• Aucun résultat trouvé

Characterization of the performances of an innovative heat-exchanger/reactor

N/A
N/A
Protected

Academic year: 2021

Partager "Characterization of the performances of an innovative heat-exchanger/reactor"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01346088

https://hal.archives-ouvertes.fr/hal-01346088

Submitted on 18 Jul 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Characterization of the performances of an innovative

heat-exchanger/reactor

Félicie Theron, Zoé Anxionnaz-Minvielle, Michel Cabassud, Christophe

Gourdon, Patrice Tochon

To cite this version:

Félicie Theron, Zoé Anxionnaz-Minvielle, Michel Cabassud, Christophe Gourdon, Patrice Tochon.

Characterization of the performances of an innovative heat-exchanger/reactor. Chemical Engineering

and Processing: Process Intensification, Elsevier, 2014, vol. 82, pp. 30-41. �10.1016/j.cep.2014.04.005�.

�hal-01346088�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 15982

To link to this article : DOI : 10.1016/j.cep.2014.04.005

URL :

http://dx.doi.org/10.1016/j.cep.2014.04.005

To cite this version :

Théron, Felicie and Anxionnaz-Minvielle, Zoé

and Cabassud, Michel and Gourdon, Christophe and Tochon, Patrice

Characterization of the performances of an innovative

heat-exchanger/reactor. (2014) Chemical Engineering and Processing:

Process Intensification, vol. 82. pp. 30-41. ISSN 0255-2701

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Characterization

of

the

performances

of

an

innovative

heat-exchanger/reactor

F.

Théron

a

,

Z.

Anxionnaz-Minvielle

b,∗

,

M.

Cabassud

a

,

C.

Gourdon

a

,

P.

Tochon

b

aUniversityofToulouse,LaboratoiredeGénieChimique,UMR5503,CNRS/INPT/UPS,31432Toulouse,France bCEA,LITEN,LETH,17ruedesMartyrs,38054Grenoble,France

Keywords:

Heatexchanger/reactor Corrugatedflow Exothermalreaction

Continuousmode

Heatandmasstransferintensification

a

b

s

t

r

a

c

t

Theuseofheatexchanger/reactors(HEX/reactors)isapromisingwaytoovercomethebarrierofpoor heattransferinbatchreactors.Howevertoreachresidencetimelongenoughtocompletethechemistry, lowReynoldsnumberhastobecombinedwithbothaplugflowbehaviourandtheintensificationofheat andmasstransfers.Thisworkconcernstheexperimentalapproachusedtocharacterizeaninnovative HEX/reactor.Thepilotismadeofthreeprocessplatessandwichedbetweenfiveutilityplates.Theprocess streamflowsina2mmcorrugatedchannel.Pressuredropandresidencetimedistribution characteri-zationsaimatstudyingtheflowhydrodynamics.IdentifiedDarcycorrelationspointoutthetransition betweenlaminarandturbulentflowaroundaReynoldsnumberequalto200.Moreovertheflowbehaves likeaquasi-plugflow(Pe>185).Theheattransferandmixingtimehavealsobeeninvestigated.Theratio betweenthereactionkineticsandthemixingtimeisover100andtheintensificationfactorrangesfrom 5000to8000kWm−3K−1.Asaconsequence,nolimitationswereidentifiedwhichallowsthe

imple-mentationofanexothermicreaction.Ithasbeensuccessfullyperformedunderseveretemperatureand concentrationconditions,batchwiseunreachable.Thus,ithighlightstheinterestofusingthiscontinuous HEX/reactor.

1. Introduction

Amongthe differentways ofprocess intensification [1],the batch-to-continuoustranspositionisoneofthemostclassical, pro-videdthat the reactorhasto behave asplug flow reactor. The mainissues insuchapparatusesaretointensifyheatand mass transfers while operating at low-Reynolds flows usually char-acteristicof laminar flows. Indeedlow fluid velocities, i.e.high residencetimes,arerequiredtocompletethechemistryalthough highheatandmasstransfercoefficientsareusuallyexpectedin turbulentflows.One solutiontoremovethis barrier istowork withheat-exchanger/reactors[2–4].Theseapparatusescombinea heat-exchangerandareactorinthesameunit.Thisallowsan accu-ratecontroloftheoperatingtemperaturewhichisoneofthemain barriersconcerningtheimplementationofexo-orendo-thermal reactionsinclassicalbatchreactors.Moreoverthecorrugationof thereactionchannelleadstotheheatandmasstransfers intensi-ficationwhilemaintaininglowReynoldsnumbers[5–9].Thus,by usingheatexchanger/reactorsmanybenefitsareexpectedsuchas

∗ Correspondingauthor.Tel.:+330438783567;fax:+330438785161.

E-mailaddress:zoe.minvielle@cea.fr(Z.Anxionnaz-Minvielle).

wastereduction,energyandrawmaterialssaving,yieldand selec-tivityincrease,andcostreduction.

The aimof this paperis to investigate theperformances of the continuous heat exchanger/reactor developed in theframe oftheRAPICR&DprojectsupportedbytheFrenchAgencyANR

[7,10].Theoriginalityofthis projectwhichstartedinDecember 2007andlasted42monthswastodevelopaninnovativelow-cost heat-exchanger/reactor(HEX reactor) forthe 10kgh−1 nominal

flowrate.Thedevelopmentstrategytoreachthisgoalwastotake intoconsiderationtheimplementationconstraintsofanindustrial exothermalreactionwhile beingascloseaspossible tomature technologiesofheat-exchanger.Acomplementaryconsortiumwas thussetupcomprisingoneend-user(RhodiaChemicals),one heat-exchanger manufacturer (Fives Cryo), two French laboratories activeinbasicresearchonprocessengineering(LGC)and thermo-hydraulicengineering(LTN),andtheAtomicandAlternativeEnergy Commission(CEA/LITEN)whichhandlestheprojectcoordination, thecomponentdesign,andthereactionplatesmanufacture.

Thefirstpartofthispaperdealswiththepresentationofthe heatexchanger/reactorandtheexperimentalset-upusedto char-acterizeit.Itshydrodynamicperformancesarethenevaluatedfrom pressuredrop,residencetimedistributionandmixingtimes mea-surements.Theobjectofthethirdpartisthestudyofthereactor

(4)

Nomenclature

A heatexchangearea(m2)

Cp heatcapacity(Jkg−1K−1)

dbends distancebetweentwosuccessivebends(m)

dh hydraulicdiameter(m)

De Deannumber

Dax axialdispersioncoefficient(m2s−1)

Dh hydraulicdiameter(m)

Ea activationenergy(Jmol−1)

fcorrugation corrugationfrequency(s−1)

Fp processvolumeflowrate(Lh−1)

k0 reactionrateconstant(Lmol−1s−1)

L processchannellength(m)

Ltotal totalprocesschannellength(m)

mdw massofwaterequivalenttotheDewarvessel(kg)

m0

w massofwaterinitiallyintroducedintheDewar

ves-sel(kg)

mp massofsamplepouredintheDewarvessel(kg)

Mp processmassflowrate(kgh−1)

Mu utilitymassflowrate(kgh−1)

Ni0 initial molar flowrate of the limiting reactant (mols−1)

n0

i initialmolenumberofthelimitingreactant(mol)

Pe Pecletnumber

Qlosses heatlosses

Qp heatexchangedbytheprocessside(W)

Qr,total totalheatreaction(W)

R gasconstant(Jmol−1K−1)

Rc channelcurvatureradius(m)

Re Reynoldsnumber

Rep processReynoldsnumber

Reu utilityReynoldsnumber

t time(s)

tm mixingtime(s)

tr residencetime(s)

T0

dw temperature in the Dewar vessel just before

introducingthereactivemedia(◦C)

Teq,dw temperatureatequilibriumintheDewarvessel

Tp,in processinlettemperature(◦C)

Tp,out processoutlettemperature(◦C)

Tu,in utilityinlettemperature(◦C)

Tu,out utilityoutlettemperature(◦C)

u processfluidvelocity(ms−1)

U globalheattransfercoefficient(Wm−2K−1)

V processchannelvolume(m3)

Greekletters

1Hr reactionheat(Jmol−1)

1P pressuredrop(Pa)

1Tml logarithmicmeantemperature(◦C)

 Darcycoefficient  viscosity(Pas)  density(kgm−3)

 conversionrate

thermalbehaviourthroughtheinvestigationofthermalprofilesin theprocesschannelduringexperimentsconsistingincoolingahot processfluidbytheutilityside.Finallytheheatremovalabilityof theheatexchanger/reactoristestedthroughtheimplementation ofthehighlyexothermicreactionofsodiumthiosulfateoxidation byhydrogenperoxide.

Table1

Geometricalpropertiesoftheheat-exchanger/reactor.

Processstream Utilitystream

Numberofparallelchannels 1 16

Numberofplatesforeachstream 3 4

Individualchannelwidth(mm) 2.0 2.0

Individualchanneldepth(mm) 2.0 2.0

Individualchannellength,Ltotal(mm) 6700

Hydraulicdiameter,Dh(mm) 2.0 2.0

Totalfluidvolume(mm3) 26.85 114.1

Metalthicknessbetweenstreams(mm) 2 2

2. Theheat-exchangerreactor

Theprocesschanneldesignhasbeenoptimizedintheframeof theRapicprojectinordertofindacompromisebetweenthe reac-torperformances(heattransferandmixing),thepumpingpower, thecompactnessandthemanufacturingcosts.Lab-scalemock-ups have been implemented tostudy theinfluence of the geomet-ricalparameters(curvature radius,straight lengthbetweentwo bends,aspectratioandbendangle)ontheheatandmasstransfer performances,thepressuredropsandtheresidencetime distribu-tion.ThewholeapproachisdetailedinRef.[9].Fromboththese worksandthespecificationsoftheEnd-UserinvolvedintheRapic project,acorrugatedgeometryhasbeenselected[7,10].Thepilot hasbeenmanufacturedinaccordancewiththeresultsofthe geom-etryoptimization.Itconsistsinthreereactiveplatessandwiched betweenfourutilityplates.Thereactiveplatesaswellasthe util-ityplateshavebeenengravedbylasermachiningtoobtain2mm squarecross-sectionchannels.Bothreactiveandutilitychannels designsarepresentedinFig.1(a)and(b),andtheircharacteristics aredetailedinTable1.

The reactor material is 316L stainless steel and the differ-entplates have been assembled byhot isostatic pressing (HIP)

[7,10,11].Afterassemblythereactorhasa32cmheight,a14cm width,a3.26cmthickness,andamassof10.84kg,whichmakesit averycompactHEXreactor.Thereactorhasbeendimensionedfora flowraterangefrom1to15kgh−1,whichcorrespondstoresidence

timesrangingfrom7to40s. 3. Theexperimentalsetup

A schematicrepresentation of theexperimentalset-upused to investigate the reactor performances is presented in Fig. 2. It involves two distinct fluid streams which enable to feed respectivelythereactivechannelortheutilitycircuit.Theprocess lineisequippedwithtwopumpsandtheutilitycircuitwithathird one.Eachpumpisequippedwithamassflowmeter.Eachprocess pumpcanbefedwithitsownreactantorbydistilledwater.The util-itycircuitissuppliedbydistilledwaterascoolant.Theutilityline temperatureisfixedthankstoathermallycontrolledbathlocated justupstreamitsentranceinthereactor.

Therespectivetemperaturesoftheutilityinletandoutletare measuredthankstoPt100sensors.Forthereactivechannel the inletandoutlettemperaturesaremeasuredthankstoK-type ther-mocouples. During experimentsthe differenttemperaturesand flowratesarerecorded.

Otherspecificsensorsareaddedforthedifferentstepsofthis study.Theyarepresentedanddetailedintherelatedpartsofthis paper.

4. Methods,resultsanddiscussion

Beforeimplementingatestreaction,thefirstpartoftheseworks aimsatcharacterizingthehydrodynamicbehaviour(pressuredrop and residence time distribution) and the transfer mechanisms

(5)

Fig.1.(a)Reactivechanneldesign;(b)utilitychanneldesign;(c)theheatexchanger/reactorafterassembly.

(mixingandheattransfer)of thewholeheatexchanger/reactor pilot.

4.1. Pressuredrop

4.1.1. Experimentalset-upandprocedure

Inorder tocarryout pressuredrop measurementsthe reac-tivechannelisequippedwithadifferentialpressuresensorlocated betweenitsinletandoutlet(cf.Fig.2).TwoNewtonianfluidsare usedtocovera wideReynoldsrange:distilledwateranda 67% weightaqueoussolutionofglycerol.Thephysico-chemical prop-ertiesofbothfluidsaredetailedinTable2aswellastheflowrate rangestestedandthecorrespondingReynoldsnumbers.The vis-cosityofthewater–glycerolsolutionhasbeenmeasuredat24◦C

withanAR2000rheometer(TAInstruments).

4.1.2. Resultsanddiscussion

Theevolutionofthepressuredropperlengthunitversusthe flowrateforthereactivechannelispresentedinFig.3forboth flu-idstested.Thepressuredropmeasuredwithwaterrangesbetween 0.02 and 0.76barsm−1, and for the water–glycerol solution it

ranges between 0.14 and 2.38barsm−1. These measurements

enabletoestablishtherelationshipsbetweenthedimensionless DarcyandReynoldsRenumberswhicharecalculatedasfollows: = 21PDh

Lu2 (1)

Re= uDh

 (2)

whereListhetotalreactivechannellength,andutheprocessfluid velocity.

TheevolutionoftheDarcynumberasafunctionoftheReynolds numberispresentedinFig.4.

Fig.2. Experimentalset-up(grey:processplates;black:utilityplates).

Fig.3. Evolutionofthepressuredropasafunctionofprocessflowrateforbothfluids tested.

Thegeneralcorrelationsbetweenthesenumbersthat canbe foundintheliteratureareofthefollowingform:

= a

Reb (3)

Inthecaseofasquarecross-sectionstraightchannel,theDarcy coefficientiswritten:

=0.964

Re (4)

Reynoldsnumbersfrom20to2250havebeenexploredwithout majordiscontinuitybetweenthewaterexperimentalcurveandthe water/glycerolone.Onlyonepoint(water,Re=100)deviatesfrom thecorrelationline.Thisdiscrepancyisattributedtothehigh uncer-taintyoftheflowrateforthisReynoldsnumberwithwater.Indeed, atRe=100,thewaterflowratewasveryclosetothelowestvalue oftheflowmeterrange.BelowaReynoldsnumberaround40,the pressuredropisnotreallyaffectedbythechannelcorrugationand theDarcycoefficientisclosetotheoneofastraightpipe.Thisresult couldbeinterestingforhighviscousfluidapplicationsforinstance. From theexperimental results presented in Fig. 4 it is also possible to point out the transition between the laminar and

(6)

Table2

Physico-chemicalpropertiesoffluidusedforpressuredropmeasurements.

Fluid Density,(kgm−3) Viscosity,(Pas) Flowrate,F

p(Lh−1) Reynolds,Re

Water 993 0.0010 1.5–16.3 210–2250

Water–glycerol(67%weight) 1162 0.0144 1.7–16.4 20–180

theturbulentflowwhichoperatesataReynoldsnumberaround 200–300.Theinterest inloweringthetransitionpoint islinked tothecompromise betweenresidencetime and intensification. IndeedthelowertheReynoldsnumber,thehighertheresidence time(requiredforthechemistry).Atthetransitionpoint,theflowis notlaminaranymorewhichmeansthatthepressuredropincreases whilethetransfermechanismsareenhancedthankstothe homog-enizationofthetemperature,velocityandmomentumgradients.As aconsequence,ifhighresidencetimesarerequired,thisloweringof thetransitionpointcouldbeinteresting.Therelationshipsbetween theDarcyandtheReynoldsnumbersobtainedfromexperimental resultsforbothflowconditionsaregiveninFig.4.

4.2. Residencetimedistribution

4.2.1. Experimentalset-upandprocedure

Residence time distribution experiments have been carried outto investigatethehydrodynamic characteristicsof theheat exchanger/reactor.Forthispurposeaspectro-photometricmethod hasbeenimplemented.Thecolouredtracerusedwaspotassium permanganate(KMnO4)whichabsorbancewavelengthis525nm.

Theprocessfluidwaswater.

Theexperimentalset-upwasimplementedwithtwomeasuring cellslocatedrespectivelyattheprocessstreaminletandoutlet,and a“T”connectorwithaseptumwasaddedjustupstreamtheinlet measurementcelltoinjectthetracerthankstoasyringe.

Toperform RTDmeasurementsthe following procedurehas beenadopted:

Thewaterflowrateisfixedtothetargetedvalue.

Whensteady-state isreachedtheinletand outletabsorbance signalsrecordingisstartedand thetracerisinjectedtryingto reproduceasignalascloseaspossibletoaDiracpulse.

Recordingisstoppedwhenthesignalreturnedtothebaseline. ForthisRTDstudy,sixprocessflowratesrangingfrom2.7to 14.8Lh−1havebeentested,whichcorrespondtoReynolds

num-berrangingfrom375to2056.Experimentshavebeenperformedat roomtemperature,andeveryexperimentalconditionwasrepeated inordertogetatleastthreereliablerunstoevaluatethe repro-ducibilityofthemeasurementmethod.

4.2.2. Resultsanddiscussion

TheRTDcurvesobtainedforprocessflowratesofrespectively 2.7Lh−1and14.8Lh−1arepresentedinFigs.5and6.TheseRTD

curvesare plottedasa functionofrelative times,thatis tosay theratiobetweenthetimefromtheinletpeaktothetheoretical residencetime.

Afterabout1.3timesthetheoreticalresidencetime,theRTD curvesdonolongerexhibittails.Thismeansthattheprocess chan-neloftheheat-exchanger/reactorhasnodeadzones,recirculations orstagnantvolumes.MoreovertheRTDcurvecorrespondingtothe processflowrateof2.7Lh−1exhibitsalongertailthantheone

cor-respondingtotheprocessflowrateof14.8Lh−1.Thusincreasing

theflowrateenablestogetclosertoaplugflowbehaviour. From the deconvolution of the experimental RTD curves at the inlet and the outlet of the reactor and assuming an axial

Fig.5.RTDcurveforFp=2.7Lh−1;Rep=375.

dispersionmodelwithopenboundaries,thePecletnumberPehas beenassessed.Itisdefinedas:

Pe= u·L

Dax (5)

whereuistheprocessfluidvelocity,Listheprocesschannellength andDaxistheaxialdispersioncoefficient.

At the lowest flowrate, i.e. 2.7Lh−1, the Peclet number is

already equalto185whichconfirms thattheflow inthe heat-exchanger/reactorbehaveslikeaquasi-plugflow.

4.3. Mixingtimes

Awaytoassessmixingtimesistoperformthereactionof dis-colourationofaniodinesolutionwithsodiumthiosulfateaccording tothefollowingscheme[12]:

I2(brown)+2Na2S2O3(colourless)→ 2NaI(colourless) +Na2S4O6(colourless)

This homogeneous reaction is instantaneous and mixing limited.Asaconsequence,atsteadystate,themixingtimecanbe easilydeterminedbymeasuringtherequiredlengthtocomplete thediscolourationofiodine.

Howeverthelengthassessmentrequiresteststobeperformed inatransparentmaterialinordertovisualizethediscolouration.

(7)

Fig.7.PictureofthePMMAmock-upusedformixingtests.

Asaconsequence,thestudyofmixingtimeshasbeencarriedout inaPMMAmock-up.Thechannelgeometryisstrictlythesameas theheat-exchanger/reactorone.Fig.7showsthePMMAmock-up usedforthemixingtests.

SodiumthiosulfateandiodinearerespectivelyfedinpointsA andBwhiletheproductsoutputisinpointC.Apicturetreatment makeseasierthelengthassessment.Fig.8showsthemixingtime profileversustheReynoldsnumber.

AsexpectedthemixingtimedecreaseswhentheReynolds num-ber increases. Asa consequence for low Reynolds applications (involvingviscousfluidsforinstance),mixingwillhavetobe care-fullyconsideredtoavoidmasstransferlimitations.AboveRe=700 mixingtimesarelowerthan0.1s.Thisvaluehastobecompared tothekineticsofthereactionimplementedinthisworkinorderto identifywhetherthereactionislimitedbythemasstransferinthe corrugatedchannelornot.

Inclassicalmechanicallystirredreactorstheproductofthe agi-tationspeedandthemixingtimeisconstantintheturbulentflow regime[13].Byanalogywehaveconsideredafrequency,fcorrugation,

inthecorrugatedchannel.Itisdefinedastheratiobetweenthe fluidvelocityu,andthedistancebetweentwosuccessivebends

dbends(18.6mm):

fcorrugation=

u dbends

(6) andthisfrequencyhasbeenmultipliedbythemeasuredmixing timestm.Fig.9showsthisparameterprofileversustheReynolds

number.

Thisgraph shows that the product tm·fcorrugation seems con-stantaboveReynolds=300.ThismeansthatfromRe=300,theflow regimeissimilartoaturbulentonewhichisquiteinterestingfor combiningresidence time whileintensifying themass transfer.

Fig.8.MixingtimeversusReynoldsnumberinthecorrugatedchannel.

Fig.9.Frequencyofthecorrugation×mixingtimevs.Reynoldsnumber.

Consideringtheexperimentaluncertainties,thisresultis consis-tentwiththepressuredropresultswhichshowsatransitionpoint aroundRe=200(cf.Fig.4).

Animportantdimensionlessnumbertoconsiderincorrugated geometriesistheDeannumber.Itisdefinedas:

De=Re·

r

Dh

Rc

(7) whereReistheReynoldsnumber,dh,thehydraulicdiameterand

Rc,thechannelcurvatureradius.

Contrarytotheflowinastraightchannel,thestreamlinesina corrugatedchannelarenotparalleltotheflowaxis.Thecentrifugal forceencounteredineachbendandtheimbalancebetweenthis forceandthepressuregradientgeneratecounter-rotatingvortices inthechannelcross-section.Dean[14]wasthefirsttosolvethe flowsolutioninacurvedduct.

AnincreaseoftheDeannumbertendstomovetheaxialvelocity peakfromthecentretotheoutwardductwall.Aboveacriticalvalue oftheDeannumber,twoadditionalvorticesappearduetotheflow instability.TheyarecalledtheDeanvortices.

ThecriticalDeannumberrangesbetween100and250 accord-ingtotheemployedDeanvorticesdetectionmethod[15–18].Inthe geometryofourheat-exchanger/reactor,theDeannumber corre-spondingtoaReynoldsnumberaround200,isequalto230.Asa consequencetheflowregimetransitionobservedfromboth pres-suredropandmixingresultsisconsistentwiththeapparitionof DeanvorticesabovethecriticalDeannumber.

4.4. Thermalcharacterization

Theaimofthispartistoinvestigatethethermalperformances oftheheatexchanger/reactor andtoestimatetheheattransfer coefficientsinordertocompareittootherHEXreactors.

4.4.1. Experimentalset-upandprocedure

For this thermal characterization the process channel was instrumented withsix K-typethermocouples. Five of them are locatedinthefirstprocessplate(cf.Fig.10),andthesixthonejust onerowbeforethetransitionbetweenthesecondandthethird pro-cessplates.Forthisstudythereactoristhermallyinsulatedthanks topolystyrene.Theconfigurationofprocessandutilityplatesis rep-resentedinFig.11.Eachprocessplateexchangesheatwiththetwo adjacentutilityplates.Globallythestreamsflowco-currentlyon onesideandcounter-currentlyontheotherside.However,locally thestreamsareclosetoacross-flowconfiguration.

Themethodusedtocarryoutthisthermalcharacterization con-sistsincoolingtheprocessfluidthatflowsthroughathermally controlledbathlocatedupstreamtheprocessinlet.Theprocessand

(8)

Fig.10.Localizationofthefivethermocouplesimplementedinthefirstprocess plate.

utilityfluidiswaterwhichtemperatureupstreamthereactorinlet isabout75◦Cfortheprocessstream,andabout15Cfortheutility

stream.Theexperimentalprocedureforeachtestisasfollows: •Theprocesschannelisfedwithwateratthetargetedtemperature

andflowrate.

Whensteady-stateisreachedtheutilitychannelisalsofedwith wateratthetargetedtemperatureflowrate.

The different temperaturesare recorded until steady-state is reached.

Bothprocessandutilityflowratesinfluencesareaddressedin thisstudy.TheexperimentalconditionsaredetailedinTable3.

4.4.2. Thermalprofiles

Fig.12aimsatevaluatingtheinfluenceoftheutilityflowrate ontheprocess streamtemperatureevolutionalong theprocess channel.Alltheseexperimentshavebeencarriedatafixedprocess flowrateof10kgh−1.Inthisfigurethetemperatureevolutionis

representedasafunctionoftheratiooftheprocesschannel posi-tionLatwhichthetemperatureismeasuredtothetotalprocess channellengthLtotal.

Thisgraphshowsthatthetemperatureprofilehasthesame evo-lutionwhatevertheutilityflowrate,andisalmostconstantfrom 111.3kgh−1.Thismeansthatfromthisvaluetheheattransfer

pro-cessisnotlimitedbythelocalheattransfercoefficientontheutility side.Inthenextsectiontheutilityflowrateisfixedtoitshighest valueofabout152kgh−1foraddressingtheinfluenceoftheprocess

flowrate.

Fig.11.Processandutilityplatesconfigurationforthethermalcharacterization.

Fig.12.Evolutionoftheprocessfluidtemperaturealongtheprocesschannelfor differentutilityflowrates,withMp=10kgh−1andTp,in=77◦C.

Fig.13enablestoevaluatetheinfluenceoftheprocessflowrate ontheprocessfluidtemperatureevolutionalongtheprocess chan-nel. This figure shows that whatever the process flowrate the temperatureoftheprocessstreamdecreasesalongthechannelin thefirstprocessplate.Thenthetemperatureslightlyincreasesin thenexttwoprocessplates.Theminimumreachedattheexitof thefirstprocessplatecanbeexplainedbythefactthatatthispoint theprocessplateexchangesheatononeofitssidewiththeutility inlet.Moreoveritisconsideredthatatthispointtheheatexchange betweenbothsidesiscompleted.Inthefollowingcalculationofthe intensificationfactor,theheatbalancewillthusbemadefromthe temperaturedifferencemeasuredattheprocesschannelinletand atL/Ltotal=0.32,i.e.inthefirstprocessplate.

Fig.14 representsthesameexperimentaldataas those rep-resentedinFig.13,butthetemperatureisplottedasafunction oftheresidencetimeintheprocesschannel.Thisrepresentation pointsoutthatonly3sareneededfortheprocessfluidtoreachits minimumtemperature.Intheperspectiveofimplementinghighly exothermalor endothermalreactionssuchresultshighlightthe abilityoftheheat-exchanger/reactortoquicklyremoveheat.

4.4.3. Discussion

Thethermaldataallowthecalculationoftheintensification fac-tor:U·A/V,whereAistheexchangearea,Vistheprocesschannel volumeandUistheglobalheattransfercoefficientcalculatedas follows:

U= Qp

A·1Tml (8)

Fig.13.Evolutionoftheprocessfluidtemperaturealongthechannelfordifferent processflowrates,withMu=152kgh−1andTu,in=15.6◦C.

(9)

Table3

Experimentalconditionsforthethermalcharacterization.

Utilitystream Processstream

Mu(kgh−1) Reu Tu,in(◦C) Mp(kgh−1) u(ms−1) Rep Tp,in(◦C) 2.4 0.2 554 4.0 0.3 937 5.5 0.4 1303 6.9 0.5 1641 ≈152 ≈1200 ≈15.6 8.7 0.6 2082 ≈76.0 10.3 0.7 2469 12.2 0.8 2935 13.4 0.9 3140 15.0 1.0 3583 57.0 499 62.2 544 75.2 641 87.8 742 101.3 846 ≈15.6 ≈10.0 ≈0.7 ≈2400 ≈77.0 111.3 927 127.0 1044 138.8 1133 151.0 1239

whereQpistheheatexchangedbytheprocessfluid:

Qp=Mp.Cpp·(Tp,in−Tp,1) (9) and1Tmlisthelogarithmicmeantemperature:

1Tml= (Tp,in

−Tu,processinlet)−(Tp,1−Tu,in)

ln((Tp,in−Tu,processinlet)/(Tp,1−Tu,in)) (10)

Tp,in aswellasTu,inaretheinlettemperatures.Asmentioned

beforeTp,1isthetemperaturemeasuredatthefirstprocessplate

exit.Tu,processinlet istheutilitysidetemperaturephysically

corre-spondingtotheprocessstreaminlet,whichiscalculatedbyaheat balanceconsideringthattheheatexchangedbytheprocessside isequaltotheoneexchangedbytheutilityside.Thewaterheat capacityCppiscalculatedatthemeanprocessfluidtemperature

betweentheinletandtheoutletofthefirstplate.

Fig.15representstheintensificationfactorasafunctionofthe processflowrate.Theintensificationfactorincreasesfromabout 5000to8000kWm−3K−1whentheprocessflowraterangesfrom

8.7to15.0kgh−1.

Thethermalperformances oftheheat-exchanger/reactorare comparedtothoseofotherHEXreactorsreportedinthe litera-tureinTable4.Accordingtothistablethethermalperformances oftheheat-exchanger/reactorareratherinteresting.Evenifitdoes notallowresidencetimesofthesameorderasothertechnologies,

Fig.14.Evolutionoftheprocessfluidtemperatureasafunctionoftheresidence timeintheprocesschannelfordifferentprocessflowrates,withMu=152kgh−1

andTu,in=15.6◦C.

theheatexchanger/reactorexhibitshigherintensificationfactors thanalmostalloftheotherreactors.Theresidencetimeissuecan beaddressedbyusingseveralreactorsinserialorbyadding extra-platesdependingontheoperatingconditionsrequired.Theonly apparatusthatappearsmoreinterestingfromthethermal perfor-mancestandpointistheheatexchangerreactorinvestigatedby Despenesetal.[19]whichismadeofsiliconcarbide.

4.5. Oxidationreaction

TheaimoftheHEXreactorsistosafelycarryoutreactionsthat involveimportantheatremovalor supplyissuesunder concen-tratedconditions.Thatis whyahighlyexothermicreactionhas beenselectedinordertoinvestigatetheheatremovalcapacityof ourheat-exchanger/reactor.

4.5.1. Theoxidationreaction

The chosen reaction is the oxidation of sodium thiosulfate Na2SO3 byhydrogenperoxideH2O2 thatoccursthroughthe

fol-lowingequation:

2Na2S2O3+4H2O2→Na2S3O6+Na2SO4+4H2O

Some authors carried out this reaction to characterize heat transfer during batch or semi-batch procedures [22,23], or to evaluate the performances of a tubular reactor [24] and of

Fig. 15.Intensification factor as a function of the process flowrate, with

(10)

Table4

ComparisonofthermalperformancesoftheRAPICR&Dheatexchanger/reactortootherstandardreactors.

Reactor Reference Reactordescription Residencetime Intensificationfactor

U·A/V(kWm−3K−1)

RAPICR&Dheatexchanger/reactor Thiswork Fewtenseconds 5000–8000

Siliconcarbidebasedheatexchangerreactor [19] Fewminutes 20,000

Stainlesssteelbasedheatexchangerreactor [19] Fewminutes 5000

ChartShimTecheatexchangerreactor [20] Fewminutes 3000

Alfa-Lavalheatexchangerreactor [21] Fewminutes 1000

Batchreactor Fewhours 1

severalHEX reactors [20,21,25]. This reaction occurs in homo-geneous liquid phase, is irreversible, fast and its reaction heat is 1Hr=−586.2kJmol−1.Moreoverthis reactionis temperature

sensitive,i.e.theconversionratedependsontheoperating tem-perature.

4.5.2. Experimentalset-up

The oxidation reaction involves two aqueous solutions of sodiumthiosulfateandhydrogenperoxideasreactants.The solu-bilitylimitsofNa2S2O3andH2O2inwaterarerespectively30and

35%inmass[26].Toavoidtoohightemperaturesinsidethereactor incaseofanadiabaticrisethetwosolutionsarebothpreparedin ordertoreach9%inmass.

Astheprocesschannelhasonlyoneinletthesesolutionsare mixed just upstreamthis inlet thankstoa “T”connection. The “premixing”ofreactantsbeforethereactorinletdoesnotleadto a reactionstart becauseatthis stagethe processstreamis not heatedbytheutilitystreamandasitwaspointedoutpreviouslythe reactionistemperaturesensitive.Thetemperatureofthe premix-ingistheroomtemperature(cf.Tpremix,Table5).Thusthebeginning

ofthereactionwelloccursasthereactantspremixenterthereactor (inlettemperaturesrangesfrom40to60◦C).

Sodium thiosulfate as wellas hydrogen peroxideare rather unstable.Theirconcentrationsarethuscheckedbytitrationbefore eachexperiment.Thetitrationofthehydrogenperoxidesolution isperformedbymanganimetrythankstopotassiumdichromate

[27],andtheconcentrationofthesodiumthiosulfateiscarriedout byiodometry[28].

Thenthereactantsolutionsarepouredinbothprocessreactant feedtanks(cf.Fig.2).Asthereactionisnotalwayscompletedat thereactoroutlet,a highamountoficeispreparedtocooland dilute the processfluid in a tank topreventfromany thermal runaway.

Theconversionrateatthereactoroutletiscalculatedthanks to two different methods detailed further. One of them is a calorimetricmethodthatconsistsincalculatingtheadiabatic tem-peratureriseofasampleofreactivemediafromthereactoroutlet untilthereactionend.For thispurposea knownamountofthe reactivemediaispouredintoaDewarvesselcontainingaknown amountofdistilledwater.Sobeforeeachexperimentthewateris pouredintheDewarvesselinwhichathermocoupleislocated.

(11)

Table5

Operatingconditionsofoxidationreactionexperiments.

No.exp Processside Utilityside

FH2O2(Lh −1) F Na2S2O3(Lh −1) Re p tr(s) Tpremix(◦C) Mu(kgh−1) Tu,in(◦C) 1 4.7 9.3 2481 6.9 17.6 113.0 39.7 2 1.7 3.3 879 19.3 19.3 113.5 39.7 3 2.3 4.7 1266 13.8 20.0 113.0 39.7 4 2.3 4.7 1378 13.8 20.7 112.0 49.6 5 2.3 4.7 1498 13.8 21.1 112.5 59.4

Fortheseexperimentsthereactoristhermallyinsulatedthanks toapolystyrenejacket.

4.5.3. Experimentalprocedure

Eachexperimentiscarriedoutthroughthesameprocedure: •Theutilitylineisfedwithwateratthetargetedtemperatureand

flowrate.Theprocesschannelisalsofedwithwateratroom tem-peratureatthetotalflowratetargetedforthereaction.Thisfirst stepenablestocalculatetheheatlosses.

Whenthesteadystateisreachedtheprocesslineisfedwiththe reactants.

Atsteadystateafixedamountofreactivemediumispouredinto theDewarvesselinordertocalculatetheconversionrateatthe reactoroutletthroughthecalorimetricmethod.

During each experiment thedifferenttemperatures(process andutilityinletsandoutletsandDewarvessel)andflowrates (util-ityandboth reactantssolutions)arerecorded.Thetotalprocess flowrateisalsomeasuredbyweighingatthereactoroutlet.

Theconditionsofthefiveexperimentsperformedaredetailedin

Table5.Theconcentrationsofbothsodiumthiosulfateand hydro-genperoxidesolutionsare9%weight.

4.5.4. Calculationoftheconversionrateatthereactoroutlet

Thefirstmethodusedtocalculatetheconversionrateinthe reactorisbasedonathermal balancebetweentheprocess and utilityinletsandoutletsatsteady state.Theconversionis thus calculatedasfollows:

= Qlosses +Mp.Cp

p.(Tp,out−Tp,in)+Mu.Cpu.(Tu,out−Tu,in)

Qr,total

(11) whereMpisthemassflowrateintheprocesschannel.

Qr,totalisthetotalheatreaction:

Qr,total=Ni0·1Hr (12)

where N0

i is theinitial molar flowrate of thelimiting reactant

(Na2S2O3).

Thesecondmethodconsistsinathermalbalanceonthe sam-pleofreactivemediapouredintheDewarvesselfromthereactor outlet.Thisthermalbalanceisbasedonmeasuringtheadiabatic temperatureriseinthevesselfromthesamplingtothereaction end,thatistosayuntilthetemperatureequilibrium.The conver-sionrateatreactoroutletisthuscalculatedthroughthefollowing equation: =1− mp·Cpp(Teq,dw−Tp,out)+(mdw+m0 w)·Cpwater·(Teq,dw−T0 dw) n0 i·1Hr (13) wheremp,m0w andmdwarerespectivelythemassofthesample

pouredinthevessel,themassofwaterinitiallyintroducedinthe Dewarvesselandthemassofwaterequivalenttothemassofthe Dewarvessel.n0

i istheinitialmolenumberofthelimitingreactant,

Teq,dwisthetemperatureatequilibriumintheDewar,andTdw0 is thetemperatureintheDewarvesseljustbeforeintroducingthe reactivemedia.

4.5.5. Resultsanddiscussion

Fig.16showstheprocessandutilityinletsandoutlets temper-atureprofilesduringtheexperimentNo.1.Duringthisexperiment thereactorisfedwiththereactantatt=3340s.Whenthesteady stateisreachedtheprocessoutlettemperatureslightlyexceedsthe utilityoutlettemperature.Thedifferencebetweenthese tempera-turesisof4◦Cwhichisnotveryimportantandhighlightstheheat

removalabilityofthereactor.

Fromthewholeexperiments, theconversionratecalculated accordingtobothmethodsandtheheatexchangedaresummarized inTable6.Theseresultsshowthatthethermallossesarerather low.Theconversionratescalculatedbybothmethodsareinquite goodagreement.Thehighestdiscrepancybetweenbothvaluesis of13%forthesecondexperiment.Asexpectedtheconversionrate increaseswhenincreasingeithertheresidencetimeinthereactor orthetemperatureoftheutilitystream.100%conversionrateis reachedforexperimentsNo.4and5carriedoutrespectivelywith inletutilitytemperaturesofabout50and60◦C.

4.5.6. Comparisontotheliteraturekineticdata

DifferentArrheniuskineticparameterscanbefoundinthe lit-eratureforthisreaction.TheyarereportedbyGrauetal.[22]and summarizedin Table7.Amongthedifferentdatatheonesthat bestfittheexperimentalresultsarethevaluesobtainedbyGrau etal.AsaconsequenceFig.17showstheconversionprofileversus timeobtainedfromboththeGrauetal.kineticlawandthe exper-imentaldataforautilityinlettemperaturefixedto39.7◦C.Inthis

figurethekineticconstanthasbeencalculatedat42.9◦Cwhichis

theaverageofthe3processoutlettemperaturesmeasuredforthe 3experimentscarriedoutatthisinletutilitytemperature.

Atfixedutilityinlettemperaturethedifferentflowrates exper-imentallytestedenabletocomparetheconversiontothekinetic datareportedintheliteratureatdifferentstagesofthereaction.

Fig.17shows thatfor bothconversionrates of60 and80%the kineticmodelresultsfitwellwiththeexperimentaldatasincethe discrepancyislowerthan2%forthetwoextremeresidencetimes. Thehighestdiscrepancyisobtainedattheintermediateresidence timewhichmightbeexplainedbyanexperimentaldeviation.

(12)

Table6

Conversionratesofoxidationreactionexperiments.

No.exp Processside Utilityside Heatexchanged Conversionrate

Fp(Lh−1) Tp,in(◦C) Tp,out(◦C) Mu(kgh−1) Tu,in(◦C) Tu,out(◦C) Qlosses(W) Qp(W) Reactor Dewar

1 4.7 17.6 43.9 113.0 39.7 39.9 16 435 60 59 2 1.7 19.3 41.4 113.5 39.7 40.4 9 126 82 94 3 2.3 20.0 43.4 113.0 39.7 41.1 13 195 88 91 4 2.3 20.7 51.0 112.0 49.6 50.7 16 253 93 100 5 2.3 21.1 59.2 112.5 59.4 60.1 13 318 95 100 Table7

Arrheniusparametersreportedintheliteratureforthereactionofsodiumthiosulfateoxidationbyhydrogenperoxide.

Authors k0(Lmol−1s−1) Ea/R(K) Ea(Jmol−1)

CohenandSpencer[29] 6

.85×1011 9200 76,489 LoandCholette[30] 2 .13×1010 8238 68,490 LinandWu[31] 2 .00×1010 8238 68,490 Grauetal.[32] 8 .13×1011 9156 76,123

Fig.17.Comparisonofthetheoreticalconversionandtheexperimentalonesat

Tu,in=39.7◦C.

Fig.18highlightstheinfluenceoftheutilitystreamtemperature (between50and60◦C)ontheconversionprofileforafixedprocess

flowrateof2.3Lh−1whichcorrespondstoaresidencetimeof13.8s.

Asexpected,thehigherthetemperature,thefasterthereaction. Butatthesetemperaturesthereactionisalmostcompletedatthe reactoroutlet,whichcertainlyresultsinamostimportanterror

Fig.18.Comparisonofthetheoreticalconversionandtheexperimentalonesat

Fp,in=2.3Lh−1.

intheexperimentaldeterminationoftheconversion.Howeverthe discrepancybetweentheconversionsobtainedfromtheGrauetal. kineticdataandtheexperimentalvaluesislowerthan4%inboth cases.

Theresultsobtainedinthisstudyshowagoodagreementwith Grauetal.kineticparameterswhichhavebeenobtainedfrombatch experimentswhatevertheflowrate(Rep=879–2481)andthe

tem-perature(Tu,in=39.7–59.4◦C).Asaconsequenceitconfirmsthatthe

mixingtime(cf.Fig.8:tm<0.1sfortheflowraterangestudied)is

notalimitingparameterforsuchafastreaction.

4.5.7. Comparisonwithbatchreactors

Thereactionhasbeenperformedatthreeutilitystream temper-aturesaround40,50and60◦C.Atroomtemperaturethereaction

couldnotstart.Thustheutilitystreamhasbeenheatedsoasto firstinitiatethereaction,thenaccelerateitskineticsandfinally controlthereactortemperaturetoavoidthermalrunaway(the pro-cessfluidtemperaturesattherectoroutletwereindeedequalto 43.4,51.0and59.2◦C).Itisnowinterestingtocomparethe

heat-exchangerreactorbehaviourtotheoneofaclassicalbatchreactor. IfweconsideranoperatingtemperatureofT≈60◦Ctheheat exchangedintheheat-exchanger/reactorperunitoffluidvolume equals:

Q

V =12×10

3kWm−3

(14)

Table8givesthegeometricalparametersofvariousbatch reac-torswhosevolumerangesfrom1Lto1m3.Aistheheatexchange

areaofthedoublejacket.Theheatexchangedpervolumeunitof thebatchreactorsQ/Vinthesamereactionconditionsastheheat exchangeronesarealsodetailedaswellasthefeedingtimes(tc)of

Table8

Geometricalparametersofdoublejacketbatchreactors,heatremovalcapacityand feedingtimestosafelyperformtheoxidationreaction.

Volume(m3) 1×10−3 1×10−2 0.1 1 Diameter(m) 0.08 0.2 0.4 0.9 Height(m) 0.2 0.3 0.8 1.4 A(m2) 0.055 0.22 1.13 4.6 Qmax/V(kWm−3) 1200 500 250 100 tc(s) 230 560 1120 2800

(13)

asemi-batchreactorinwhichtheoxidationreactionwouldhave beenperformed.Thecalculationdetailsaregivenin[20].

Themaximal heat removedby the double jacket is at least 10 times less than the reaction heat generated in the heat-exchanger/reactor.Asaconsequencethisoxidationreactioncould notbeperformed ina batchreactor withoutthermal runaway. Asemi-batchmodeisrequiredandthatisthereasonwhy feed-ingtimeshavebeenassessedinTable8.Theyrangebetween230 and 2800s. Feeding timesand residence timesare respectively characteristicofsemi-batchandcontinuousmodes.Theycannot bedirectly compared. Howeverthe operationtime in the con-tinuousheat-exchanger/reactorwascloseto30stoachieve100% conversionanditshowsthatbyremovingtheheattransfer bar-rier,thereactionhasbeenimplementedunderextremeoperating conditionswhichallowtogetclosertothekineticscharacteristic times.

Tocompletethecomparison,thenextstep,now,istoaddress thescale-upissue.Thefirstpointistogetlawsconcerningthe evo-lutionoftheHEXreactorperformances(heatandmasstransfer, pressuredrop,mixing,etc.)withtheshapeandthedimensionsof thechannel.Firstresultshavebeenproposedin [9]and experi-mentalworksarestillinprogress.Thisisaconsequentworkand CFDnumericalsimulations,oncevalidated,willallow accelerat-ingdataacquisitionprocess.Usingthesecorrelationsitwouldthen bepossibletooptimizethecombinationofboththechannel char-acteristicsizeandthenumberofplatestosatisfyscale-updemand accordingtodifferentperformancescriterialikeintensification fac-tor,productivity,energyconsumption,etc.Suchanapproachhas beendevelopedintheworkofFustier[32]inthecaseofaSiCHEX reactorandforanincreaseofthereactantsflowratebyafactor 10.

5. Conclusion

Through this study the performances of a new continuous heat-exchanger/reactorwereevaluatedfollowingan experimen-tal approach. The aim was to reach good performances while maintaininglow Reynoldsnumber (Re<2000) foroffering suffi-cientresidencetimestocompletechemicalconversion.Ithasbeen shownthatthecorrugatedflowbehaviourwasclosetoaplugflow behaviourwhatevertheReynoldsnumber(between300and2100). DarcylawshasbeenestablishedbetweenRe=20 andRe=3000. BelowRe=100theDarcycoefficientisclosetotheoneinastraight tubewhichisinteresting forlowReynoldsapplications(viscous fluidsforinstance).

Mixingtimes are quitelow, especially for Reynolds number above700(tm<0.1s).Asaconsequence,unlessimplementingan

instantaneous or a very fast reaction, mixing should not be a limitingparameterintheheatexchanger/reactor.

Temperature profiles and heat transfer intensification fac-tors highlight the good thermal performances of the heat-exchanger/reactor (5000–8000kWm−3K−1). This allows the

implementationofanexothermicreactioninsafeconditions. Thetestreactionofsodiumthiosulfateoxidationbyhydrogen peroxidehasthusbeencarriedout. Thisis ahighlyexothermic reaction(1Hr=−586.2kJmol−1ofNa2S2O3)whichhasbeen

suc-cessfullyimplementedintheheat-exchanger/reactorundersevere temperature conditions. The comparison with a batch reactor showedthat thanksto the heat removal capacity of the heat-exchanger/reactor,thereactioncouldbeperformedinoperation timesatleast10timessmallerthantheoperationtimesofabatch reactor.

Theseresultshighlighttheheat removalability of the heat-exchanger/reactor for a liquid homogeneous phase reaction. It allows the implementation of exo- or endothermal reactions

in extremeoperating conditions. Theronet al. [8] also demon-stratedthecapacityofsuchprocesschanneldesign tocarryout aliquid–liquidreactionofmicroencapsulationbyinterfacial poly-condensation.Evenifsuchreactionisathermalit demonstrates theabilityofsuchreactortoconveydropletswitha10%volume concentrationwithmembraneunderformationattheirinterface withoutanyagglomerationphenomenon.Thusbycombiningits thermalperformancesanditshydrodynamicpropertiestheheat exchanger/reactorexhibitsinterestingcharacteristicsinthe per-spective of performing exothermic or endothermic two-phases reactions.

References

[1]A.I.Stankiewicz,J.A.Moulijn,Processintensification:transformingchemical engineering,Chem.Eng.Prog.96(2000)22–34.

[2]B.Thonon,P.Tochon,Compactmultifunctionalheatexchangers:apathwayto processintensification,in:A.Stankiewicz,J.A.Moulijn(Eds.),Re-engineering theChemicalProcessingPlant,Dekker,New-York,2004.

[3]Z.Anxionnaz,M.Cabassud,C.Gourdon,P.Tochon,Heatexchanger/reactors (HEXreactors):concepts,technologies:state-of-the-art,Chem.Eng.Proc.47 (2008)2029–2050.

[4]S.Elgue,A.Conte,C.Gourdon,Y.Bastard,Directfluorinationof1,3-dicarbonyl compoundinacontinuousflowreactoratindustrialscale,Chim.Oggi/Chem. Today30(4)(2012)18–21.

[5]E.Santacesaria,M.DiSerio,R.Tesser,L.Casale,D.Verde,R.Turco,A.Bertola, Useofacorrugatedplatesheatexchangerreactorforobtainingbiodieselwith veryhighproductivity,EnergyFuels23(2009)5206–5212.

[6]C.Habchi,D.DellaValle,T.Lemenand,Z.Anxionnaz,P.Tochon,M.Cabassud, C.Gourdon,H.Peerhossaini,Anewadaptativeprocedureforusingchemical probestocharacterizemixing,Chem.Eng.Sci.66(2011)3540–3550.

[7]Z.Anxionnaz,F.Theron,P.Tochon,R.Couturier,P.Bucci,F.Vidotto,C. Gour-don,M.Cabassud,S.Lomel,G.Bergin,S.Bouti,H.Peerhossaini,T.Lemenand,C. Habchi,RAPICproject:towardcompetitiveheat-exchanger/reactors,in:3rd EuropeanProcessIntensificationConference,Manchester,UK,June20–23, 2011.

[8]F.Theron,Z.Anxionnaz,N.LeSauze,M.Cabassud,Transpositionfromabatchto acontinuousprocessformicroencapsulationbyinterfacialpolycondensation, Chem.Eng.Proc.54(2012)42–54.

[9]Z. Anxionnaz-Minvielle, M. Cabassud, C. Gourdon, P. Tochon, Influence of the meandering channel geometryon the thermo-hydraulic perform-ancesofanintensifiedheatexchanger/reactor,Chem.Eng.Proc.73(2013) 67–80.

[10]P.Tochon,R.Couturier,Z.Anxionnaz,S.Lomel,H.Runser,F.Picard,A.Colin, C.Gourdon,M.Cabassud,H.Peerhossaini,D.DellaValle,T.Lemenand,Toward acompetitiveprocessintensification:anewgenerationofheat exchanger-reactors,OilGasSci.Technol.65(5)(2010)785–792.

[11]R.Couturier,P.Tochon,F.Vidotto,Methodformakingaheatexchanger sys-tem,preferablyoftheexchanger/reactortype,FrenchPatent,WO2010/034692 (2010).

[12]Y.Kato,Y.Tada,M.Ban,Y.Nagatsu,S.Iwata,K.Yanagimoto,Improvementof mixingefficienciesofconventionalimpellerwithunsteadyspeedinanimpeller revolution,J.Chem.Eng.Jpn.38(9)(2005)688–691.

[13]A.W.Nienow,Onimpellercirculationandmixingeffectivenessintheturbulent flowregime,Chem.Eng.Sci.52(15)(1997)2557–2565.

[14]W.R.Dean,Fluidmotioninacurvedchannel,Proc.Roy.Soc.Lond.Ser.A121 (1928)402–420.

[15]S.Sugiyama,T.Hayashi,K.Yamazaki,Flowcharacteristicsinthecurved rect-angularchannels,Bull.Jpn.Soc.Mech.Eng.26(216)(1983)964–969.

[16]F.Jiang,K.S.Drese,S.Hardt,M.Küpper,F.Schönfeld,Helicalflowsandchaotic mixingincurvedmicrochannels,AIChEJ.50(9)(2004)2297–2305.

[17]N.R.Rosaguti,D.F.Fletcher,B.S.Haynes,Laminarflowandheattransferina periodicserpentinechannel,Chem.Eng.Technol.28(3)(2005)353–361.

[18]H.Fellouah,C.Castelain,A.OuldElMoctar,H.Peerhossaini,Acriterionfor detectionoftheonsetofDeaninstabilityinNewtonianfluids,Eur.J.Mech.B: Fluids25(2006)505–531.

[19]L.Despenes,S.Elgue,C.Gourdon,M.Cabassud,Impactofthematerialonthe thermalbehaviourofheatexchangers-reactors,Chem.Eng.Proc.52(2012) 102–111.

[20]Z.Anxionnaz,M.Cabassud,C.Gourdon,P.Tochon,Transpositionofan exother-micreactionfromabatchtoanintensifiedcontinuousone,HeatTrans.Eng.31 (9)(2010)788–797.

[21]L. Prat, A. Devatine, P. Cognet, M. Cabassud, C. Gourdon, S. Elgue, F. Chopard, Performanceevaluationofanovelconcept“openplatereactor” appliedtohighlyexothermicreactions,Chem.Eng.Technol.28(9)(2005) 1028–1034.

[22]M.D.Grau,J.M.Nougues,L.Puigjaner,Batchandsemibatchreactorperformance foranexothermicreaction,Chem.Eng.Proc.39(2000)141–148.

[23]A.M.Benkouider,J.C.Buvat,J.M.Cosmao,A.Saboni,AFaultdetectionin semi-batchreactorusingtheEKFandstatisticalmethod,J.LossPrevent.ProcessInd. 22(2009)153–161.

(14)

[24]L. Vernieres-Hassimi, M.A. Abdelghani-Idrissi, D. Seguin, Experimen-tal and theoretical steady state maximum temperature localization along an exothermic tubular reactor, Open Chem. Eng. J. 2 (2008) 57–65.

[25]W.Benaissa,S.Elgue,N.Gabas,M.Cabassud,D.Carson,M.Demissy,Dynamic behaviourofacontinuousheatexchanger/reactorafterflowfailure,Int.J.Chem. React.Eng.6(2008).

[26]D.R.Lide,HandbookofChemistryandPhysics,87thed.,CRCPress,BocaRaton, FL,2006.

[27]J.Barthel,N.G.Schmahl,Thermometricredoxtitrations,ZeitungAnal.Chem. 207(2)(1965)81–90.

[28]E.H.Funk,A.W.Herlinger,Convenientpreparationofstandardthiosulfate solu-tions,Anal.Chem.47(4)(1975)767.

[29]W.C.Cohen,J.L.Spencer,Determinationofchemicalkineticsbycalorimetry, Chem.Eng.Prog.58(12)(1962)40–41.

[30]S.N.Lo,A.Cholette,Experimentalstudyontheoptimumperformanceofan adiabaticMTreactor,Can.J.Chem.Eng.50(1972)71–80.

[31]K.F.Lin,L.L.Wu,Performanceofanadiabaticcontrolledcycledstirredtank reactor,Chem.Eng.Sci.36(1981)435–444.

[32]C.Fustier,Développementd’unréacteurintensifiéenCarburedeSiliciumpour latranspositionencontinuderéactionsd’hydrosilylation(Ph.D.Thesis),Institut NationalPolytechniquedeToulouse,Toulouse,2012.

Figure

Fig. 3. Evolution of the pressure drop as a function of process flowrate for both fluids tested.
Fig. 6. RTD curve for F p = 14.8 L h − 1 ; Re p = 2056.
Fig. 7. Picture of the PMMA mock-up used for mixing tests.
Fig. 15 represents the intensification factor as a function of the process flowrate. The intensification factor increases from about 5000 to 8000 kW m −3 K −1 when the process flowrate ranges from 8.7 to 15.0 kg h −1 .
+3

Références

Documents relatifs

Du fait de leur milieu social, de leur formation scientifique et de leur goût pour les horizons lointains, les officiers de santé ont tout naturellement participé des Lumières. Il

Different silver nanostructures and surface coverage of PPF carbon electrodes were obtained through the hydrogenolysis of the [Ag(Bu amd)] metalorganic precursor, and a

This article explores the application of a tree-based feature extraction algorithm for the widely-used MSER features, and proposes a Tree of Shapes based detector of Max- imally

débris ligneux grossiers (!) à enjamber ne peut s'effectuer sans l'apport de plusieurs personnes et organismes. En premier lieu, mes remerciements vont à mes

This evidence is supported by animal and clinical studies that have reported bene ficial effects of the intake of polyphenol-rich foods or pu- ri fied compounds on intermediate

Dans le cadre d’un conflit mobilisant un discours abondamment patriotique et impliquant l’ensemble des agents économiques de la nation dès l’entrée en guerre, c’est

Dans la troisième partie, deux contributions de synthèse font le point, l'une sur l'historiographie des recherches concernant les rapports entre architecture et

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des