• Aucun résultat trouvé

Interaction of chemical admixtures in the cement-water system

N/A
N/A
Protected

Academic year: 2021

Partager "Interaction of chemical admixtures in the cement-water system"

Copied!
15
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Interaction of chemical admixtures in the cement-water system

Ramachandran, V. S.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=cea17f9d-51d4-418f-9d9a-68cee0dd7ca9 https://publications-cnrc.canada.ca/fra/voir/objet/?id=cea17f9d-51d4-418f-9d9a-68cee0dd7ca9

(2)

Ser TH1

N21d National Research Conseil national

0 1442 Council Canada

de

recherches Canada

c. 2 BLDG institute for - lnstitut de Research in recherche en Construction construction

Inieraction of Chemical Admixtures

in the

Cemenf

-

Water

System

by V.S. Ramachandran

A N A L Y Z E D

Appeared in

"Research on the Manufacture and Use of Cements" Proceedings of the Engineering Foundation Conference Henniker, New Hampshire, July 28-August 2, 1985

p. 121 -131

(IRC Paper No. 1441)

Reprinted with permission

Price $2.00 NRCC 27412 1 NRC

-

CISTI

I R C

L I B R A R Y

3

1987

(3)

11 peut se produire de l'adsorption, de la chimieorption et des rhctions chimiques entre les adjuvants et les hydratants du ciment. Des modifications physiques et chimiques oat lieu au moment de l'addition au s y s t h e ciment-eau d'adjuvsnts tels les accblbrateurs, les retardateurs de prise, les plastifiants rgducteurs dteau et les superplastlfiants. I1 est possible d'expliquer par des ef f ets d'interaction le dcaoisme dlaction des adjuvants et les variations de la d e u n d e en eau, de la viscosit6, de la prise, de la perte par affaissement, du retrait, de la cingtique d'hydratation, de la microstructure, de la resistance et de la durabilitg du ciment frais et du ciment durci. - - >

..

S e r N a t i o n a l Research Council Canada. I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n no.

1441

Paper c. 2 R ~ a c h a n d r a n , V. S. BLDG I n t e r a c t i o n o f chemical a d m i w + , , - - -

(4)

INTERACTION OF CHEMICAL ADMIXTURES I N THE CEMENT

-

WATER SYSTEM V.S. Ramachandran*

ABSTRACT

Physical a d s o r p t i on, chemi s o r p t i on and chemical r e a c t i o n s may occur between t h e admixtures and t h e h y d r a t i n g conponents o f cements. Physical and chemical changes occur when admixtures such as

accelerators, r e t a r d e r s , water reducers, and superpl a s t i c i zers a r e added t o t h e cement

-

water system. Mechanisms o f t h e a c t i o n of admixtures, changes i n water demand, v i s c o s i t y , s e t t i n g , slump loss, shrinkage, k i n e t i c s o f hydration, m i c r o s t r u c t u r e , s t r e n g t h and

durabi 1 i t y o f f r e s h and hardened cement pastes can be explained by t h e i n t e r a c t i o n e f f e c t s .

1. INTRODUCTION

Chemical admixtures c o n f e r c e r t a i n benefi c i a1 e f f e c t s on concrete, i n c l u d i n g reduced water r e q u i rement, increased workabi 1 i t y , c o n t r o l 1 ed s e t t i n g and hardening, improved s t r e n g t h and b e t t e r d u r a b i l i t y .

Many approaches have been adopted t o i n v e s t i g a t e t h e r o l e of chemical admixtures. One approach i s t o determine t h e s t a t e of t h e admixture i n concrete a t d i f f e r e n t times o f curing. The admixture may remain i n a f r e e s t a t e as a s o l i d o r i n s o l u t i o n , o r i n t e r a c t a t t h e surface o r chemically combine w i t h t h e c o n s t i t u e n t s o f cement o r cement paste. The t y p e and e x t e n t o f t h e i n t e r a c t i o n may i n f l u e n c e t h e

physi co-chemi c a l and mechanical p r o p e r t i e s o f cement paste. I n t h i s paper an attempt i s made t o discuss t h e p o s s i b l e i n t e r a c t i o n s o f d i f f e r e n t types o f chemical admixtures i n t h e cement

-

water system, w i t h p a r t i c u l a r reference t o t h e changes i n physi co-mechani c a l p r o p e r t i e s .

DISCUSSION

2.1 Accelerators

Many i norgani c and organi c compounds such as c h l orides, f l u o r i d e s

,

carbonates, s i 1 icates, a1 umi nates, borates, n i t r i t e s , t h i o s u l f a t e s ,

t r i ethanol ami ne, d i e t h a n o l ami ne, and formates have been advocated f o r use as accelerators.

*V.S. Ramachandran, Bui 1 ding M a t e r i a l s Section, D i v i s i o n of Bui l d i n g Research, National Research Counci 1 Canada, Ottawa, Canada

(5)

2.1.1 Cal c i um c h l o r i d e

Calcium c h l o r i d e i s perhaps t h e most e f f i c i e n t and economical accelerator. I n t h e h y d r a t i o n o f C3S, t h e r e i s evidence t h a t calcium c h l o r i d e e x i s t s i n d i f f e r e n t s t a t e s i n t h e C S paste. Based on thermal a n a l y s i s and 1 eachi ng studies, Ramachandran 11) has concluded t h a t , depending on t h e t i m e o f hydration, t h e c h l o r i d e may e x i s t i n a f r e e form ( e x t r a c t a b l e by e t h y l a l c o h o l ), i n c o r p o r a t e d s t r o n g l y i n t o t h e

C-S-H phase (unleachabl e w i t h water), chemi sorbed o r i n i n t e r l ayer

p o s i t i o n s (leachable w i t h water). At 168 h about 20% o f t h e added

c h l o r i d e i s i n c o r p o r a t e d s t r o n g l y i n t o t h e C-S-H phase. The r e s t i s i n a chemisorbed s t a t e o r i n t h e i n t e r l a y e r s ( e a s i l y leachable w i t h

water). These r e s u l t s may have i m p l i c a t i o n s i n e x p l a i n i n g t h e mechanism o f t h e a c c e l e r a t i o n a c t i o n , mi c r o s t r u c t u r a l development, differences i n t h e CaO/Si02 r a t i o o f C-S-H products, c o r r o s i o n p o t e n t i a1 o f c h l o r i d e s and i n t r i n s i c p r o p e r t i e s o f p o r t l a n d cement. Cal c i um c h l o r i de accelerates t h e r e a c t i o n between C3A and gypsum, and

monochl o r o a l umi nate i s formed a f t e r a1 1 gypsum i s consumed (2). Using

l e a c h i n g and pressure techniques i t has been found t h a t more c h l o r i d e i s immobilized by t h e C 3 A

+

gypsum m i x t u r e t h a n by C3S o r p o r t l a n d cement (3).

2.1.2 Triethanolamine

T r i ethanol ami ne i s termed an accelerator. T r i ethanol ami ne acts,

however, as a r e t a r d e r o f C3S h y d r a t i o n ( 4 ) . An examination of t h e thermal behavior o f C3S hydrated t o d i f f e r e n t periods i n t h e presence

of t r i ethanolami ne reveal s t h e development o f exothermal peaks t h a t

c o u l d be a t t r i b u t e d t o t h e decompositon o f a complex of t h e amine w i t h

t h e hydrated products o f C3S. This complex may be responsible f o r

e a r l y r e t a r d a t i o n and p o s s i b l y f o r t h e h i g h e r C/S r a t i o of t h e C-S-H product. T r i ethanol ami ne a c c e l e r a t e s t h e r e a c t i o n between C3A and gypsum (5). The c a t i o n - a c t i v e ami ne may r e a c t w i t h A1 and Ca i o n s on

t h e surface o f C3A. I n cements, a t a dosage o f 0.1 o r 0.5%

t r i e t h a n o l a m i ne, s e t t i n g occurs r a p i d l y w i t h i n about 2-6 m i n. ; t h i s i s a t t r i b u t e d t o t h e a c c e l e r a t e d f o r m a t i o n o f e t t r i n g i t e and C3A-hydration products (5).

2.1.3 Formates

Calcium formate i s used as a non-chloride accelerator. I n

cements, more e t t r i n g i t e i s formed w i t h formate t h a n w i t h calcium c h l o r i d e (6). The increased f o r m a t i o n o f e t t r i n g i t e i n t h e presence of Ca-formate i s a t t r i b u t e d t o t h e f o r m a t i o n o f t h e complex

C3Ae3Ca(HC02)2e30H20 a t o r d i n a r y temperatures, analogous t o e t t r i n g i t e . Enhanced formation o f e t t r i n g i t e i n t h e presence o f Ca-acetate and Ca-propi onate i s a1 so e x p l a i n e d by t h e i r a b i 1 i t y t o form hexagonal

prism-type phases w i t h C3A (7). Calcium formate accelerates t h e

h y d r a t i o n o f C S. An e x p l a n a t i o n i s t h a t formate i o n s i n t e r f e r e o r i n t e r a c t w i t h t h e p r o t e c t i v e l a y e r normally formed on t h e C3S

surface (8).

(6)

2.1.4 Other a c c e l e r a t o r s

Sodium carbonate decreases t h e s e t t i n g t i m e o f cement by 2-4 hours b u t a f t e r 10-12 hours t h e h y d r a t i o n i s r e t a r d e d due t o t h e

p r e c i p i t a t i o n o f CaCO, by t h e r e a c t i o n o f Na C03 w i t h lime. The p r e c i p i t a t i on o c c u r r i n g w i t h i n t h e pores o f $he product decreases permeabi 1 i t y (9).

Oxalic a c i d may a l s o a c t as an a c c c e l e r a t o r by decreasing t h e s e t t i n g t i m e o f cement by 43% and i n c r e a s i n g s t r e n g t h s by 12% (10). Strength development i s explained by t h e f o r m a t i o n o f Ca-oxalate, although t h e amount formed may be small.

Although calcium c h l o r i d e i s a comparatively simple molecule

compared t o o t h e r accelerators, i t s a c c e l e r a t i n g mechanism has n o t been resolved. A t l e a s t t w e l v e t h e o r i e s have been proposed f o r i t s

a c t i o n (11). It can, t h e r e f o r e , be appreciated t h a t t h e r o l e of more complex compounds i n v o l v i ng organi c compounds i s n o t easi l y r e s o l ved.

2.2 Retarders

Organic compounds such as u n r e f i n e d Na, Ca o r NH, s a l t s of

1 i gnosulfoni c acids, hydroxy-carboxyl i c acids, carbohydrates and

i n o r g a n i c compounds (oxides o f Pb and Zn, phosphates, Mg s a l t s , f l u o r a t e s and borates) a c t as r e t a r d e r s .

2.2.1 Sugars

Theories o f t h e r e t a r d i n g e f f e c t a r e based on adsorption, p r e c i p i t a t i o n , compl e x a t i on o r nucleation. I n a1 1 these processes, i n t e r a c t i o n s a r e i n v o l ved.

According t o Milestone, sugar and sugar acids adsorb on t o ca2+ i o n s on t h e h y d r a t i n g C3S s u r f a c e and poison t h e C-S-H n u c l e a t i n g

s i t e s (12). Adsorption o f glucose, f o r example, r e s u l t s i n t h e zeta

p o t e n t i a l becoming -ve from t h e t v e values. Poisoning of. CH n u c l e i by

a d s o r p t i o n o f sugars i s a l s o envisaged (13).

According t o t h e p r e c i p i t a t i o n theory, a d d i t i o n o f mono- o r

polysaccharides increases t h e c o n c e n t r a t i o n o f Ca, A1 and Fe. Sugars

may combine w i t h them t o form i n s o l u b l e metal organic complexes on t h e cement g r a i n s and r e t a r d h y d r a t i o n (14). Not a l l sugars r e t a r d cement

t o t h e same extent. Non-reduci ng sugars, f o r example, c o n t a i n i n g

f i ve-membered r i n g s (sucrose, r a f f i nose) a r e t h e b e s t retarders.

Although no s u c r o s e - s i l i c a t e o r Ca-complex has been detected w i t h these

sugars, i t i s suggested t h a t a h a l f s a l t formed by attachment o f Ca

and OH groups t o t h e f i ve-membered r i n g may poison Ca(0H) and C-S-H

n u c l e i (15). Retardation o f C,A conversion t o t h e c u b i c

AH,

i s

explained by t h e f o r m a t i o n o f an i n t e r l a y e r complex o f t h e hexagonal aluminate h y d r a t e w i t h t h e organic compounds (16,17).

It appears t h a t no s i n g l e t h e o r y can be a p p l i e d t o t h e behavior of a l l sugars on a l l cement components under a l l c o n d i t i o n s o f hydration. Adsorption need n o t occur o n l y on unhydrated o r hydrated surfaces.

(7)

Some sugars a c c e l e r a t e t h e i n i t i a l f o r m a t i o n o f e t t i i n g i t e i n t h e

C3A

-

gypsum

-

H20 system and others r e t a r d it. Sucrose i s an

accelerator, whereas r a f f i nose and t rehal ose a r e retarders. When

sucrose i s used, i t i s assumed t h a t adsorption occurs on t h e anhydrous

surface, p r e v e n t i n g t h e formation o f an impermeable l a y e r of

e t t r i n g i t e (18). Why t h i s does n o t occur w i t h o t h e r sugars needs t o be examined.

The p r e c i p i t a t i o n t h e o r y cannot be a p p l i e d f o r a l l cases. For example, t h e s t a b i 1 i t y constants o f Ca-compl exes o f v a r i ous compounds do n o t bear c o r r e l a t i o n w i t h t h e i r potency as retarders. A study of many complexes has shown t h a t some a r e r e t a r d e r s and o t h e r s a r e not. The poisoning of Ca(0H) n u c l e i by i t s e l f may n o t always cause

r e t a r d a t i o n . A1 though S a ( 0 ~ ) growth can be m o d i f i e d by i n c o r p o r a t i o n of dyes, i t does n o t show any r e t a r d i n g c h a r a c t e r i s t i c s (18). A

n u c l e a t i o n e f f e c t o f C-S-H should a l s o be considered. A combination of

two mechanisms may occur and i t i s n o t easy t o separate t h e occurrence

of two mechanisms. For example, EDTA r e t a r d s t h e h y d r a t i o n of C3S.

The r e t a r d i n g a c t i o n may be explained by t h e p r e c i p i t a t e d g e l c o a t i n g of C-S-H on t h e h y d r a t i n g C3S, consequent on t h e f o r m a t i o n o f a complex

between EDTA and Ca(OH)2 i n t h e s o l u t i o n phase (19). The i d e a t h a t

r e t a r d i n g agents should c o n t a i n t h e a-hydroxy carbonyl group c o u l d be

questioned. According t o Daugherty and Kowalewski (20), organic

compounds w i t h two o r more (OH) groups a r e necessary f o r t h e

r e t a r d a t i o n o f C3A hydration. Hydroxycarboxyl i c a c i d s

Adsorption s t u d i e s have been c a r r i e d out o f hydroxycarboxyl i c

a c i d s such as s a l i c y l i c a c i d on cement and cement components (21-23). Only a small amount o f a d s o r p t i o n occurs on t h e unhydrated phases

compared t o t h a t on hydrated products o f cement minerals. A complex of

s a l i c y l i c a c i d w i t h A1 may be responsible f o r t h e r e t a r d a t i o n of

h y d r a t i o n of C3A. Simi 1 a r complexes may form w i t h t h e C,AF component

i n cement. The hydroxycarboxyl i c a c i ds a c t more e f f i c i e n t l y on cements

c o n t a i n i n g low a l k a l i and C3A contents. At lower C3A contents, s m a l l e r

amounts of r e t a r d e r a r e adsorbed, l e a v i n g l a r g e r amounts of t h e

admixture t o a f f e c t t h e C3S component. A1 k a l i s may a f f e c t d i s s o l u t i o n and i n t e r a c t i o n reactions.

E a r l y h y d r a t i o n o f C3A

+

g

+

CH may be accelerated and t h e l a t e r r e a c t i o n i n v o l v i n g t h e conversion o f e t t r i ngi t e t o monosulfoal umi nate may be retarded by c i t r i c a c i d (24). A c c e l e r a t i o n i n t h e i n i t i a l stages may be due t o p r e f e r e n t i a l a d s o r p t i o n o f c i t r i c acid, which promotes h y d r o l y s i s o f C3A t o hexagonal phases. The l a t e r r e t a r d a t i o n may be due t o t h e f o r m a t i o n o f a complex between c i t r i c a c i d and

monosulfate. Calcium c i t r a t e formed by r e a c t i o n o f l i m e and CaC03

( i m p u r i t i e s ) w i t h c i t r i c a c i d may h i n d e r t h e development o f n u c l e i i n t h e h y d r a t i o n of p l a s t e r o f p a r i s .

C o r r e l a t i o n between s o l u b i 1 i t y and r e t a r d i n g behavior i s n o t

always possible. S o l u b i l i t y o f Ca s a l t o f o x a l i c a c i d i s 5 x 10-6M and

(8)

C3A hydration, although i t i s t h e l e s s s o l u b l e o f t h e two, b u t g l u c o n i c a c i d i s more s o l u b l e and i s a good retarder.

2.2.3 L i gnosulfonates

The re1 a t i ve r e t a r d i n g e f f e c t s o f sugars and 1 i gnosul fonates a r e n o t easy t o resolve. The h y d r a t i n g C3A adsorbs i r r e v e r s i b l y

s u b s t a n t i a l amounts o f l i g n o s u l f o n a t e and hence i t i s p o s s i b l e t h a t pure 1 i gnosulfonate c o n t r i b u t e s t o t h e r e t a r d i n g e f f e c t (25).

Thermograms show t h a t both commerci a1 and sugar-f r e e 1 i gnosul fonates a r e e q u a l l y e f f e c t i v e i n r e t a r d i n g t h e h y d r a t i o n o f cement (26). Both t h e comrnerci a1 and pure 1 i gnosulfonates r e t a r d s e t t i n g times.

Accordi ng t o o t h e r i n v e s t i gations, e i t h e r t h e sugar-f ree 1 i gnosulfonate i s a poor r e t a r d e r o r i t i s i n e r t i n i t s a c t i o n on cement. The

disagreement may be due t o t h e d i f f i c u l t y o f p r e p a r i n g pure 1 ig n o s u l f o n a t e and t h e d i f f e r e n c e s i n molecular weights of 1 ig n o s u l f o n a t e s used.

2.2.4 I n o r g a n i c r e t a r d e r s

Many i n o r g a n i c s a l t s r e t a r d t h e h y d r a t i o n o f cement. These s a l t s : form i n s o l u b l e hydroxides i n a l k a l i n e s o l u t i o n and may form a c o a t i n g on t h e cement p a r t i c l e s . There i s evidence t h a t i n o r g a n i c compounds form complexes w i t h t h e h y d r a t i n g cement products. Zinc oxide i s known t o be a good r e t a r d e r o f cement hydration. Zinc o x i d e r e t a r d s t h e h y d r a t i o n o f C S and does n o t i n f l u e n c e t h e h y d r a t i o n o f C3A + gypsum mixture. The Bormati on o f c a l c i urn hydroxyzincate (Ca[Zn (OH) H,O],) by t h e r e a c t i o n o f Ca(OH)2 w i t h ZnO has been confirmed (27).

~t

an

a d d i t i o n o f 10% Zn e q u i v a l e n t o f hydroxyzincate, 3.3% Zn may be

i n c o r p o r a t e d i n t o t h e C-S-H phase. The r e t a r d a t i o n e f f e c t o f Pb(N0 ) 2

i s a t t r i b u t e d t o t h e very r a p i d p r e c i p i t a t i o n o f a p r o t e c t i v e P ~ ( o H ~ * on t h e cement g r a i n s (28). Most phosphates r e t a r d s e t t i n g . The

adsorption o f phosphate i o n s a t t h e surface o f t h e c l i n k e r phase o r on t h e f i r s t h y d r a t i o n product i s thought t o r e s u l t i n t h e p r e c i p i t a t i o n o f Ca-phosphates.

2.3 Water Reducers

Water reducers c o n s i s t o f Ca, Na o r NH, s a l t s o f l i g n o s u l f o n i c acids, Na, NH, o r t r i ethanol ami ne s a l t s o f hydroxycarboxyl i c a c i d s and carbohydrates. L i gnosul fonates c o n t a i n i n g (OH), (COOH) and (SO H) groups a r e more widely used t h a n others. Hydroxycarboxyl i c a c i i s , such as c i t r i c acid, t a r t a r i c acid, s a l i c y l i c acid, heptoni c acid, sacchari c a c i d and g l u c o n i c acid, c o n t a i n (OH) and (COOH) groups. Gluconic

a c i d-based admi x t u r e s a r e used extensi v e l y

.

Carbohydrates i n c l ude glucose, sucrose o r hydroxyl ated polymers obtained by p a r t i a l h y d r o l y s i s o f saccharides. The r o l e o f water reducers (normal, a c c e l e r a t i n g o r r e t a r d i n g ) i n terms o f t h e i r e f f e c t on h y d r a t i o n o f cement i s s i m i l a r t o t h a t o f retarders, a c c e l e r a t o r s and

s u p e r p l a s t i c i zers. The e f f e c t o f some a c c e l e r a t i n g and r e t a r d i n g

admixtures has a1 ready been discussed. I n t h i s s e c t i o n t h e i n t e r a c t i o n o f 1 i gnosul fonates w i t h cement w i 11 be emphasized.

(9)

The p l a s t i c i z i n g a c t i o n o f water reducers i s r e l a t e d t o t h e i r adsorption and d i s p e r s i n g e f f e c t s i n t h e cement

-

water system. I n o t h e r words, some s o r t of i n t e r a c t i o n seems t o be involved.

2.3.1 T r i c a l c i um a1 umi nate

The h y d r a t i o n o f t r i c a l c i u m aluminate i s r e t a r d e d by

1 i gnosul f onate. The i n t e r a c t i on between 1 i gnosul f o n a t e and h y d r a t i n g

C3A can be s t u d i e d by a d s o r p t i o n experiments. Adsorpti on isotherms

cannot be obtained i n t h e C3A

-

l i g n o s u l f o n a t e

-

H20 system because

h y d r a t i o n of C3A occurs d u r i n g t h e measurements, e s p e c i a l l y a t low

admixture concentrations. It i s p o s s i b l e t o determi ne t h e a d s o r p t i o n

-desorpti on isotherm i n t h e system hexagonal a1 umi n a t e

-

l i g n o s u l f o n a t e

-

H20. Scanning loops i n t h e isotherms show complete

i r r e v e r s i b i l i t y , i n d i c a t i n g a complex formation. Increase i n t h e c-axi s spacing o f t h e hexagonal phase c o n t a i n i ng 1 i gnosul fonate i s caused by t h e formation o f an i n t e r l a y e r complex. The i n t e r l a y e r

complex would impede t h e conversion o f t h e hexagonal phase t o t h e c u b i c

phase. I n a non-aqueous phase, C A does n o t adsorb any l i g n o s u l f o n a t e .

The r e t a r d i n g e f f e c t seems t o be h e t o t h e r e a c t i o n of h y d r a t i n g CIA

and lignosulfonate. Jawed e t a l . (29) observed more f l u i d i t y i n cement

paste c o n t a i n i n g a m i x t u r e o f 1 ig n o s u l f o n a t e and Na2C03 than when each

of them was added separately. They proposed t h a t an i o n i c complex

occurred between 1 ignosulfonate and CO$-and t h a t I t was more a n i o n i c

than l i g n o s u l f o n a t e and, hence, acted as a b e t t e r dispersant.

The conversion o f e t t r i n g i t e t o monosulfoaluminate i s r e t a r d e d by

adding a water reducer t o C3A

+

gypsum. One o f t h e suggested

mechanisms of t h e plasticizing a c t i o n may be r e l a t e d t o a lower water

demand caused by t h e r e t a r d a t i o n o f e t t r i n g i t e f o r m a t i o n and a decrease i n t h e i n t e r l o c k i n g o f t h e e t t r i n g i t e p a r t i c l e s . This observation has t o be confirmed by a more e x t e n s i v e i n v e s t i g a t i o n .

T r i c a l c i um s i 1 i c a t e

The h y d r a t i o n o f t r i c a l c i u m s i l i c a t e i s r e t a r d e d by

1 i gnosulfonate. Apparent adsorption-desorption i sotherms of t h e

C3S

-

l i g n o s u l f o n a t e

-

H20 system, d i s p e r s i o n and h y d r a t i o n e f f e c t s can be explained (30). There i s o n l y p a r t i a l r e v e r s i b i l i t y d u r i n g

desorption, i n d i c a t i n g t h e e x i s t e n c e of a s t r o n g l y bound surface complex i n v o l v i n g C S, l i g n o s u l f o n a t e and H 0. Such a complex may cause r e t a r d a t i o n o f h y d r a t i o n o f C,S. ~ h a 8 t h e hydrated CIS paste adsorbs i r r e v e r s i b l y s u b s t a n t i a l amounts o f 1 ig n o s u l f o n a t e may be concluded from a d s o r p t i o n isotherms on t h e completely hydrated C3S. Even i n t h e non-aqueous medium, t h e hydrated C3S, u n l i k e t h e anhydrous

C S phase, adsorbs calcium lignosulfonate. These r e s u l t s suggest t h a t

tRe r e t a r d i n g e f f e c t i nvoi ves a r e a c t i o n o f 1 i gnosulfonate w i t h t h e h y d r a t i n g C3S surface.

2.3.3 T r i c a l c i u m aluminate

-

t r i c a l c i u m s i l i c a t e

The C3A phase adsorbs l a r g e r amounts o f l i g n o s u l f o n a t e than C3S

when exposed t o aqueous s o l u t i o n s o f 1 i gnosulfonate. Therefore, i n

h y d r a t i n g cements, C3A may a c t as a s i n k f o r l i g n o s u l f o n a t e . When

(10)

l i g n o s u l f o n a t e i s added a few minutes a f t e r water has come i n t o contact w i t h cement, t h e h y d r a t i o n o f C S i s retarded more s t r o n g l y . This would mean t h a t t h e hydrated C

A

phase adsorbs l e s s l i g n o s u l f o n a t e and leaves l a r g e r amounts o f t h e a i m i x t u r e i n t h e s o l u t i o n phase f o r

r e t a r d a t i o n o f C3S hydration.

The e f f e c t o f l i g n o s u l f o n a t e on cement depends n o t o n l y on t h e amounts o f C3A and C3S b u t a l s o on t h e a l k a l i s , t h e SO,, t h e p a r t i c l e

s i z e o f cement, etc. Depending on these f a c t o r s and others, e a r l y s e t

may be r e t a r d e d o r accelerated b u t t h e f i n a l s e t i s g e n e r a l l y retarded.

The e a r l y a c c e l e r a t i o n o f s e t i s promoted i n cements w i t h h i g h e r aluminate/SO r a t i o s . At e a r l y times, due t o t h e a d s o r p t i o n of

l i g n o s u l f o n a a e on C3S, Ca(OH), i s n o t released and t h e r a t e of f o r m a t i o n o f e t t r i n q i t e i s increased. This i m p l i e s t h a t t h e

C3A + gypsum r e a c t i o n t o f o r m e t t r i n g i t e i s f a s t e r t h a n t h a t c o n t a i n i n g

Ca (OH),

.

The r o l e o f t h e ani oni c 1 i gnosulfonate molecule as a water reducer

i s apparently r e l a t e d t o i t s a d s o r p t i o n on t h e cement components. The, amount o f adsorption, t h e r a t e and t y p e o f adsorption may p l a y a r o l e i n t h e s e t t i n g , d i spersi b i l i t y , m i c r o s t r u c t u r e , shrinkage, d u r a b i l i t y and o t h e r p r o p e r t i e s o f cement. The e f f e c t o f c a t i o n s and t h e

molecular weight o f 1 i gnosulfonate on cement p r o p e r t i e s has n o t been

explored f u l ly .

2.4 Superpl a s t i c i z e r s

Most superpl a s t i c i z e r s a r e based on s u l f o n a t e d me1 ami ne

formaldehyde (SMF)

,

s u l f o n a t e d naphthalene formaldehyde (SNF) and

modified 1 i gnosul f onates. The a c t i o n o f water reducers i nvol ves

a d s o r p t i o n and d i s p e r s i o n i n t h e cement

-

water system. S i m i l a r l y , e f f e c t i v e s u r f a c e i n t e r a c t i o n and d i s p e r s i o n o f cement occur when s u p e r p l a s t i c i z e r s a r e used. A study o f t h e r a t e and amount of adsorption o f superpl a s t i c i zers on cement and cement compounds has provided some i n f o r m a t i on on t h e r h e o l o g i c a l

,

s e t t i n g and h y d r a t i o n c h a r a c t e r i s t i c s .

2.4.1 T r i c a l c i urn a1 umi n a t e

The h y d r a t i o n o f C,A i n t h e presence o f SMF i n d i c a t e s t h a t

h y d r a t i o n i s retarded. Adsorption o f SMF on C3A occurs as soon as t h e

s o l u t i o n comes i n t o c o n t a c t w i t h i t (31). The amount and r a t e of

a d s o r p t i o n on t h e C A phase f a r exceed those on C3S o r p o r t l a n d cement.

I n a non-aqueous meaium, adsorption i s n i 1 on C,A b u t small amounts of

SMF a r e adsorbed by t h e hexagonal phase. Adsorption i s i r r e v e r s i b l e ,

i n d i c a t i n g t h a t a chemical i n t e r a c t i o n occurs between t h e h y d r a t i n g C3A and SMF. Thus, t h e r e t a r d a t i o n o f C3A may be explained by s t r o n g adsorption o f SMF on t h e h y d r a t i n g C3A surface.

The reported r e s u l t s on t h e r a t e o f h y d r a t i o n o f C3A

+

gypsum m i x t u r e c o n t a i n i n g s u p e r p l a s t i c i z e r s a r e c o n t r a d i c t o r y . Adsorption of

(11)

periods. Desorption experiments show t h a t SMF i s i r r e v e r s i b l y

adsorbed. A surface chemical o r chemical i n t e r a c t i o n seems t o occur

between t h e h y d r a t i n g C3A o r C3A

+

gypsum m i x t u r e w i t h SMF. The enhanced d i s p e r s i o n e f f e c t o f s u p e r p l a s t i c i z e r added a few minutes a f t e r m i x i n g water i s added t o concrete can be explained as o u t l i n e d under 2.3.3.

T r i c a l c i um s i 1 i c a t e

Hydration o f C3S i s r e t a r d e d by SMF. I r r e v e r s i b l e a d s o r p t i o n i s i n d i c a t e d i n t h e system c o n t a i n i n g C S

-

SMF

-

H20. T h i s may i n v o l v e i n t e r a c t i o n between h y d r a t i n g C3S an8 superpl a s t r c i zer. The

i n t e r a c t i o n s of s u p e r p l a s t i c i z e r s w i t h h y d r a t i n g C3S, C A and

C3A

+

gypsum components cannot be d i r e c t l y a p p l i e d t o t t e cement

behaviour. The i n t e r a c t i o n w i t h i n t h e cement system i s much more

complex because, i n a d d i t i o n t o i n t e r f e r i n g e f f e c t s o f t h e s i l i c a t e s and aluminates, t h e a l k a l i s and SO3 a l s o p l a y an important r o l e .

2.4.3 Cement

The amount o f adsorption o f SMF on cement v a r i e s w i t h l e n g t h of .

exposure t o t h e s o l u t i o n . W i t h i n a few seconds t h e r e i s a steep

increase i n adsorption due t o t h e C3A

-

C,AF components i n t h e cement.

F u r t h e r a d s o r p t i o n does n o t occur f o r about f o u r t o f i v e hours, a f t e r

which i t increases continuously. Adsorption beyond about f i v e hours i s

mainly due t o t h e h y d r a t i n g C3S component. These r e s u l t s suggest t h a t a d s o r p t i o n and i n t e r a c t i o n o f SMF w i t h t h e cement components a r e

i n v o l v e d i n t h e d i spersion o f cement and t h e r e t a r d a t i o n of cement h y d r a t i on.

The amount of a d s o r p t i o n o f s u p e r p l a s t i c i z e r on cement can be r e l a t e d t o workabi 1 i t y . With t h e SNF s u p e r p l a s t i c i z e r , t h e m i n i slump

values increase as t h e amount o f a d s o r p t i o n increases (32). The

a d s o r p t i o n values o f SNF on t h r e e t y p e s o f cement decrease as f o l l o w s : Type I 1 1

>

Type I

>

Type I 1 (33). The C3A/S03 r a t i o s i n t h e cements

f o l l o w t h e same trend. That a d s o r p t i o n i s dependent on C3A content

becomes c l e a r : f o r t h e same w o r k a b i l i t y , a h i g h e r dosage of s u p e r p l a s t i c i z e r i s r e q u i r e d f o r Type I t h a n f o r Type V cement.

Zeta p o t e n t i a l development i n suspensions o f cement, a l i t e , C A

and Ca(OH)2 c o n t a i n i n g s u p e r p l a s t i c i zers has been studied. ~ e n e r a f l ~ , both a d s o r p t i o n and zeta p o t e n t i a l values increase as t h e c o n c e n t r a t i o n of s u p e r p l a s t i c i z e r added t o cement i s increased (34).

The mechanism o f r e t a r d a t i o n o f h y d r a t i o n and even d i s p e r s i o n may n o t be e n t i r e l y due t o t h e a d s o r p t i o n e f f e c t o f t h e anions. I n SNF s u p e r p l a s t i c i z e r c o n t a i n i n g NH,, Co, Mn, L i and Ni cations, t h e t i m e

f o r t h e development o f maximum heat i s 12.7 h w i t h NH, and o n l y 9.25 h

w i t h Ni (35). The r e l a t i v e r o l e s o f c a t i o n s i n t h e s u p e r p l a s t i c i z e r s a r e n o t w e l l understood.

Hi gher-than-normal workabi 1 i t y o f concrete c o n t a i n i n g a

s u p e r p l a s t i c i z e r i s maintained f o r about 30-60 min., a f t e r which t h e slump value decreases. I n t h e p e r i o d d u r i n g which slump l o s s i s

(12)

occurring, t h e C3A phase r e a c t s w i t h gypsum. The e x t e n t of r e a c t i o n of C3A and gypsum and t h e c r y s t a l l i n e form o f t h e product c o u l d have an important e f f e c t on t h e w o r k a b i l i t y o f concrete. A d d i t i o n o f

superpl a s t i c i z e r enhances t h e i n i t i a1 r e a c t i o n between C3A and gypsum. A1 k a l i s a1 so enhance t h i s reaction. According t o H a t t o r i (36),

coagulation o f t h e p a r t i c l e s p l a y s a more important r o l e t h a n t h e chemical bonding i n slump losses. Experiments on t h e CjS

-

SMF

-

H

0

system have shown t h a t r a p i d l o s s o f slump occurs i n t h ~ s system ( 3 f ) . Thus t h e c o n t r i b u t i o n o f t h e C3S phase should a l s o be t a k e n i n t o account. A1 1 these mechanisms i n v o l v e some s o r t o f i n t e r a c t i o n w i t h t h e s u p e r p l a s t i c i zer.

One o f t h e methods o f m a i n t a i n i n g t h e slump i n s u p e r p l a s t i c i z e d concrete i s t o add r e t a r d e r s such as calcium gluconate t o cement (38).

It i s p o s s i b l e t h a t t h e r e t a r d e r , although n o t i n t e r f e r i n g w i t h d i s p e r s i o n caused by t h e s u p e r p l a s t i c i z e r , adsorbs on t h e cement components, a f f e c t i n g t h e chemical o r p h y s i c a l processes t h a t cause agglomeration o r i n t e r l o c k i n g o f t h e cement p a r t i c l e s .

3. CONCLUSIONS

Chemical admixtures i n aqueous s o l u t i o n s o r i n t h e s o l i d form may i n t e r a c t w i t h t h e h y d r a t i n g cement compounds i n t h e cement

-

water

-

admixture system. Physical

,

chemical and mechanical p r o p e r t i e s o f t h e cement paste a r e a f f e c t e d t o d i f f e r e n t e x t e n t s by these i n t e r a c t i o n s .

I n many instances

,

conclusions on i n t e r a c t i o n processes a r e s p e c u l a t i v e because t h e y a r e based on i n d i r e c t evidence. A study of i n t e r a c t i o n s o c c u r r i n g i n systems c o n t a i n i n g more than one admixture becomes even more complex. Even t h e so-cal l e d s i n g l e component commercial admixture may c o n t a i n small amounts o f chemical t h a t c o u l d i n t e r f e r e w i t h t h e

i n t e r a c t i o n s o f t h e main component. D i sagreement i n r e p o r t e d r e s u l t s on i n t e r a c t i o n s i n cement systems may be t r a c e d t o t h e v a r i a b i l i t y i n t h e c h a r a c t e r s t i cs o f t h e s t a r t i n g m a t e r i a l s , methods o f curing,

t e s t i n g methods and i n t e r p r e t a t i o n .

P r a c t i c a l consequences o f an understanding o f t h e cement-admi x t u r e

i n t e r a c t i ons i nclude: development o f methods t o e s t i m a t e admi x t u r e s i n f r e s h and hardened concrete, understanding o f t h e c o m p a t i b i l i t y between two o r more admixtures i n concrete, p r e d i c t a b i l i t y o f p r o p e r t i e s of concrete, t r o u b l e shooting, p r o d u c t i o n o f b e t t e r concrete, development o f new t y p e s o f admixtures, standards development, and b e t t e r

u t i l i z a t i o n o f waste and marginal m a t e r i a l s i n concrete.

4. ACKNOWLEDGEMENT

This paper i s a c o n t r i b u t i o n o f t h e D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Counci 1 Canada.

(13)

5. REFERENCES

V.S. Ramachandran, M a t e r i a l s and Structures, 4, 3-12 (1971).

N. Tenoutasse, V I n t e r n a t i o n a l Symp. Chem. Cezent, P a r t 2,

p 372-378 (1968).

V.S. Ramachandran, R.C. Seeley and G.M. Polomark, M a t e r i a l s and

Structures,

17,

285-289 (1984).

V. S. Ramachandran, J. App. Chem. B i otechnol

.

,

22,

1125-1138

(1972).

V. S. Ramachandran, Cem. Concr. Res., 6, 623-631 (1976).

J. Bensted, S i l i c a t e s Ind., 43, 117-172 (1978).

J. Bensted, S i 1 i cates Ind.

,

45

5-10 (1980).

N.B. Singh and Km. Abha, ~ e m ~ t o n c r . Res., 13, 619-625 (1983).

M. Collepardi, A. M a r c i a l i s and L. ~ a s s i d a , T n n a l i d i Chimica,

63,

83-93 (1973).

N.B. Djabarov, Zement-Kal k-Gi ps,

23,

88-90 (1970).

V.S. Ramachandran, Cal c i um C h l o r i d e i n Concrete, Applied Science

Publishers, UK, pp 216 (1976).

N.B. Milestone, J. Am. Ceram. Soc., 62, 321-324 (1979).

J.F. Young, Cem. Concr. Res., 2, 4 1 5 7 3 3 (1972).

S. Suzuki and S. Nishi, Sement; G i j u t s u Nenpo,

-

13, 160-170

(1959).

15. N.L. Thomas and J.D. B i r c h a l l , Cem. Concr. Res.,

11,

830-842

(1983).

16. J.F. Young, V I n t . Symp. Chem. Cement, Tokyo, pp 256-267 (1968).

17. J.F. Young, J. Am. Ceram. Soc.,

53,

65-69 (1970).

18. V.S. Ramachandran, R.F. Feldman and 5.3. Beaudoi n, "Concrete

Science" Heyden & Son, UK, pp 427 (1981).

19. N.L. Thomas and D.D. Double, Cem. Concr. Res.,

13,

391-400

(1983).

K.E. Daugherty and M.J. Kowalewski, V I n t . Symp. Chem. Cement,

Tokyo, 4, 42-52 (1968).

S. Diamond, J. Am. Ceram. Soc., 54, 273-276 (1971).

S. Diamond, J. Am. Ceram. Soc.,

-55,

405-408 (1972).

D.R. Rossington and E.J. Runk, J.A~. Ceram. Soc.,

51,

46-50

(1968).

J. Tinnea and J.F. Young, J. Am. Ceram. Soc.,

60,

387-389 (1977).

V.S. Ramachandran, M a t e r i a l s and Structures, 5, 67-76 (1972).

V.S. Ramachandran, Zement-Kal k-Gi ps, 31, 206-710 (1978).

W. Lieber, Zement-Kal k-Gips, 20, 91-9y(1967).

N.L. Thomas, D.A. Jameson a n d T . ~ . Double, Cem. Concr. Res.,

2,

143-153 (1981).

I. Jawed, W.A. Klemm and J. Skalny, J. Am. Ceram. Soc.,

62,

461-464 (1979).

V. S. Ramachandran, Cem. Concr. Res.

,

2, 179-194 (1972).

V.S. Ramachandran, I I 1 I n t . Congr. Porymers i n Concrete, Koriyama,

Japan, Vol. 11, 1071-1081 (1981).

M. Collepardi, M. Corradi and M. Valente, Am. Concr. Inst., SP-68,

485-498 (1981).

V.S. Ramachandran, Concrete Admixtures Handbook, Noyes

Publications, New York, pp 626 (1984).

M. C o l l e p a r d i

,

M. Corradi, A. B a l d i n i and M. Pauri, V I I I n t . Symp. Chem. Cement, Paris, Vol. 111, 20-25 (1980).

(14)

35. J. Sinka, J. Fleming and J. V i l l a , I I n t . Symp. of Superpl a s t i c i zers, Ottawa, Canada, 22 p (1978).

36. K. H a t t o r i

,

S u p e r p l a s t i c i zers i n Concrete,

Am.

Concr. Inst., SP-62, 37-66 (1979)

37. C.J. Duston and J.F. Young, Rept. FHWA/Ul-196, U n i v e r s i t y of I l l i n o i s , pp 108 (1982).

(15)

T h i s p a p e r i s b e i n g d i s t r i b u t e d i n r e p r i n t f o r m by t h e I n s t f t u t e f o r R e s e a r c h i n C o n s t r u c t i o n . A l i s t of b u i l d i n g p r a c t i c e and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o t h e ~ u b l i c a t i k n s S e c t i o n , I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l Research C o u n c i l of C a n a d a , O t t a w a , O n t a r i o , KlA 0R6. Ce document e s t d i s t r i b u E s o u s forme d e t i r l - 3 - p a r t p a r 1 ' I n s t i t u t de r e c h e r c h e e n c o n s t r u c t i o n . On p e u t o b t e n i r une l i s t e d e s p u b l i c a t i o n s de l t I n s t i t u t p o r t a n t s u t l e s t e c h n i q u e s ou les r e c h e r c h e s e n m a t i 2 r e de b l t i m e n t e n f c r i v a n t

B

l a S e c t i o n d e s p u b l i c a t i o n s , I n s t i t u t d e r e c h e r c h e e n c o n s t r u c t i o n , C o n s e i l n a t i o n a l d e r e c h e r c h e s du Canada, Ottawa ( O n t a r i o ) , KIA 0R6.

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers