative

(4)

LPS treatment.

Lipopolysaccharide from Escherichia coli purified by gel chromatography (Sigma-Aldrich, St Louis, MO) was added to DC at a concentration of 1 or 10 g/mL. Light was delivered at two time points, either immediately after LPS or 12 hours after LPS addition.

Low Level Light Irradiation

An 810nm laser (HOYA Conbio) was selected as light source, and light irradiation time was set at 5 minutes. 30, 3 and 0.3 J/cm2 fluences were delivered at irradiances of 100 mW/cm2, 10 mW/cm2 and 1

mW/cm2 respectively to individual dishes. Light treated dishes were incubated in the incubator for 24

hours before analysis.

Cell morphology and Quantification of Protein Expressions

After 24 hour incubation after light treatment, cell morphology was monitored by using confocal microscopy. Cells were stained with anti-murine fluorescent antibodies against MHC class II, CD80 and CD11c (Invitrogen molecular probes) 15 minutes before microscopy. The same antibodies were used to quantify protein expression in live cells by flow cytometry. Propidium iodide was added to distinguish live cells from dead cells.

Statistical Analysis

All chemiluminescence readings were normalized to total protein measured by Bradford’s technique (BCA, Pierce Biotechnology Inc.). All assays were performed in duplicate, and each sample was read twice and took the average. Excel software was used to perform Single-Factor ANOVA to evaluate the statistical significance of experimental results (p < 0.05).

RESULTS

Confocal Microscopy Imaging

Lipopolysaccharide is a potent stimulator for DC activation and maturation. No other cells exhibit the shape and motility as mature dendritic cells. With proper antigen stimulation, DC display fine long dendrites (>10 m) and the size of the cell body also enlarges from the immature stage. A fully mature dendritic cell also displays MHCII, CD86 and CD11c on its membrane, which allows it to capture antigens and stimulate antigen-specific T cells. The level of CD11c does not change with levels of maturation and/or activation of DC, thus allowing it to be used as an invariant fluorescent marker of DC purity

Many studies have shown that low level light has diminishing positive or even negative effects at higher fluence, such as 30 J/cm2, due to its biphasic dose response [16]. This high fluence of “low-level” light

together with more usual fluences such as 3 and 0.3 J/cm2 were selected to test if bone marrow-derived

dendritic cells responded to the 810nm continuous wave laser. After 24 hours incubation after light irradiation, which allows dendritic cells to process activation and maturation, confocal microscopy imaging showed that the laser alone did not change either of the membrane markers expression compared with the untreated DC (Figure 1A and B). However, if laser was delivered to the dendritic cells

(5)

Dark NIR 30J/cm2

continuously incubated with lipopolysaccharide, the surface MHCII was down-regulated while CD86 was up-regulated (Figure 1C and D. Furthermore, the dendrites of DCs with LPS plus light were more developed than those in the LPS only group.

Figure 1. Confocal microscopy of membrane protein expressions on DC, Blue, CD11c; red, MHCII and

green, CD86.

FACS analysis of membrane markers

Confocal microscopy imaging indicated that 24 hours after irradiation was a suitable time point to distinguish changes of membrane marker expression. At the same time point, FACS analysis on the same three markers were quantified as shown in Figure 2. Dexamethasome is a potent synthetic compound of the glucocorticoid class of steroid hormones and acts as an anti-inflammatory and immunosuppressive agent. FACS showed that dexamethasome down-regulated MHCII without significantly affecting expression levels of CD81 and CD11c. On the other hand, lipopolysaccharide up-regulated both MHCII and CD86 after 24 hours. 810nm laser results confirmed the confocal microscopy imaging data that laser alone did not significantly change MHCII or CD86, but in the presence of LPS, 810nm laser reduced levels of expression of membrane MHCII but increased expression of CD86.

(6)

I

CD11c MHCII CD86 7000

U-!. 6000

5000 C 4000 3000 U 2000 C

I

I

I

1000 0 0

dark dex 810 LPS0.1ig LPS0.11g+

810

Figure 2. FACS results of measurements carried out on 10,000 cells stained with appropriate fluorescent antibodies.

DISCUSSION

This study has demonstrated that for the first time that dendritic cells respond to 810nm near infrared laser with significant morphology change and membrane marker regulation. Furthermore, in addition to confirming previous reports and clinical trials from other laboratories that near infrared light indeed has effects on reducing inflammation, this study also supports the fact that near infrared potentially change DC morphology and their membrane markers of maturation, activation and antigen-presenting.

There is evidence that light acts on cells via NF-kB pathway among others and many reports have demonstrated that light could have different impacts on different cells and tissues. The fact that near infrared light alone did not significantly change immature DC but showed significant changes after the addition of LPS had induced maturation might have implied that light acting on DC requires signaling initiation of Toll-like receptors (TLR).

It has been recently discovered that there are (at least) two NF-kB activation pathways [17]. The canonical NF-kB signaling pathway activated in response to infections (toll-like receptor signaling) and cytokines is based on degradation of IkB inhibitors. This pathway depends on the IkB kinase (IKK), which contains two catalytic subunits, IKK and IKK . IKK is essential for inducible IkB phosphorylation and degradation, whereas IKK is not. IKK is involved in processing of the NF-kB2 (p100) precursor. IKK preferentially phosphorylates NF-kB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-kB-inducing kinase (NIK). IKK is therefore a pivotal component of a second NF-kB activation pathway based on regulated NF-kB2 processing rather than IkB degradation.

(7)

process of maturation of dendritic cells, photo-induced signaling could be interfering with signaling from the TLR, and this interference could determine the relative gene expression levels of different DC markers such as MHCII and CD86.. We also tested light irradiation at the later time point after LPS stimulation, (12 hours after LPS), and no similar changes in MHCII and CD86 as seen at early time point were observed (data not shown). This observation led us to believe that light did have abilities to change behaviors of DCs, but it requires early irradiation to trigger. It is at present unclear why the levels of MHCII and CD86 moved in different directions after laser treatment. Both these markers are considered to be upregulated during the process of DC maturation and activation. However it is likely that the overall result of unbalancing the coordinated expression levels of MHCII and CD86 would lead to less effective DC function, in other words to lower immune response levels to various stimuli. This may in fact be a partial explanation of the anti-inflammatory that is known to be one of the many benefits of LLLT. Reduced DC activation would tend to lessen the degree of inflammation produced by both the innate and adaptive arms of the immune system in response to diverse insults and injuries. Further work is needed to explore the determinants of LLLT on DC in various states of maturation and activation.

ACKNOWLEDGMENTS

This work was supported by NIH grant R01AI050875, Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006), CDMRP Program in TBI (W81XWH-09-1-0514) and Air Force Office of Scientific Research (FA9950-04-1-0079)

REFERENCES

[1]

Tunér, J., and Hode, L. [Laser therapy, clinical practice and scientific

background]. Grängesberg, Sweden.: Prima Books, 2002.

[2]

Karu, T. I. [The science of low power laser therapy. London], UK: Gordon and

Breach Scientific Publications, 1998.

[3]

Karu, T., "Photobiology of low-power laser effects," Health Phys. 56, 691-704

(1989)

[4]

Szundi, I., Liao, G. L., and Einarsdottir, O., "Near-infrared time-resolved optical

absorption studies of the reaction of fully reduced cytochrome c oxidase with

dioxygen," Biochemistry. 40, 2332-2339 (2001)

[5]

Pastore, D., Greco, M., and Passarella, S., "Specific helium-neon laser sensitivity

of the purified cytochrome c oxidase," Int J Radiat Biol. 76, 863-870 (2000)

[6]

Karu, T., "Primary and secondary mechanisms of action of visible to near-IR

radiation on cells," J Photochem Photobiol B. 49, 1-17 (1999)

[7]

Zhang, Y., Song, S., Fong, C. C., Tsang, C. H., Yang, Z., and Yang, M., "cDNA

microarray analysis of gene expression profiles in human fibroblast cells

irradiated with red light," J Invest Dermatol. 120, 849-857 (2003)

[8]

Chen, A. C.-H., Arany, P. R., Huang, Y.-Y., Tomkinson, E. M., Saleem, T., Yull,

F. E., Blackwell, T. S., and Hamblin, M. R. Low level laser therapy activates

NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. In:

Mechanisms for Low-Light Therapy IV, San Jose, 2009, pp. doi:

10.1117/1112.809605.

[9]

Chen, A. C.-H., Huang, Y.-Y., Arany, P. R., and Hamblin, M. R. Role of reactive

oxygen species in low level light therapy. I n : Mechanisms for Low-Light

Therapy IV, San Jose, 2009, pp. doi: 10.1117/1112.814890.

(8)

[10]

Baichwal, V. R., and Baeuerle, P. A., "Activate NF-kappa B or die?," Curr Biol.

7, R94-96 (1997)

[11]

Henkel, T., Machleidt, T., Alkalay, I., Kronke, M., Ben-Neriah, Y., and Baeuerle,

P. A., "Rapid proteolysis of I kappa B-alpha is necessary for activation of

transcription factor NF-kappa B," Nature. 365, 182-185 (1993)

[12]

Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D., "The

IkappaB-NF-kappaB signaling module: temporal control and selective gene activation,"

Science. 298, 1241-1245 (2002)

[13]

Castano, A. P., Dai, T., Yaroslavsky, I., Cohen, R., Apruzzese, W. A., Smotrich,

M. H., and Hamblin, M. R., "Low-level laser therapy for zymosan-induced

arthritis in rats: Importance of illumination time," Lasers Surg Med. 39, 543-550

(2007)

[14]

de Morais, N. C., Barbosa, A. M., Vale, M. L., Villaverde, A. B., de Lima, C. J.,

Cogo, J. C., and Zamuner, S. R., "Anti-Inflammatory Effect of Low-Level Laser

and Light-Emitting Diode in Zymosan-Induced Arthritis," Photomed Laser Surg.

(2009)

[15]

Pejcic, A., Kojovic, D., Kesic, L., and Obradovic, R., "The Effects of Low Level

Laser Irradiation on Gingival Inflammation," Photomed Laser Surg. (2009)

[16]

Huang, Y. Y., Chen, A. C., Carroll, J. D., and Hamblin, M. R., "Biphasic dose

response in low level light therapy," Dose Response. 7, 358-383 (2009)

[17]

Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., Chen, Y.,

Hu, Y., Fong, A., Sun, S. C., and Karin, M., "Activation by IKKalpha of a

second, evolutionary conserved, NF-kappa B signaling pathway," Science. 293,

1495-1499 (2001)

Figure

Figure 1.  Confocal microscopy of membrane protein expressions on DC, Blue, CD11c; red, MHCII and green, CD86.
Figure 2. FACS results of measurements carried out on 10,000 cells stained with appropriate fluorescent antibodies.

Références

Documents relatifs

cDC2, conventional Dendritic Cells type 2; CBA, Cytokine Bead Assay; DCs, Dendritic Cells; FL13, Flanders13 virus; LV, Lelystad virus; moDC, Monocyte- derived Dendritic Cells;

The CD1b + L-DCs collected after inoculation were able to induce the proliferative response of CD4 + T cells suggesting the in vivo capture of Salmonella antigens by the CD1b +

Study 1 Different isolates of Porcine reproductive and respiratory syndrome virus 1 (PRRSV1) produce different patterns of infection in bone marrow-derived dendritic cells

Unexpectedly, IN_DN and IN_SP pDCs expressed IFN-I genes (Fig. 1e, blue names), but at lower levels than IN_DP cells. 1e, violet names), including genes involved in T cell activation

factors secreted by MoDC, PBMC were in- cubated in the presence of cell-free culture supernatants collected 3–24 h after stimu- lation of the DC, and cell proliferation was measured

In this study, we extended LV transduction to pDC, using different pseudotyped HIV-1 vectors encoding E-GFP under the control of different promoters and showed that VSVG-pseudotyped

Moreover, using the human melanoma cell line T1, we demonstrated that after killing cancer cells, KDCs were capable of inducing the activation of the tumor Ag (Melan- A 25–36

Differential Effects of Viscum album Preparations on the Maturation and Activation of Human Dendritic Cells and CD4 + T Cell Responses.. Chaitrali Saha 1,2,3 , Mrinmoy Das 1,3,4