• Aucun résultat trouvé

An exterior product for the homology of groups with integral coefficients modulo <span class="mathjax-formula">$p$</span>

N/A
N/A
Protected

Academic year: 2022

Partager "An exterior product for the homology of groups with integral coefficients modulo <span class="mathjax-formula">$p$</span>"

Copied!
6
0
0

Texte intégral

(1)

C AHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

G. J. E LLIS

C. R ODRIGUEZ -F ERNANDEZ

An exterior product for the homology of groups with integral coefficients modulo p

Cahiers de topologie et géométrie différentielle catégoriques, tome 30, n

o

4 (1989), p. 339-343

<http://www.numdam.org/item?id=CTGDC_1989__30_4_339_0>

© Andrée C. Ehresmann et les auteurs, 1989, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

AN EXTERIOR PRODUCT FOR THE HOMOLOGY OF GROUPS

WITH INTEGRAL COEFFICIENTS MODULO p

by G. J. ELLIS 1

and C. RODRIGUEZ-FERNANDEZ

CAHIERS DE TOPOLOGIE ET G.8OMrTRIE DIFF.8R.ENTIELLE

CATÉGORIQUES

VOL. XXX- 4 (1989)

R2SUMfi.

Les auteurs

g6n6ralisent

la suite exacte a 8 ter-

mes de groupes

d’homologie

entiere obtenue par Brown et

Loday

en une suite exacte de groupes

d’homologie

a coef-

ficients dans

ZP,

ou p est un entier

non-n6gatif.

In this article we

generalize

Brown and

Loday’s eight

term

exact sequence in

integral

group

homology

[2] to an exact se-

quence in group

homology

with coefficients in

Zp,

where p is

any

nonnegative integer.

Let G be a group with a normal

subgroup N,

and consider

Zp=Z/pZ

as a trivial G-module. We prove

THEOREM 1. There is a natural exact sequence

Here

N**pG

denotes the

subgroup

of N

generated by

the

elements

[n,g]

and

nf’, for g E G,

n E N. (When x,y are ele- ments

of a group,

we write

[x,y]

=

xy x-1y-1 and ’ w- = xi- x- 1.)

The group NAPG is a new construction. It is

generated by

the

symbols

nAg and Inl for

n E N, g E G, subject

to the rela-

tions

1 This author would like to thank the University of Santiago de Compostela for its hospitality during the preparation of this ar-

(3)

340

for

g, h E G,

m, n E N. Note that if

N = G,

then (2) and (7) are

redundant.

Clearly

NAPG is functorial in N and G.

The

homomorphism

1: NAPG-G is defined

by

It is routine to check that 6 is a well-defined

homomorphism,

and that its

image

is

NUpG .

As an immediate consequence of Theorem 1 we have COROLLARY 2. There is an

isomorphism

Also,

for aw

presentation

R &#x3E;- F - G of

G,

there is an isomor-

phism

In order to prove Theorem 1 we need the

following

LEMMA 3. If F is a free group, then 6 induces an

isomorphism

FAPF rr

F#PF.

PROOF. Recall from 121 that NAG is the group

generated by

the

symbols

n A g

for g E G,

n

E N, subject

to relations

(1), (2),

(3).

There is thus a

homomorphism i: N A G- N APG, n A g +

nAg.

By

(4) the

image

of i is normal in NAPG. On

taking

G = N = F we

thus have a commutative

diagram

where 8" is induced

by d,

and where 1’ is the

isomorphism

pro-

ved in [21 (see [3] for an

algebraic proof

of this

isomorphism).

(4)

The

homomorphism

8" is

clearly surjective,

and hence has a

splitting

since

pFab

is free abelian and FAPF/lm(L) is abelian

by

(6). This

splitting

is

surjective

because of (5). Therefore 1" is an

isomorphism.

Since the rows of the

diagram

are both short exact, it follows that

d: FAPF-F#pF

is an

isomorphism. ·

In [I] the

following

natural exact sequence

is obtained. Thus to prove Theorem 1 it suffices to exhibit an

isomorphism rr:NAPG-L0VP1(a)

such that

commutes.

For any

surjection s:

F-G with F a free group let S be the kernel of the

composite homomorphism

Let i : S’-S be an

isomorphism.

Let T be the kernel of

Then it is shown in

([1], Propositions

6.4 and 8.1) &#x3E; that

As in [1] let (1: G-F be an), set theoretic section of E:

F-G.

Then (1

induces a section N-Srr

S’;

under this section we

denote the

image

of n E N

by u ( n)’ E S’ .

Let

With this notation, we have

LEMMA 4. There is a

homomorphism h:NApG-L0V1P(a)

defined

by

(5)

342

PROOF. We need to show that h preserves the relations (1)-(7).

By

[1]

clearly

h preserves (1)-(3). Relation (4) is

preserved

be-

cause

from which we see that

Relation (5) is

preserved

because

and

which

implies

Since

we have

Relation (6) is

preserved

because we have

Clearly

relation (7) is

preserved. o

Consider the

homomorphism

By

Lemma 3 we have a

homomorphism

cp:

S"#PS*

=S’APS’-NAPG defined

by

We therefore have a set theoretic map

g: S’S*F#p(S’*F)-NAPO

defined as follows (cf.

[1],

8.12):

LEMMA 5. The

composite

function

(6)

is a

homomorphism,

and induces a

homomorphism

PROOF. The first

homomorphism

is

clear,

and

certainly

D is in

the kernel of the first

homomorphism. By

Lemmas 4 and 5 we

have a commutative

diagram

where h’ is the restriction of

hc,

and is an

isomorphism by

Sec-

tion 8 of 111.

Clearly LoVO(a)

lies in the kernel of

4J,

and

so 4J

induces a

splitting

of h .

But 4J

is

surjective

and hence

h

is an

isomorphism.

It follows that h is an

isomorphism.

It is

readily

seen that the above

diagram

(*) commutes. So Theorem 1 is pro- ved.

REFERENCES.

1. J. BARJA

&#x26; C. RODRIGUEZ,

Homology

groups

Hqn (-)

and

eight-term

exact sequences, Cahiers

Top.

et Géom. Diff. Cat.

XXXI (1990).

2. R. BROWN &#x26; J.-L. LODAY, Van

Kampen

Theorems for

diagrams

of spaces,

Topology,

26 (3)

(1987),

311-335.

3. G. J. ELLIS, Non-abelian exterior

products

of groups and exact sequences in the

homology

of groups,

Glasgow

Math.

J.

29

(1987),

13-19.

Mathematics

Department University College

GALWAY IRELAND

Departamento

de

Algebra

Universidad de SANTIAGO DE COMPOSTELA ESPAGNE

Références

Documents relatifs

Since this class admits a calculus of left frac- tions, the homotopy relation has another description in terms of

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d’un corps local: construction d’un anneau de Barsotti-Tate, Ann Math. Honda, On the

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

Une équation al- gébrique de degré m, qui a une racine d'ordre o^, une racine d'ordre a 2 , etc., enfin une racine d'ordre a^, n'a évidemment que p racines distinctes; il en

All the proofs in this paper in some part depend on using another zeta function introduced to classify the unclassifiable by Grunewald, Segal and Smith [21]. One can also define a

The aim of this paper is to show that if one reformulates the problem in terms of derivations, as we do in Section 2, then the general case of an arbitrary p-group of maximal class

Independent diagonal relation arrays are shown to correspond uniquely to reduced, separable