• Aucun résultat trouvé

A Method for predicting air infiltration rates for a tall building surrounded by lower structures of uniform height

N/A
N/A
Protected

Academic year: 2021

Partager "A Method for predicting air infiltration rates for a tall building surrounded by lower structures of uniform height"

Copied!
19
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASHRAE Transactions, 85, 1, pp. 72-84, 1979

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Method for predicting air infiltration rates for a tall building

surrounded by lower structures of uniform height

Shaw, C. Y.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=95f346c4-7ff4-4f3c-a218-caa4d9ff1e87 https://publications-cnrc.canada.ca/fra/voir/objet/?id=95f346c4-7ff4-4f3c-a218-caa4d9ff1e87

(2)

no.890

National Research Council of Canada

cop

.2

Conseil national de recherches du Canada

A METHOD FOR PREDICTING AIR INFILTRATION

RATES FOR A TALL BUILDING SURROUNDED

BY LOWER STRUCTURES OF UNIFORM HEIGHT

by C. Y. Shaw

yZED

Reprinted from ASHRAE Transactions Vol. 85, Part 1,1979 p. 72-84 DBR Paper No. 890

Division of Building Research

(3)

SO MMAIRE

Etant donne l'augmentation rapide du coot de l'energie et le besoin

pressant d'une utilisation rationnelle, de nombreux edifices sont

analyses en fonction de leur efficacite energetique au moyen de

programmes informatiques sophistiques. Un des problPmes inherents

a

ces programmes est l'absence d'une methode precise mais simple pour

evaluer le taux d'infiltration d'air, qui est un des facteur importants

de la consommation d'energie. Afin de mettre au point une telle methode,

l'auteur a effectue une etude informatiaue des carac$eristiaues de fuite

..2':@ - *

d'air des edifices en hauteur

a

1

'aide de doRdPes sur la nression du

vent en surface obtenues dans une soufflerie (couche limite). L'auteur

presente de nouvelles donnees de distribution de la pression sur les

faces d'un edifice en hauteur entoure de constructions t~lus

basses de

hauteur uniforme. L'edifice etudie et les construction avoisinantes

sont separes par l'equivalent d'une rue avec trottoirs.

Des equations pour la predirtion du taux d'infiltration de l'air ont ete

derivees. Ces Gquat'qnr

;:;.

sont valables strictement que pour les edifices

en hauteur entoures de constructions plus basses,de hauteur

a

peu prPs

uniforme. Les equations ne peuvent etre generalisees pour un grand

edifices* protege par un autre grand edifice

a

moins sue ceux-ci ne soient

assez eloignes

1

'un de

1

'autre.

(4)

No.

2514

A METHOD FOR PREDICTING AIR

INFILTRATION RATES FOR A TALL BUILDING

SURROUNDED BY LOWER STRUCTURES

OF UNIFORM HEIGHT

C.Y. SHAW

INTRODUCTION

With t h e r a p i d l y r i s i n g e n e r g y c o s t s and a growing n e e d t o c o n s e r v e e n e r g y , more a n d more b u i l d i n g s a r e b e i n g a n a l y z e d f o r e n e r g y e f f e c t i v e n e s s u s i n g s o p h i s t i c a t e d computer p r o g r a m s . One problem i n h e r e n t i n t h e s e programs i s t h e l a c k o f a n a c c u r a t e b u t s i m p l e method f o r e s t i m a t i n g a i r i n f i l t r a t i o n r a t e , which i s known t o b e a s i g n i f i c a n t component o f t h e e n e r g y consumption. To d e v e l o p s u c h a method, a computer s t u d y o f a i r l e a k a g e c h a r a c t e r i s t i c s was made f o r t a l l b u i l d i n g s u s i n g s u r f a c e wind p r e s s u r e d a t a o b t a i n e d i n a boundary l a y e r wind t u n n e l . The r e s u l t s f o r a f u l l y e x p o s e d t a l l b u i l d i n g i n a s u b u r b a n a r e a w e r e r e p o r t e d by Shaw and Tamura ( 1 ) . T h i s p a p e r p r e s e n t s new d a t a o n p r e s s u r e d i s t r i b u t i o n s o v e r t h e f a c e s o f a t a l l b u i l d i n g s u r r o u n d e d by lower s t r u c t u r e s o f u n i f o r m h e i g h t . The b u i l d i n g a n d t h e s u r r o u n d i n g s t r u c t u r e s a r e s e p a r a t e d from e a c h o t h e r by a d i s t a n c e e q u i v a l e n t t o t h a t o f a s t r e e t and s i d e w a l k s .

E q u a t i o n s f o r p r e d i c t i n g a i r i n f i l t r a t i o n r a t e have b e e n d e r i v e d u s i n g b a s i c a l l y t h e same method a s i n t h e p a p e r f o r f u l l y exposed t a l l b u i l d i n g s ( 1 ) . These e q u a t i o n s a r e s t r i c t l y v a l i d o n l y f o r a t a l l b u i l d i n g s u r r o u n d e d b y l o w e r s t r u c t u r e s o f a p p r o x i m a t e l y e q u a l h e i g h t . They may n o t b e g e n e r a l i z e d f o r a t a l l b u i l d i n g p a r t i a l l y p r o t e c t e d b y a n o t h e r t a l l b u i l d i n g u n l e s s t h e b u i l d i n g s a r e s u f f i c i e n t l y f a r a p a r t .

FACTORS GOVERNING AIR INFILTRATION

A i r i n f i l t r a t i o n i s t h e l e a k a g e o f a i r t h r o u g h c r a c k s a n d o p e n i n g s t h a t e x i s t i n a b u i l d i n g e n v e l o p e . I t s magnitude c a n b e c a l c u l a t e d from Q = C . A. ( A P . ) 0 . 6 5 J J 1 where Q = a i r l e a k a g e r a t e C . = l e a k a g e c o e f f i c i e n t o f a b u i l d i n g component p e r u n i t a r e a J AP

.

= p r e s s u r e d i f f e r e n c e a c r o s s an o p e n i n g J A. = a r e a o f t h e b u i l d i n g component J The l e a k a g e c o e f f i c i e n t f o r a b u i l d i n g c a n b e b e s t e s t i m a t e d from t h e r e s u l t s o f a i r l e a k a g e measurements c o n d u c t e d o n s i m i l a f t y p e b u i l d i n g s . For t a l l b u i l d i n g s , t h e s u g g e s t e d v a l u e s a r e g i v e n i n T a b l e 1 ( 2 , 3 , 4 ) .

C . Y . Shaw i s R e s e a r c h O f f i c e r , Energy and S e r v i c e s S e c t i o n , D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l o f Canada, Ottawa, K1A 0R6.

(5)

TABLE 1

Leakage C o e f f i c i e n t s f o r B u i l d i n g Components

The p r e s s u r e d i f f e r e n c e a c r o s s a b u i l d i n g envelope depends on i n s i d e - o u t s i d e t e m p e r a t u r e d i f f e r e n c e , amount o f p r e s s u r i z a t i o n produced b y HVAC systems and wind p r e s s u r e s on e x t e r i o r w a l l s . The f i r s t two f a c t o r s can always b e e s t i m a t e d b u t t h e t h i r d one, a t p r e s e n t , can o n l y b e o b t a i n e d e x p e r i m e n t a l l y . To p r o v i d e t h e n e c e s s a r y wind p r e s s u r e d a t a f o r t h i s s t u d y , t h e N a t i o n a l A e r o n a u t i c a l E s t a b l i s h m e n t o f t h e N a t i o n a l Research Council o f Canada (NRCC) conducted an e x t e n s i v e wind p r e s s u r e measurement on a t a l l b u i l d i n g model i n a boundary l a y e r wind t u n n e l

( 5 ) . A b r i e f d e s c r i p t i o n of t h e method u s e d f o r t h e p r e s s u r e measurement i s given below. Wind P r e s s u r e D i s t r i b u t i o n on B u i l d i n g Envelope C o r r e c t i o n F a c t o r f o r C W

a.

w = Cw/ (CwIavg 1/ 3 1 2 C u r t a i n Wall T i g h t Average Loose F l o o r Average S h a f t / S t o r y E l e v a t o r S t a i r

Wind p r e s s u r e measurements were made on t h e w a l l s o f a t a l l b u i l d i n g model i n an urban boundary l a y e r which was produced i n a 1 . 8 m by 2 . 7 m wind t u n n e l . The boundary l a y e r was produced u s i n g an a r r a y of 1 . 2 m h i g h s p i r e s a c r o s s t h e e n t r a n c e t o t h e working s e c t i o n

f o l l o w e d by 8 rows o f 0 . 3 m cubes a t 0 . 3 m c e n t e r s . The depth of t h e boundary l a y e r was about 1 . 1 4 m which i n d i c a t e d a c o r r e c t model s c a l e of 1/400 t o achieve a f u l l - s c a l e urban boundary l a y e r of 457 m c h a r a c t e r i z e d by t h e measured v e l o c i t y p r o f i l e Leakage C o e f f i c i e n t s 3 0.65

cW,

m i s * m 2 * ~ a 0 . 3 1 x 0 . 9 3 x 1 . 8 3 x 3 0 . 5 Cf, m / s * m 2 * ~ a 5 . 3 3 C / c a r , 0.075 m / s * P a 0 . 5 S 3 0 . 5 C s / s h a f t , 0 . 0 3 m / s o P a where

V = wind v e l o c i t y a t h e i g h t z above ground z

K = c o n s t a n t

Accordingly, t h e b u i l d i n g model which had p l a n dimensions o f 7 . 6 cm by 1 1 . 4 cm ( w i d t h / l e n g t h =

1 / 1 . 5 ) was b u i l t t o a s c a l e o f 1/400 t o f i t t h e modeled a t m o s p h e r i c flow s c a l i n g . I t was made up o f two 3 . 8 cm and two 7 . 6 cm modules, so t h a t f o u r b u i l d i n g h e i g h t s ( 2 2 . 9 , 1 5 . 2 , 7 . 6 , and 3 . 8 cm) were a c h i e v e d u s i n g d i f f e r e n t module combinations a s shown i n F i g . 1 . The p r e s s u r e t a p s were d r i l l e d normal t o t h e s u r f a c e on a l l f o u r w a l l s o f each module. The h o l e s , a s shown i n F i g . 1, were p o s i t i o n e d i n i d e n t i c a l v e r t i c a l rows b u t t h e number of h o r i z o n t a l rows v a r i e d between modules, s o t h a t measurements c o u l d b e c o n c e n t r a t e d i n r e g i o n s where t h e p r e s s u r e v a r i a t i o n was l a r g e .

(6)

Tne model b u i l d i n g was mounted a t t h e c e n t e r o f a t u r n t a b l e and it was surrounded by a number o f 3 . 8 cm high b l o c k s of t h e same p l a n dimensions a s t h e model b u i l d i n g t o s i m u l a t e t h e h i g h d e n s i t y urban a r e a . The d i s t a n c e between two a d j a c e n t b l o c k s was about 7.6 cm which r e p r e s e n t e d

a 30 m wide r o a d allowance i n a c t u a l c o n d i t i o n . The m a j o r i t y o f t h e s e b l o c k s t u r n e d w i t h t h e

b u i l d i n g model.

Wind p r e s s u r e measurements were t a k e n a t t h e f o l l o w i n g wind a n g l e s measured c o u n t e r c l o c k w i s e

from t h e normal t o S i d e 1: 0, 5 , 1 0 , 1 5 , 30, 45, 60, 75, and 90 deg. The p r e s s u r e s o f each row

were averaged u s i n g a w e i g h t i n g f a c t o r t h a t was c a l c u l a t e d on t h e b a s i s of t h e a r e a s u r r o u n d i n g

each t a p . The r e s u l t s were e x p r e s s e d i n terms o f a weighted mean p r e s s u r e c o e f f i c i e n t a t

h e i g h t z , C

P Z '

where

PZ = weighted mean p r e s s u r e a t h e i g h t z r e l a t i v e t o s t a t i c p r e s s u r e a t roof l e v e l ( s t a t i c

p r e s s u r e a t r o o f l e v e l was measured i n t h e f r e e s t r e a m )

p = a i r d e n s i t y

V = mean wind spead a t r o o f l e v e l

t

For convenience, t h e mean wind speed a t t h e r o o f l e v e l was converted t o t h a t measured 10 m above ground a t a m e t e o r o l o g i c a l s t a t i o n by t h e f o l l o w i n g e q u a t i o n (1)

where

V = mean wind speed measured a t a m e t e o r o l o g i c a l s t a t i o n , m/s

s

H = b u i l d i n g h e i g h t , m

I n d e r i v i n g Eq 4, it was assumed t h a t t h e g r a d i e n t h e i g h t s o v e r t h e two s i t e s were 275 m f o r

t h e m e t e o r o l o g i c a l s t a t i o n (6) and 457 m f o r t h e urban a r e a . F i n a l l y , s u b s t i t u t i n g E q 4 i n

Eq 3 and assuming a v a l u e of 1 . 2 kg/m3 f o r a i r d e n s i t y , one o b t a i n s

P i s i n p a s c a l s , H i s i n m e t r e s , and V i s i n metres p e r second.

z S

The mean p r e s s u r e c o e f f i c i e n t s so o b t a i n e d a r e g i v e n i n F i g . 2 ( a ) , ( b ) and 3 ( a ) , ( b ) .

CALCULATION OF AIR INFILTRATION RATES

Under s t e a d y - s t a t e c o n d i t i o n s , a i r i n f l o w s and o u t f l o w s a r e equal f o r a compartment such a s a n o n - p a r t i t i o n e d f l o o r s p a c e o r a v e r t i c a l s h a f t . On t h i s b a s i s , a s e t o f mass flow b a l a n c e

e q u a t i o n s , one f o r e a c h compartment, can be s e t up f o r a b u i l d i n g model. These e q u a t i o n s

t o g e t h e r w i t h E q 1 and t h e measured l e a k a g e c o e f f i c i e n t s can b e used t o s o l v e f o r t h e a i r

leakage r a t e s f o r t h e compartment under a g i v e n wind and t e m p e r a t u r e c o n d i t i o n . The computer

program f o r s o l v i n g t h e s e e q u a t i o n s i s d e s c r i b e d i n d e t a i l i n Ref 7 . The b u i l d i n g model used

i n t h i s s t u d y ( F i g . 4) was i d e n t i c a l t o t h a t i n Ref 1 . I t r e p r e s e n t e d an o p e n - f l o o r o f f i c e

b u i l d i n g having p l a n dimensions o f 45 m by 30 m . The compartments a r e f l o o r s p a c e s and a

v e r t i c a l s h a f t . The major s e p a r a t i o n s a r e e x t e r i o r w a l l s , w a l l s o f v e r t i c a l s h a f t and f l o o r s . The leakage c o e f f i c i e n t s of t h e major s e p a r a t i o n s ( F i g . 4 ) , were c a l c u l a t e d from t h e d a t a g i v e n

(7)

C a l c u l a t i o n s of a i r leakage r a t e s were made f o r b u i l d i n g s o f 5 , 1 0 , 20, 30, and 40 s t o r i e s under v a r i o u s combinations o f wind speed, wind d i r e c t i o n and s t a c k a c t i o n . The e f f e c t on a i r i n f i l t r a t i o n due t o s u r r o u n d i n g lower s t r u c t u r e s o f uniform h e i g h t was i n v e s t i g a t e d f o r wind a n g l e s o f 0, 30 and 45 deg.

A i r I n f i l t r a t i o n Due t o Wind

For a wind approaching a t 0 d e g . , F i g . 5 shows t h e v a r i a t i o n o f a i r i n f i l t r a t i o n r a t e s

p e r u n i t a r e a of t h e long w a l l (Side 1) w i t h wind speeds and b u i l d i n g h e i g h t s . The v a l u e s o f aw

a r e g i v e n i n Table 1 f o r d i f f e r e n t c l a s s i f i c a t i o n s o f w a l l a i r t i g h t n e s s . The wind speed shown i n F i g . 5 i s t h e mean wind speed measured 10 m above ground a t a m e t e o r o l o g i c a l s t a t i o n .

Equations f o r C a l c u l a t i n g A i r I n f i l t r a t i o n Caused by Wind

For d e t a i l e d computations, i t i s d e s i r a b l e t o e s t i m a t e a i r i n f i l t r a t i o n r a t e u s i n g s i n g l e e q u a t i o n s . A i r leakage r a t e caused by wind can b e c a l c u l a t e d from E q 1 i f t h e p r e s s u r e d i f f e r e n c e s a c r o s s e x t e r i o r w a l l s a r e known. Although t h e p r e s s u r e d i f f e r e n c e a c r o s s an e x t e r i o r w a l l v a r i e s w i t h h e i g h t , a uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e f o r t h e whole w a l l can b e e s t i m a t e d from t h e t o t a l a i r i n f i l t r a t i o n r a t e s given i n F i g . 5 by u s i n g E q 1 . This uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e was shown t o b e r e l a t e d t o wind speed and b u i l d i n g h e i g h t by t h e f o l l o w i n g e q u a t i o n (1) where ( C ) . = uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e c o e f f i c i e n t dp 1 (AP ) . = uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e a c r o s s t h e i t h w a l l , P a e i

The maximum uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e c o e f f i c i e n t f o r a l l b u i l d i n g h e i g h t s was 0.75; it was found a t t h e windward w a l l when t h e wind approached a t 0 deg. With t h i s v a l u e a s a common denominator, t h e v a l u e s o f Cd f o r t h e f o u r e x t e r i o r w a l l s were non-dimensionalized and t h e r e s u l t s were p l o t t e d a g a i n s t wing a n g l e i n F i g . 6 . The non-dimensionalized Cdp c a n a l s o b e e s t i m a t e d from t h e f o l l o w i n g e q u a t i o n s o b t a i n e d by c u r v e f i t t i n g

0.0128 + 1 f o r 0<8<45

(8)

S u b s t i t u t i n g E q 6 i n E q 1 and n o t i n g t h a t (C ) = 0 . 7 5 , one o b t a i n s dp 01 where 3 C = l e a k a g e c o e f f i c i e n t f o r e x t e r i o r w a l l s p e r u n i t w a l l a r e a , m / s * m 2 * p a 0 . 6 5 W 3

Qwo = a i r i n f i l t r a t i o n due t o wind a t 0 d e g . , m / s A = a r e a of l o n g w a l l ( S i d e 1)

,

m 2 1 L i k e w i s e , s u b s t i t u t i n g E q 6 and E q 7 i n E q 1 , o n e o b t a i n s where 5

Re

= a i r i n f i l t r a t i o n due t o wind a t 0 , m / s A . = a r e a of w a l l i ; i = 1 , 2, 3 , 4 1 F i n a l l y , d i v i d i n g E q 9 b y E q 8 one h a s t h e c o r r e c t i o n f a c t o r ,

a

f o r wind d i r e c t i o n 0' a i s p l o t t e d i n F i g . 7 f o r v a r i o u s wind d i r e c t i o n s 0

Neark~y s t r u c t u r e s c a n a f f e c t t h e wind-induced a i r f l o w p a t t e r n a r o u n d a b u i l d i n g and h e n c e t h e a i r i n f i l t r a t i o n r a t e s . A t p r e s e n t , p h y s i c a l modeling seems t o b e t h e o n l y p r a c t i c a l method f o r d e t e r m i n a t i o n o f a i r f l o w p a t t e r n f o r a b u i l d i n g downstream o f o t h e r s t r u c t u r e s . However, due t o t h e g r e a t v a r i e t y o f b u i l d i n g s i t e s , a s y s t e m a t i c s t u d y o f t h e problem of s h i e l d i n g i s

n o t f e a s i b l e . I n o r d e r t o p r o v i d e d a t a f o r g e n e r a l d e s i g n p u r p o s e s , a n i d e a l b u i l d i n g s i t e , a t a l l b u i l d i n g s u r r o u n d e d b y l o w e r s t r u c t u r e s o f u n i f o r m h e i g h t , was c o n s i d e r e d . Thus, c a l c u l a - t i o n s o f a i r l e a k a g e r a t e s were made u s i n g t h e measured wind p r e s s u r e d a t a c o r r e s p o n d i n g t o v a r i o u s h e i g h t r a t i o s o f t h e a d j a c e n t s t r u c t u r e s t o t h e b u i l d i n g , h/H. The r e s u l t s ( F i g . 8 ) i n d i c a t e t h a t , r e g a r d l e s s o f wind d i r e c t i o n , t h e r a t i o o f a i r i n f i l t r a t i o n r a t e s f o r a g i v e n h/H t o t h a t f o r h/H = 1 / 6 d e c r e a s e s e x p o n e n t i a l l y a s t h e v a l u e of h/H i n c r e a s e s . Based on t h e r e s u l t s , a n e q u a t i o n f o r e s t i m a t i n g t h e c o r r e c t i o n f a c t o r o f s h i e l d i n g was o b t a i n e d b y c u r v e f i t t i n g

a

= ( R ) ~ / H = 1 . 1 5 exp ( - 0 . 8 5 h/H) Sh

(%)

i / 6 where

a

= c o r r e c t i o n f a c t o r o f s h i e l d i n g s h

\

= a i r i n f i l t r a t i o n r a t e due t o wind h = a v e r a g e h e i g h t o f a d j a c e n t s t r u c t u r e s H = h e i g h t o f b u i l d i n g

(9)

I t s h o u l d b e p o i n t e d o u t t h a t ash i s n o t v a l i d f o r t h e c a s e o f a b u i l d i n g p a r t i a l l y p r o t e c t e d b y a n a d j a c e n t t a l l b u i l d i n g .

A i r I n f i l t r a t i o n Caused b v Combined Wind a n d S t a c k A c t i o n

F i g . 9 ( a ) and 9 ( b ) show t h e r e l a t i o n s h i p between & r s / Q l r g and Qsml/Qlrg where Qsml o r Qlrg i s

t h e s m a l l e r o r l a r g e r v a l u e , r e s p e c t i v e l y , o f a i r i n f i l t r a t i o n due t o wind o r s t a c k a c t i o n , a n d

QWS i s t h a t due t o t h e combined a c t i o n of t h e two f o r c e s . The r e l a t i o n s h i p can a l s o b e

a p p r o x i m a t e l y e x p r e s s e d b y t h e f o l l o w i n g e q u a t i o n s :

3 . 6

*[-D.D074@ + 0 . 3 9 )

[el

+ 1 f o r 0<0<45 - -

To a p p l y Eq 12 i t i s n e c e s s a r y t o know t h e a i r i n f i l t r a t i o n r a t e due t o s t a c k a c t i o n , Qs. For

t a l l b u i l d i n g s , t h e e q u a t i o n f o r e s t i m a t i n g Qs a s g i v e n i n Ref 1 t a k e s t h e form

where S i s t h e b u i l d i n g p e r i m e t e r i n m e t r e s , AT i s t h e i n s i d e - o u t s i d e t e m p e r a t u r e d i f f e r e n c e i n

k e l v i n s and To i s t h e o u t s i d e a i r t e m p e r a t u r e i n k e l v i n s .

Summary o f P r o c e d u r e o f A i r I n f i l t r a t i o n C a l c u l a t i o n

The s u g g e s t e d method f o r c a l c u l a t i n g a i r i n f i l t r a t i o n f o r a t a l l b u i l d i n g s u r r o u n d e d b y lower s t r u c t u r e s o f uniform h e i g h t c a n b e summarized a s f o l l o w s :

1. C a l c u l a t e a i r i n f i l t r a t i o n r a t e c a u s e d b y s t a c k a c t i o n , u s i n g Eq 1 3

2. E s t i m a t e a i r i n f i l t r a t i o n c a u s e d b y w i n d , u s i n g t h e f o l l o w i n g e q u a t i o n o b t a i n e d by

combining Eq 9 and Eq 11, o r u s i n g F i g . 5, 7 and 8 :

3 . Determine Qsml and Qlrg from t h e c a l c u l a t e d Qs and Qw a n d , from Eq 12, c a l c u l a t e a i r

i n f i l t r a t i o n c a u s e d b y t h e combined wind a n d s t a c k a c t i o n , o r u s e F i g . 9 ( a ) and 9 ( b )

I n t h e above e q u a t i o n s , C i s g i v e n i n T a b l e 1;

BOi

and a can b e c a l c u l a t e d from Eq 7 and

(10)

DISCUSSION

The p r o p o s e d method f o r c a l c u l a t i n g a i r i n f i l t r a t i o n r a t e i s s t r i c t l y v a l i d o n l y f o r a t a l l b u i l d i n g s u r r o u n d e d b y lower s t r u c t u r e s o f u n i f o r m h e i g h t b e c a u s e o f t h e wind p r e s s u r e

c o e f f i c i e n t s u s e d , I t may n o t b e g e n e r a l i z e d t o a p p l y f o r a t a l l b u i l d i n g p a r t i a l l y p r o t e c t e d by a n o t h e r t a l l b u i l d i n g u n l e s s t h e y a r e s u f f i c i e n t l y f a r a p a r t . Based on t h e measurements made b y B a i l e y and V i n c e n t ( 8 ) , t h e minimum d i s t a n c e f o r which t h e e f f e c t o f a n a d j a c e n t t a l l b u i l d i n g may be n e g l e c t e d i s e s t i m a t e d t o b e a b o u t 8 b u i l d i n g w i d t h s .

F i g . 2 ( a ) , ( b ) and 3 ( a ) , ( b ) i n d i c a t e t h a t t h e mean p r e s s u r e c o e f f i c i e n t on t h e windward w a l l d e c r e a s e s a s t h e wind a n g l e d e v i a t e s from t h e normal t o t h a t w a l l and a s t h e h e i g h t o f a d j a c e n t s t r u c t u r e s i n c r e a s e s . The h e i g h t o f a d j a c e n t s t r u c t u r e s u s e d t o o b t a i n Cpz was 3 . 8 cm which r e p r e s e n t e d a 5 - s t o r y b u i l d i n g i n f u l l s c a l e . T h i s h e i g h t was c h o s e n b e c a u s e i t was

a p p r o x i m a t e l y e q u a l t o t h e a v e r a g e b u i l d i n g h e i g h t i n a l a r g e c i t y s u c h a s T o r o n t o .

F i g . 6 shows t h a t f o r a l o n g w a l l ( S i d e l ) , (Cd i s maximum a t 9 = 0 d e g . and it d e c r e a s e s c o n t i n u o u s l y t o z e r o a s 0 i n c r e a s e s t o 7! d e g . For a s h o r t w a l l ( S i d e 2 ) , (Cdp)2 i s z e r o a t 25 d e g . and it i n c r e a s e s c o n t i n u o u s l y w i t h @ t o a maximum v a l u e a t 9 0 d e g . Thus, a s t h e wind a n g l e , 0 , c h a n g e s from 0 t o 9 0 d e g . , a i r w i l l i n f i l t r a t e a b u i l d i n g t h r o u g h s i d e 1 f o r 8<25 d e g . , and t h r o u g h b o t h S i d e s 1 and 2 f o r 8 v a r y i n g from 25 t o 75 d e g . , and f i n a l l y t h r o u g h S i d e 2 f o r 75<0<90

-

d e g . S i m i l a r r e s u l t s were o b s e r v e d f o r a f u l l y e x p o s e d t a l l b u i l d i n g i n t h e s u b u r b ( 1 ) .

F i g . 9 ( a ) a n d 9 ( b ) i n d i c a t e t h a t i f Qs i s e q u a l t o Qw, t h e r e s u l t a n t a i r i n f i l t r a t i o n i s

a b o u t 4 0 % , 17% and 6 % h i g h e r t h a n Qs o r Qw f o r wind a n g l e s o f 0 (Or g o ) , 30 ( o r 60) a n d 45 d e g . r e s p e c t i v e l y . Thus, t h e r e s u l t s a p p e a r t o s u g g e s t t h a t o n e e f f e c t i v e way t o c u t down h e a t l o s s due t o i n f i l t r a t i o n f o r b u i l d i n g s u n d e r d e s i g n i s t o o r i e n t them away from t h e w i n t e r p r e v a i l i n g wind d i r e c t i o n .

The f a c t o r a s h f o r e s t i m a t i n g Q, was d e r i v e d f o r h/H = 1 / 6 . To i n v e s t i g a t e t h e a p p l i c a b i l i t y o f t h i s f a c t o r t o o t h e r s h i e l d i n g c o n d i t i o n s , F i g . 1 0 shows t h e r e l a t i o n s h i p between

(Qws /Qlrg - 1) a n d Q s m l / Q l r f o r v a r i o u s v a l u e s o f h/H and wind a n g l e s . I t i s e v i d e n t t h a t

a s h i s a weak f u n c t i o n o f h / b e s p e c i a l l y when t h e wind d i r e c t i o n i s n o t p e r p e n d i c u l a r t o t h e w a l l . Thus, t h e f a c t o r a s h c a n a l s o b e u s e d t o e s t i m a t e Qws u n d e r t h e s h i e l d i n g c o n d i t i o n c o n s i d e r e d .

The p r e d i c t e d a i r i n f i l t r a t i o n r a t e s u s i n g t h e s u g g e s t e d method was compared w i t h t h o s e b a s e d on t h e computer b u i l d i n g model u n d e r v a r i o u s c o n d i t i o n s . A s shown i n F i g . 11, t h e a g r e e m e n t between t h e two r e s u l t s i s w i t h i n 5 % .

CONCLUSIONS

A method was p r e s e n t e d f o r p r e d i c t i n g a i r i n f i l t r a t i o n r a t e f o r a t a l l b u i l d i n g ( w / l = 1 / 1 . 5 ) s u r r o u n d e d b y lower s t r u c t u r e s o f u n i f o r m h e i g h t under v a r i o u s c o m b i n a t i o n s o f wind s p e e d s , wind a n g l e s , and a i r t e m p e r a t u r e . The method may b e g e n e r a l i z e d t o a p p l y f o r a t a l l b u i l d i n g i n a n u r b a n a r e a i f t h e b u i l d i n g i s a b o u t 8 b u i l d i n g w i d t h s away from o t h e r t a l l b u i l d i n g s . The p r e d i c t e d a i r i n f i l t r a t i o n r a t e s a r e shown t o b e a c c u r a t e w i t h i n 5% compared w i t h t h o s e b a s e d on t h e computer b u i l d i n g model.

A i r i n f i l t r a t i o n c a u s e d b y wind was found t o b e a s t r o n g f u n c t i o n o f wind d i r e c t i o n . The r e s u l t s i n d i c a t e d t h a t t h e maximum a i r i n f i l t r a t i o n was p r o d u c e d b y a wind t h a t a p p r o a c h e d a t 0 d e g . and t h e minimum a i r i n f i l t r a t i o n o c c u r r e d a t 75 d e g . wind a n g l e .

A i r i n f i l t r a t i o n c a u s e d b y t h e c o m b i n a t i o n o f wind a n d s t a c k a c t i o n i s d e p e n d e n t o n t h e magnitude o f e a c h and t h e wind d i r e c t i o n . I f t h e a i r i n f i l t r a t i o n r a t e s c a u s e d b y wind o r s t a c k a c t i o n a c t i n g s e p a r a t e l y a r e e q u a l , t h e a i r i n f i l t r a t i o n r a t e c a u s e d b y t h e combined a c t i o n i s h i g h e r t h a n t h a t due t o each a c t i o n b y a b o u t 40% f o r wind a n g l e s o f 0 o r 9 0 deg. and 6% f o r 45 d e g .

(11)

NOMENCLATURE 2 *1 = a r e a o f long w a l l ( S i d e 1 )

,

m A i = a r e a o f w a l l i, m2; i = 1 , 2, 3 , 4 C j = leakage c o e f f i c i e n t of b u i l d i n g component; s e e T a b l e 1 3 0.65 cw = leakage c o e f f i c i e n t f o r e x t e r i o r w a l l s p e r u n i t w a l l a r e a , m /s-m2*pa C = weighted mean p r e s s u r e c o e f f i c i e n t ; s e e Eq 3 PZ (C ) . = uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e c o e f f i c i e n t o f w a l l i, i = 1 , 2, 3 , 4 ; s e e Eq 6 dp 1 h = average h e i g h t of a d j a c e n t s t r u c t u r e s , m tI = b u i l d i n g h e i g h t , m K = c o n s t a n t A P = p r e s s u r e d i f f e r e n c e a c r o s s an opening, P a j = uniform e q u i v a l e n t p r e s s u r e d i f f e r e n c e a c r o s s i t h w a l l , Pa; i = 1 , 2, 3, 4 z = weighted mean p r e s s u r e a t h e i g h t z r e l a t i v e t o s t a t i c p r e s s u r e a t r o o f l e v e l , Pa 3 Q s = a i r i n f i l t r a t i o n r a t e caused by s t a c k a c t i o n , m / s 5 = a i r i n f i l t r a t i o n r a t e caused by wind, m / s 3 = a i r i n f i l t r a t i o n r a t e caused by wind a t 8 , m /s 3 = a i r i n f i l t r a t i o n r a t e caused by wind a t 0 d e g . , m / s 3

= a i r i n f i l t r a t i o n r a t e caused by combined wind and s t a c k a c t i o n , m / s

3 = l a r g e r v a l u e o f

Qw

and Q s ' m /s = s m a l l e r v a l u e of

\

and Q m s / s s ' = p e r i m e t e r of t h e b u i l d i n g , m = o u t s i d e a i r t e m p e r a t u r e , K = i n s i d e - o u t s i d e temperature d i f f e r e n c e , K

= mean wind speed measured a t a m e t e o r o l o g i c a l s t a t i o n , m/s

= mean wind speed a t r o o f l e v e l , m/s

= mean wind speed a t h e i g h t z above ground, m/s

(41

o

= - -

-

c o r r e c t i o n f a c t o r f o r wind d i r e c t i o n

'

)

w

0

-

-

(%)

h / ~ = c o r r e c t i o n f a c t o r f o r s h i e l d i n g

(%I

1 / 6

-

'$45

- - = c o r r e c t i o n f a c t o r f o r combined wind and s t a c k a c t i o n Q1rg

(12)

REFERENCES

Shaw, C . Y . and Tamura, G.T. "The C a l c u l a t i o n o f A i r I n f i l t r a t i o n R a t e s Caused b y Wind and S t a c k A c t i o n f o r T a l l B u i l d i n g s , " ASHRAE TRANSACTIONS, 8 3 , 11, 1977

Tamura, G.T. and Shaw, C . Y . " S t u d i e s on E x t e r i o r Wall A i r T i g h t n e s s and A i r I n f i l t r a t i o n of T a l l B u i l d i n g s , " ASHRAE TRANSACTIONS, 82, I , 1976

Tamura, G.T. and Shaw, C . Y . " A i r Leakage Data f o r t h e Design o f E l e v a t o r and S t a i r s h a f t P r e s s u r i z a t i o n S y s t e m s , " ASHRAE TRANSACTIONS, 82, 11, 1976

Tamura, G.T. and Shaw, C . Y . " E x p e r i m e n t a l S t u d i e s on Mechanical V e n t i n g f o r Smoke C o n t r o l i n T a l l O f f i c e B u i l d i n g s , " ASHRAE TRANSACTIONS, 8 4 , I , 1978

Bowen, A . J . "A Wind Tunnel I n v e s t i g a t i o n Using S i m p l e B u i l d i n g Models t o O b t a i n Mean S u r f a c e Wind P r e s s u r e C o e f f i c i e n t s f o r A i r I n f i l t r a t i o n E s t i m a t e s , R e p o r t LTR LA 209, N a t i o n a l A e r o n a u t i c a l E s t a b l i s h m e n t

,

NRCC, 19 76

Cermak, J . E . "Nature o f A i r Flow Around B u i l d i n g s , " ASHRAE TRANSACTIONS, 82, I , 1976 S a n d e r , D . M. " F o r t r a n IV Program t o C a l c u l a t e A i r I n f i l t r a t i o n i n B u i l d i n g s

,"

Computer Program No. 3 7 , D i v i s i o n o f B u i l d i n g R e s e a r c h , NRCC, 1974

B a i l e y , A . and V i n c e n t , N . D . G . "Wind P r e s s u r e on B u i l d i n g s I n c l u d i n g E f f e c t s o f A d j a c e n t B u i l d i n g s , " J o u r n a l o f t h e I n s t i t u t e o f C i v i l E n g i n e e r i n g , 1 9 - 2 0 , I , November 1942

ACKNOWLEDGEMENT

The a u t h o r g r a t e f u l l y acknowledges t h e c o n t r i b u t i o n o f D . G . S t e p h e n s o n , G .T. Tamura and

A . Konrad i n t h e p r e p a r a t i o n o f t h i s p a p e r . T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l o f Canada and i s p u b l i s h e d w i t h t h e a p p r o v a l o f t h e D i r e c t o r o f t h e D i v i s i o n .

(13)

O * .

.

. . .

. . .

..-

..-

-

ELEVATION (SIDES I A N D 3) ELEVATION (SIDES 2 A N D 4) M O D U L E A

I:::::

=Fl

c , 0 . 5 0 H I

-

-

I: m - 0 , 1 7 H I

-

..

ELEVATION (SIDES I A N D 3) ELEVATION ISIDEL 7 *NO 41 M O D U L E B

I

ELEVATION (SIDES I A N D 3) ELEVATION (SIDES 2 AND 4) M O D U L E S C A N D D

M O D E L S C A L E 1 . 4 0 0

SURROUNDING STRUCTURE

MODELS FOR W I N D PRESSURE MEASUREMENTS

F i g . 1 D i m e n s i o n s o f b u i l d i n g m o d e l s and p o s i t i o n s o f p r e s s u r e t a p s

(14)

F i g . 2a V e r t i c a l d i s t r i b u t i o n o f mean w i n d p r e s s u r e c o e f f i c i e n t s of s i d e s 1 and 2 f o r h/H = 1/6 F i g . 2b V e r t i c a l d i s t r i b u t i o n o f mean w i n d p r e s s u r e c o e f f i c i e n t s o f s i d e s 3 and 4 f o r h/H = 1 / 6

(15)

F i g . 3a V e r t i c a l d i s t r i b u t i o n o f mean w i n d p r e s s s r e c o e f f i c i e n t s f o r 0 = O0 and v a r i o u s v a l u e s o f h / H Fig. 3b V e r t i c a l d i s t r i b u t i o n o f mean w i n d p r e s s u r e c o e f f i c i e n t s f o r 0 = 45O and v a r i o u s v a l u e s o f h/H

(16)

I

L E A K A G E C O E F F I C I E N T S F O R E A C H S T O R Y C . = 0 . 3 5 9 r n ' / r . ~ o O . ~ P L A N

-

S H A F T W I T H L E A K A G E THAT O F F O U R - C A R E L E V A T O R S H A F T A N D T W O STAIRSHAFTS

iTm?

E L E V A T I O N F i g . 4 C o m p u t e r b u i l d i n g model 2

z

:

;

0 2 O 2 . 5 5 7 . 5 10 1 2 . 5 15

WIND SPEED AT 10 m LEVEL AT METEOROLOGICAL STATION, VI, m/s

I I I I 1 W I N D D I R E C T I O N N O T E -

-

1 . h/H = 1/6 2 . a , = C O R R E C T I O N F A C T O R FOR C w

-

-

-

-

F i g . 5 A i r i n f i l t r a t i o n r a t e s c a u s e d b y w i n d f o r a t a l l b u i l d i n g s u r r o u n d e d b y l o w e r s t r u c - t u r e s o f u n i f o r m h e i g h t

(17)

F i g . 6 R e l a t i o n s h i p b e t w e e n n o r m a l - i z e d u n i f o r m e q u i v a l e n t p r e s s u r e d i f f e r e n c e c o e f f i c i e n t and wind 8 D E G R E E d i r e c t i o n 0 15 30 45 60 75 90 0 DEGREE F i g . 7 F a c t o r f o r d e t e r m i n - i n g a i r i n f i l t r a t i o n r a t e f o r v a r i o u s w i n d a n g l e s

AVERAGE HEIGHT OF ADJACENT STRUCNRES

,

1

BUILDING HEIGHT H

F i g . 8 R e l a t i o n s h i p b e t w e e n a i r i n f i l t r a t i o n r a t e s d u e t o w i n d and a v e r a g e h e i g h t o f a d j a c e n t s t r u c t u r e s

(18)

F i g . 9a F a c t o r f o r d e t e r m i n i n g a i r i n f i l t r a t i o n r a t e s d u e t o combined a c t i o n o f w i n d and s t a c k a c t i o n f o r o O <

- -

0 < 45O F i g . 1 0 E f f e c t o f a d j a c e n t s t r u c t u r e s o n f a c t o r s f o r d e t e r m i n i n g a i r i n f i l - t r a t i o n r a t e s d u e t o combined a c t i o n o f w i n d and s t a c k a c t i o n F i g . 9 b F a c t o r f o r d e t e r m i n i n g a i r i n f i l t r a t i o n r a t e s d u e t o combined a c t i o n o f w i n d and s t a c k a c t i o n f o r 45" < 0 2 90° I 1 I I STACK A C T I O N (EQ. 13) 0 W I N D , 8 =o'(EQ. 8) A W I N D , 8 = 4 5 ' ( ~ ~ . 9)

-

A W I N D , 8 = 4 5 q h / H = 1 / 4 ( E Q . 1 4 )

-

-

rJ

LINE OF

-

AGREEMENT

-

0 W l N D A N D STACK A C T I O N , 8 = 0 ° (EQS. 8, 12 A N D 13) I . O W I N D A N D STACK A C T I O N , 8 = 45O (EQS. 9, 12 A N D 13) 0 W l N D A N D STACK A C T I O N , 8 = 45' h/H = 1/4 (EQS. 12, 13 A N D 14)

1

AIR INFILTRATION RATE FROM COMPUTER MODEL, m3/s

F i g . 1 1 Comparison o f c a l c u l a t e d a i r i n f i l t r a t i o n r a t e s w i t h t h a t o b t a i n e d u s i n g c o m p u t e r b u i l d i n g model

(19)

This publication i s being distributed by the Division of Building R e s e a r c h of the National R e s e a r c h Council of Canada. I t should not be reproduced i n whole o r i n p a r t without p e r m i s s i o n of the original pu1,lisher. The Di- vision would be glad to b e of a s s i n t a n c e in obtaining such permission.

Publications of the Division m a y be obtained by m a i l - ing the a p p r o p r i a t e r e m i t t a n c e ( a Bank, E x p r e s s , or P o s t Office Money O r d e r , o r a cheque, m a d e payable t o the Receiver General of Canada, c r e d i t NRC) to the National R e s e a r c h Council of Canada, Ottawa. K1A OR6. Stamps a r e not acceptable.

A l i s t of a l l publications of the Division i s available and m a y b e obtained f r o m the Publications Section. Division of Building R e s e a r c h , National R e s e a r c h Council of Canada, Ottawa. KIA OR6.

Références

Documents relatifs

We have investigated the full three-dimensional momentum correlation between the electrons emitted from strong field double ionization of neon when the recollision energy of the

In my first experiences with women seeking reproductive care both before and after birth at a public primary health care clinic (PHC) in a large low-income community in Sao

Cette tendance, combinée à l'avènement de nouveaux matériaux de construction, pose un défi pour le maintien d'une bonne qualité de l'air intérieur (QAI), laquelle dépend en effet

The heptane pool fire, which could not be extinguished by water mist from a single 7G-5 nozzle located 3 m above the fire, was extinguished when a 0.3% Class A foam solution was

Using femtosecond laser technology, we accelerate the rate of rotation from 0 to 6 THz in 50 ps, spinning chlorine molecules from near rest up to angular momentum states J ⬃ 420..

The geography of *R-loss described in the previous sections outlines a vast area consisting of the two archipelagoes of Vanuatu and New Caledonia—in other words, what Lynch

⁴Direct/inverse systems are oen illustrated with data om Algonquian languages, but they generally lack di- rect/inverse marking in the local domain, and are thus farther removed

We have demonstrated so far that our new method for the capillary calculation with a non-uniform distribution of markers can maintain spurious velocities close to those obtained with