• Aucun résultat trouvé

The dependence of frost heaving on load application - preliminary results

N/A
N/A
Protected

Academic year: 2021

Partager "The dependence of frost heaving on load application - preliminary results"

Copied!
13
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Proceedings of an international Symposium on Frost Action in Soils, 1, pp.

92-101, 1977

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The dependence of frost heaving on load application - preliminary

results

Penner, Edward; Ueda, Takao

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=06c28b5b-738c-4783-b399-7636dccca85d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=06c28b5b-738c-4783-b399-7636dccca85d

(2)

S e r

,,..

2

l i

-7 i

-TH1

N21d

National Research

Conseil national

no, 738

Council Canada

de recherches Canada

c .

2

-.-+

I

ANALYZE^

BLDG

i

THE DEPENDENCE OF FROST HEAVING ON LOAD

APPLICATION!= Preliminary Results

by Edward pnner and Takao Ueda

Reprinted from

VoL 1, Proceedings of an International Symposium on Frost Action in Soils

held at the University of Lulea, Sweden February

1977,

p. 92

-

101

DBR Paper No.

738

Division of Building Research

L466

7

(3)

SO MMAIRE

Le gonflement dii au g e l e t l ' a u g m e n t a t i o n d e l a t e n e u r e n eau puis s a diminution ont CtC m e s u r g s

k

p a r t i r de q u a t r e Cchantillons de s o l s

k

d e s s u r -

p r e s s i o n s a l l a n t de 0 . 5

>

4 ~ ~ / c m ~ . L e mode

o p 6 r a t o i r e p r C v o y a i t d e modifier g r a d u e l l e m e n t l a

t e m p b r a t u r e

k

une extrCmitC de llCchantillon, q u i

Ctait

>

une t e m p C r a t u r e u n i f o r m e au dCpart, d a n s

l e but de p r o d u i r e un g e l unidirectionnel dans l a cellule d ' e s s a i c o n f u e & cet effet. L e s s o l s 6taient de t e x t u r e moyenne e t avaient CtC prClevCs s u r l e

t r a c k d e l a f u t u r e r o u t e Mackenzie, T. N . - 0 . . Les

rCactions aux conditions de p r e s s i o n e t de g e l s e sont avCrCes s e m b l a b l e s pour tous l e s Cchantillons.

F a i t

k

n o t e r , l e t a u de gonflement e s t d e m e u r C

constant pour chaque e s s a i . A p r e s s i o n 6 l e v 6 e ,

l l e a u 6 t a i t chassCe de llCchantillon m a i s , d a n s tous l e s c a s o b s e r v e s , une rCabsorption s u r v e n a i t d'es que l e taux de pCn6tration du g e l diminuait.

(4)

Taken from Vol. 1, Proc. of International Symposium on Frost Action in Soils, held at U. of Lulea in February 1977. WE DEPENDENCE OF FROST HEAVING ON LOAD APPLICATION - -

PRELIMINARY RESULTS

4

N

yzEb

~

~

Edward Penner, Head, Geotechnical S e c t i o n , Division o f B u i l d i n g Research, National Research Council o f Canada, Ottawa Takao Ueda, Guest worker from Takenaka Technical Research

Laboratory, Tokyo

SUMMARY

Heave and m o i s t u r e i n t a k e and e x p u l s i o n were measured i n f o u r s o i l samples a t d i f f e r e n t overburden p r e s s u r e s from 0 . 5 t o 4 kg/cm2. A s t e p change i n temperature, a requirement o f t h e procedure, was imposed a t one end o f t h e sample, which was o r i g i n a l l y a t a uniform temperature, t o induce u n i d i r e c t i o n a l f r e e z i n g i n a s p e c i a l l y - d e s i g n e d t e s t c e l l . S o i l s were medium i n t e x t u r e and had been o b t a i n e d a l o n g t h e proposed Mackenzie Highway, N . W . T. The response t o p r e s s u r e and f r e e z i n g condi- t i o n s imposed were s i m i l a r f o r a l l s o i l s . Of p a r t i c u l a r n o t e was t h e constancy i n t h e heave r a t e throughout each t e s t . A t h i g h p r e s s u r e s , water was e x p e l l e d from t h e sample i n i t i a l l y , b u t i n a l l c a s e s t h i s was followed by water i n t a k e a f t e r t h e r a t e o f f r o s t p e n e t r a t i o n had decreased.

INTRODUCTION

The main causes o f f r o s t heaving i n s o i l s had been i d e n t i f i e d w e l l b e f o r e t h e e a r l y s t u d i e s o f Beskow, Tabor and Casagrande. I t was understood even t h e n t h a t , d u r i n g f r o s t p e n e t r a t i o n , f r o s t heaving i n a f r o s t - s u s c e p t i b l e s o i l could b e a t t r i b u t e d t o t h e volume change o f i n s i t u p o r e w a t e r and t o t h e i c e s e g r e g a t i o n p r o c e s s when w a t e r flows t o t h e f r e e z i n g p l a n e from o u t s i d e s o u r c e s . S c i e n t i s t s and e n g i n e e r s agreed then, a s they do now, t h a t t h e more s e r i o u s cause o f heave i s t h e i c e s e g r e g a t i o n p r o c e s s . S i m i l a r l y , t h e s h a r p r e d u c t i o n i n t h e heave r a t e r e p o r t e d by Beskow (1935) r e s u l t i n g from s u r c h a r g i n g t h e s o i l has never been c o n t e s t e d . Opposing views, however, a r e now h e l d by s c i e n t i s t s and e n g i n e e r s about t h e e x a c t mechanism t h a t i s o p e r a t i v e i n t h e r e d u c t i o n o f f r o s t heave a s i n c r e a s i n g s t r e s s e s a r e a p p l i e d t o an open s o i l system i n which t h e r e i s a p e n e t r a t i n g f r o s t l i n e .

One school o f thought i s t h a t a t a p a r t i c u l a r s t r e s s , which can b e found e x p e r i m e n t a l l y , t h e f r e e z i n g o f i n s i t u w a t e r and i t s a t t e n d a n t expansion w i l l proceed w h i l e t h e heave a t t r i b u t e d t o t h e f r e e z i n g o f migratory water from o u t s i d e s o u r c e s , e . g . , water t a b l e o r from un- f r o z e n l a y e r s , w i l l be stopped. From t h i s concept t h e term "shut-off'' p r e s s u r e was i n t r o d u c e d i n t o s o i l mechanics l i t e r a t u r e by Arvidson and Morgenstern (1974). which was d e f i n e d by McRoberts and Nixon (1975) a s t h e " e f f e c t i v e s t r e s s a t t h e f r o s t f r o n t which w i l l cause n e i t h e r flow of water i n t o o r away from t h e f r e e z i n g f r o n t . "

A second school o f thought ( t o which t h e a u t h o r s s u b s c r i b e ) i s t h a t i t i s n o t p o s s i b l e t o c o n t r o l independently t h e two p r o c e s s e s o f f r o s t heaving by l o a d i n g t h e s o i l .

The experiment on which t h e opposing views a r e p r e d i c a t e d can be d e s c r i b e d a s f o l l o w s . A f r o s t - s u s c e p t i b l e s o i l sample o f f i n i t e l e n g t h i s w a t e r s a t u r a t e d and t h e n thermally c o n d i t i o n e d a t a tempera- t u r e n e a r 0°C. The sample i s f r o z e n u n i d i r e c t i o n a l l y by applying a

(5)

s u f f i c i e n t l y l a r g e s t e p change i n temperature (below O°C) a t one end o f t h e sample t o m a i n t a i n f r e e z i n g c o n d i t i o n s . Free a c c e s s t o w a t e r i s maintained a t t h e end o f t h e sample o p p o s i t e t o t h e c o l d end where f r e e z i n g was i n i t i a t e d . I t i s b e l i e v e d t h a t t h e s e c o n d i t i o n s a r e f u l - f i l l e d by t h e t e s t c e l l and experimental technique d e s c r i b e d i n t h i s paper.

EXPERIMENTAL

The t e s t c e l l (Fig. 1) used i n t h e s e experiments was borrowed from Northern Engineering S e r v i c e s , Calgary, A l t a . M o d i f i c a t i o n s made by t h e a u t h o r s were:

(a) A s e p a r a t e p r e s s u r e chamber was mounted on t h e t o p end of t h e c e l l t o apply l o a d s t o t h e sample.

(b) A s p i r a l grooved metal backing p l a t e was i n s t a l l e d behind t h e porous p l a t e t o f a c i l i t a t e a i r bubble removal from t h e w a t e r supply system a f t e r t h e sample was c o n s o l i d a t e d . ( c ) A rubber 0 r i n g was p l a c e d i n a machined groove around t h e

porous p l a t e t o completely c o n f i n e t h e w a t e r - s a t u r a t e d sample w i t h i n t h e h o l d e r . The c y l i n d e r was l i n e d with t e f l o n , thus making p i s t o n movement r e l a t i v e l y f r e e from f r i c t i o n .

The t e s t c e l l was designed t o h o l d a sample 4 i n . long and 4 i n . i n diam. (10.2 cm). The t e s t s were conducted i n s i d e a temperature chamber where t h e a i r temperature could be c o n t r o l l e d w i t h i n f0.05"C. Thermocouples p l a c e d i n shallow grooves around t h e i n s i d e w a l l s of t h e sample h o l d e r s o as t o b e i n c o n t a c t w i t h t h e o u t s i d e o f t h e sample were used t o monitor temperatures, determine temperature g r a d i e n t s and l o c a t e t h e 0°C p o s i t i o n w i t h i n t h e sample.

Loading o f t h e sample f o r t h e c o n s o l i d a t i o n phase and c o n f i n i n g t h e sample d u r i n g t h e t e s t was achieved by a i r p r e s s u r i z i n g t h e chamber mounted on top o f t h e f r e e z i n g c e l l . A p r e c i s i o n r e g u l a t o r was used t o c o n t r o l t h e chamber p r e s s u r e .

Measurements were c a r r i e d o u t on f o u r d i f f e r e n t s o i l s , o b t a i n e d l a t e i n May 1973 from d i f f e r e n t l o c a t i o n s along t h e alignment f o r t h e proposed Mackenzie Highway: Sample 2 was taken a t Mile 951.5 n e a r t h e town o f Inuvik, N I n ; sample 4 was taken 2 miles s o u t h e a s t o f Mackenzie Mountain Lodge, Norman Wells, NWT; combined sample ( r e f e r r e d t o a s No. 5 and No. 6) was taken a t t h e T r a i n i n g S t a t i o n , Lake o f Two Mountains, NWT. (Mile 410.7); and sample 9 was t a k e n a t Mile 314.3, n e a r F o r t Simpson, NWT. The p h y s i c a l p r o p e r t i e s o f t h e s o i l s a r e given i n Table I .

Aqueous s l u r r i e s were p r e p a r e d a t moisture c o n t e n t s j u s t above t h e l i q u i d l i m i t . In o r d e r t h a t t h e s t r e s s h i s t o r y would be s i m i l a r , t h e same c o n s o l i d a t i o n p r e s s u r e was used f o r a l l specimens from one s o i l . A f t e r t h e secondary s t a g e o f c o n s o l i d a t i o n was reached t h e p r e s s u r e was reduced t o t h e v a l u e a t which f r e e z i n g was t o be c a r r i e d o u t . Freezing o f t h e o v e r - c o n s o l i d a t e d specimen was s t a r t e d when t h e s t r e s s c o n d i t i o n had e q u i l i b r a t e d w i t h t h e a p p l i e d l o a d and i t s temperature was i n e q u i l i b r i u m with t h a t o f t h e c o n t r o l l e d chamber.

A methanol/water s o l u t i o n a t a temperature o f about -10°C was i r c u l a t e d through t h e c o l d - s i d e h e a t exchanger o f t h e c e l l t o induce

(6)

TABLE 1 - PHYSICAL PROPERTY OF SOILS

S o i l % Clay S i z e % S i l t % Sand % Gravel

No. < 0.002 m 0.002-0.06 0 . 0 6 - 2 . 0 > 2.0

/

wL' % Wp' % I % P, P I S T O N 9 0 0 R 1 9 P U t S S U R X INLET--- / U L A W f M G G U I D E 0 - R l & G S H A F I SEAL -6EdAlNG C t l l D c ~ V O L Y I I R E I Y h M E " I N ~ U I ~ T I ~ H l O A O P I J I V N f N O C A P T U P E i A R l N G P L A T E O I F F U S E R P l A I E P O R O U S O I S K !NO C h P B O T T O M " P O t Y U R t T H n N t * I N S U L n T l n N E L E X I C L A S S T U B E S T H E R U O i O l r P L [ I CADS 9 0 n O M E M 0 C A P H F 4 T I X C H A S C E R C U P H [ 4 1 E X C H A Y F E P BOTTOM V L 4 T E S I Y R O F O A M BbSL I N S U L 4 T I O A -- - L ~ h ~ l ~ ~ ~ ~ ~ l ~ ~ ~ ~ ? * . C I R C U l R T I 3 I 1:IRFS Fig. 1 F r o s t heave r e s t c e l l

(7)

9 5

c r y s t a l l i z a t i o n i n the s o i l . 'Ihe i n i t i a t i o n 05 c r y s t a l l i z a t i o n was

i n d i c a t e d by a sudden temperature rise i n the sample next t o the heat

exchanger. This u s u a l l y o c c u r r e d a t around - 2 " ~ . A p r e s e l e c t e d s t o p

temperature w a s then applied t o the sample from a second methanol/water

c i r c u l a t a r tank through a s e r i e s o f i n t e r c o n n e c r i n g s h u t - o f f valves.

Freezing was a l l o w e d t o proceed without changing t h e temperatures of

the chamber o r t h e c o l d - s i d e h e a t exchanger u n t i l t h e experiment w a s

completed. ?he temperature d i s t r i b u t i o n i n t h e s o i l , water movement

eitlter i n t o o r o u t o f the s ~ i J , and amaunt o f heaving (if any] were

recorded with a Hewlett Packard 2010 I1 data a c q u i s i t i o n system.

The e x t e n t o f moisture flow and heave a t each s t r e s s l e v e l were

determined on s e p a r a t e specimens. Normally f o u r s e p a r a t e f r e e z i n g

runs were r e q u i r e d t o e s t a b l i s h t h e s t r e s s / h e a v e r a t e behaviour f o r any p a r t i c u l a r s o i l o v e r t h e r e q u i r e d range. The t e s t c o n d i t i o n s a r e given i n Table 1 1 .

RESULTS

Examples o f t y p i c a l f r e e z i n g r e s u l t s a r e shown i n F i g s . 2 and 3

f o r S o i l No. 2 . The p r e c o n s o l i d a t i o n p r e s s u r e was 5 kg/cm2; t h e con-

f i n i n g p r e s s u r e s d u r i n g f r e e z i n g were 1 and 4 kg/cm2 r e s p e c t i v e l y . The r e s u l t s i n d i c a t e t h a t t h e r a t e o f t o t a l heave :7 was e s s e n t i a l l y c o n s t a n t throughout t h e r u n f o r any p a r t i c u l a r p r e s s u r e l e v e l . Figure 3 shows

t h a t , even under a high c o n f i n i n g p r e s s u r e ( 4 kg/ cm2), w a t e r movement r e v e r s e d from e x p u l s i o n t o i n t a k e a f t e r about 1000 min. from t h e s t a r t o f t h e r u n . The t r e n d 0 2 0 0 0 3 0 0 0 4 0 0 0 observed i n t h e t e s t d a t a E L A P S E D T I M E , m i n p r e s e n t e d i n t h i s p a p e r o b t a i n e d f o r a l l t h e s o i l s s t u d i e d .

Fig. 2 F r o s t p e n e t r a t i o n and heave r a t e

measurements a t 1 kg/cm2 f o r S o i l No. 2 Figures 4 t o 7 show t h e

r e l a t i o n s h i p between con-

i i f i n i n g p r e s s u r e , t h e r a t e o f t o t a l heave and heave r a t e by w a t e r i n t a k e f o r t h e 4 s o i l s . The t o t a l heave r a t e u s u a l l y became c o n s t a n t s h o r t l y a f t e r t h e experiment was s t a r t e d ; where e x p u l s i o n o c c u r r e d t h e heave r a t e by w a t e r i n t a k e was o b t a i n e d a f t e r t h e w a t e r

I : flow had r e v e r s e d from

0 1 0 0 0 2 0 0 0 1 0 0 0 4000 e x p u l s i o n t o inflow. t l n v s t o T I M E m l n

Fig. 3 F r o s t p e n e t r a t i o n and heave r a t e The " s h u t - o f f " p r e s -

(8)

S o i l P r e c o n s o l . P r e s s u r e Temp. o f Temp. o f I n i t i a l I n i t i a l Void T o t a l Heave R a t e

No. P r e s s u r e Chamber Cold S i d e h t . m.c. R a t i o Heave R a t e by W a t e r I n t a k e

kg/cm2 kg/cm 2 O C OC cm mm/ min mm/ m i n 2 5 0 . 5 + 2 . 4 0

-

1 . 6 0 1 0 . 8 7 1 6 . 1 0 . 4 1 9 2 7 . 8 x lo-' 2 0 . 5 x lo-' 2 5 1 . 0 - 1 . 4 5 1 0 . 6 6 1 6 . 9 0 . 4 6 2 2 4 . 1 x 10:; 2 0 . 0 x 10:' 2 5 3 . 0 t v - 1 . 3 5 1 0 . 6 4 1 6 . 3 0 . 4 4 1 7 . 0 x 1 0 5 . 0 x 10

'

2 5 4 . O

-

1 . 4 5 1 0 . 5 7 1 6 . 3 0 . 4 3 5 3 . 4 5 x 10:' 3 . 0 8 x 10:' 2 1 5 5 . 9 - 1 . 5 5 1 0 . 8 7 1 6 . 2 0 . 4 3 4 1 . 7 6 x 1 0 4 1 . 2 5 x 1 0 4 4 4 0 . 5 + 1 . 9 0 - 1 . 7 5 9 . 8 6 1 9 . 2 0 . 5 2 7 38 x 3 3 lo-'' 4 4 0 . 5 !I - 0 . 9 5 1 0 . 6 3 1 9 . 7 0 . 5 4 1 29 x 10:' 24 x 10:: 4 4 1 . 5

-

1 . 7 5 9 . 4 0 20.0 0 . 5 4 8 1 8 x 10 14 x 1 0 4 4 1 . 5 - 0 . 9 0 9 . 9 0 1 9 . 4 0 . 5 3 1 1 5 x 10:' 1 1 . 5 x 10:' 4 4 2 . 5 I - 1 . 8 0 9 . 7 6 1 9 . 5 0 . 5 3 4 8 . 5 x 1 0

'

6 . 0 x

lo-'

4 4 3 . 5 P i

-

1 . 7 5 9 . 8 8 1 8 . 8 0 . 5 1 5 4 . 5 ~ 1 0 : : 2 . 5 x l O - : 4 4 3 . 5 I, - 0 . 8 5 9 . 0 0 1 9 . 0 0 . 5 2 0 2 X 10 1 . 7 5 x 10 5 & 6 5 1 . 0 + 2 . 3 5 - 0 . 8 5 9 . 7 3 1 8 . 4 0 . 5 1 6 1 6 . 8 x 10:"4.4 x 10:' 5 E 6 5 2 . 0

,

-

0 . 8 5 9 . 9 7 1 8 . 3 0 . 4 9 6 8 . 2 x 10 7.4 x 10

'

5 6 6 5 4 . 0

, ,

- 0 . 8 5 9 . 6 4 1 8 . 2 0 . 5 0 1 4 . 3 x l 0 I 4 3 . 6 x 10:: 5 6 6 5 5 . 0 - 0 . 9 0 9 . 4 3 1 8 . 0 0 . 4 8 1 1 . 6 3 x 10

'

1 . 5 7 x 1 0 - 3

-

3 9 4 0 . 5 + 1 . 9 0

-

1 . 8 0 9 . 8 2 2 3 . 7 0 . 6 5 4 5 . 2 5 x 4 . 9 x 9 4 1 . 5 - 1 . 8 5 1 0 . 1 5 23.2 0 . 6 5 3 3 . 7 5 x 3 . 2 5 x 9 4 2 . 5 I ? - 1 . 7 5 1 0 . 0 7 2 4 . 1 0 . 6 6 2 2 . 6 5 ~ 1 0 - ~ Z . ~ O X ~ O - ~ 9 4 3 . 5 I,

-

1 . 7 0 9 . 9 6 2 3 . 9 0 . 6 5 6 1 . 5 x 10 1 . 3 x 10

(9)

F i g . 4 F r o s t h e a v e r a t e , t o t a l h e a v e a n d h e a v e by w a t e r i n t a k e f o r S o i l No. 2 F i g . 5 F r o s t h e a v e r a t e , t o t a l h e a v e and h e a v e by w a t e r i n t a k e f o r S o i l No. 4 F i g . 6 F r o s t h e a v e r a t e , t o t a l h e a v e a n d h e a v e by w a t e r i n t a k e f o r S o i l No. 5 o

E

6 combined 0 Fn!55LAuc, "8,8rm7 P 0 5-3 I k g l r m 2 F i g . 7 F r o s t h e a v e r a t e , t o t a l h e a v e a n d h e a v e by w a t e r i n t a k e f o r S o i l N O . 9

(10)

any o f t h e s o i l s s t u d i e d , a l t h o u g h t h e heave r a t c s a t t h e h i g h e s t p r e s s u r e s werc n e a r z e r o . S o i l No. 2, t h e m a t e r i a l w i t h t h e l e a s t f i n c s , was t o o c o a r s e - g r a i n e d t o d e t e r m i n e meaningful A t t e r b e r g l i m i t s , which i n d i c a t e s t h a t r e l a t i v e l y h i g h c o n f i n i n g s t r e s s e s a r e r e q u i r e d t o s t o p h e a v i n g even i n r a t h e r c o a r s e m a t e r i a l s . An i n t e r e s t i n g f e a t u r e o f t h e h e a v i n g e x p e r i m c n t s i s t h a t i t i s p o s s i b l e t o p r c d i c t t h e t i m e , t o , when r e v e r s a l o f w a t c r flow w i l l o c c u r and t h e t i m c , t l , a t which t h e t o t a l w a t e r e x p e l l e d i s e q u a l t o t h e t o t a l w a t e r i n t a k e , i . e . , where t h e t o t a l w a t e r flow c u r v e c r o s s e s t h e zero l i n e ( F i g . 8 ) . The p r e d i c t a b i l i t y o f to and tl i s p r e d i c a t e d on a c o n s t a n t heave r a t e which c o n t i n u e s l o n g a f t e r t h e S t e f a n r e l a t i o n s h i p

x = a f i

where X = d e p t h o f f r o s t p e n e t r a t i o n , mm t = t i m e , n ~ i n . 1 a = c o n s t a n t , mm/mini

no l o n g e r shows l i n e a r i t y when p l o t t i n g X vs a s shown i n F i g s . 2 and 3 .

The t o t a l h e a v e , hl., can h e d i v i d e d i n t o two components: heave due t o i n s i t u p o r e w a t e r e x p a n s i o n , hi, and t h a t a s s o c i a t e d with w a t e r i n t a k e , hL, hence

hi = hT - h i , ( i n mm) (2)

I f i t i s assumed t h a t t h e r e l a t i o n s h i p between f r o s t p e n e t r a t i o n and time i s s u f f i c i e n t l y l i n e a r f o r Eq. (1) t o a p p l y and t h a t t h e t o t a l heave r a t e a l i s e q u a l t o a c o n s t a n t , Eq. (2) becomes

where a 2 = 0 . 0 9 nq = (hT - 11 ) / X , t h e i n s i t u heave p e r u n i t

II

f r o s t p e n e t r a t i o n , n = ~ o r o s i t y , = f r c c z i n g e f f i c i e n c y e x p r e s s e d a s a f r a c t i o n a =

2,

(111111/rnin) 1 Differentiating Eq. ( 3 ) w i t h r c s p c c t t o timc g i v c s t h c r a t c c q u a t i o n

r---

-

1

F i g . 8 Vie p o s i t i o n s o f to and t l w i t 1 1 r e s p e c t t o t i m e

(11)

L e t t i n g h i , t h e heave due t o water i n t a k e , equal 0 and s o l v i n g f o r time i n E q . (3) gives ( s e e a l s o Fig. 8 ) :

tl can be p r e d i c t e d from t h e v a l u e s o f a l , a 2 and a e s t a b l i s h e d very

e a r l y i n t h e experiment.

d h i

.

S i m i l a r l y , l e t t i n g - d t I n E q . ( 4 ) equal 0 and s o l v i n g f o r t g i v e s

t o , t h e minimum i n w a t e r e x p u l s i o n c u r v e . This too can be p r e d i c t e d w i t h accuracy.

Table 111 gives comparisons between p r e d i c t e d and observed values o f t l . to and h i f o r times given f o r s o i l No. 2, using Eqs. ( 5 ) , (6) and

(3) r e s p e c t i v e l y .

An assessment o f t h e s e r i e s o f i n v e s t i g a t i o n s d e s c r i b e d i n t h i s paper l e d t o t h e f o l l o w i n g o b s e r v a t i o n s .

1 . When t h e r e i s a p o s i t i v e t o t a l heave

rate

i n a f r e e z i n g r u n ,

although w a t e r may b e e x p e l l e d from t h e sample i n i t i a l l y , t h e w a t e r flow must r e v e r s e from e x p u l s i o n t o i n t a k e provided t h e

experiment i s n o t t e r m i n a t e d t o o e a r l y . I t follows t h e r e f o r e ,

because t h e t o t a l heave r a t e s have been shown t o b e c o n s t a n t under t h e experimental c o n d i t i o n s d e s c r i b e d t h a t o n l y when t h e

totaZ heave r a t e i s zero w i l l t h e e x p u l s i o n o f water n o t be followed by water i n t a k e . These o b s e r v a t i o n s a r e c o n s i s t e n t w i t h t h e second school o f thought d e s c r i b e d a t t h e beginning o f t h i s p a p e r .

2 . I f t h e f r e e z i n g p l a n e p e n e t r a t e s through t o t h e bottom o f t h e

sample and heaving occurs d u r i n g p e n e t r a t i o n , t h e r e i s t h e p o s s i b i l i t y t h a t t h e e x p u l s i o n o f w a t e r observed i s temporary. I t would b e i n c o r r e c t t o assume t h a t t h e "shut-off" p r e s s u r e had been exceeded.

3 . The c o l d - s i d e t e m p e r a t u r e imposed on t h e sample has a

s i g n i f i c a n t i n f l u e n c e on t h e c o n s t a n t heave r a t e observed a t

low p r e s s u r e s . A t high p r e s s u r e s , when heave r a t e s a r e low,

t h e c o n f i n i n g p r e s s u r e has an o v e r r i d i n g i n f l u e n c e on heave

r a t e (Fig. 5 ) .

4 . The r e s u l t s i n F i g . 9 c h a r a c t e r i z e t h e change i n r a t e o f

heave due t o water i n t a k e from o u t s i d e t h e sample i n an open

system, p e r u n i t depth o f f r o s t p e n e t r a t i o n . Near t h e begin-

n i n g , when t h e r a t e o f f r o s t p e n e t r a t i o n i s f a s t (: 0 . 1 mm/

min) t h e w a t e r i n f l u x i s low; n e a r t h e end when t h e f r o s t

p e n e t r a t i o n i s an o r d e r of magnitude slower (1 0.01 mm/min),

(12)

TABLE 1 1 1 - COMPARISON O F CALCULATED VALUES AND OBSERVED VALUES BASED ON E Q . ( 3 ) FOR S O I L NO. 2

NOTES: (1) When h ~ i s n e g a t i v e , water i s e x p e l l e d .

When hQ i s p o s i t i v e , water i s taken i n .

2

( 2 ) when h i s a minimum, t ; (3) when hQ = 0, then t

9 . F i g . 9 F r o s t heave p e r u n i t depth o f f r o s t p e n e t r a t i o n r a t i o as a f u n c t i o n o f f r o s t pene- t r a t i o n r a t e

(13)

ACKNOWLEDGEMENTS

Appreciation i s expressed t o Northern Engineering S e r v i c e s f o r t h e use o f t h e i r f r o s t heave c e l l and f o r allowing m o d i f i c a t i o n s t o b e made. This p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n o f B u i l d i n g Research, National Research Council o f Canada and i s p u b l i s h e d w i t h t h e approval o f the D i r e c t o r o f t h e D i v i s i o n .

REFERENCES

Arvidson, W . D . and N . R . Morgenstern (1974)

.

Water flow induced by s o i l f r e e z i n g . P r o c . , 27th Can. Geotech. Conf., Edmonton, A l t a . , p . 137-143.

Beskow, G . (1935). S o i l f r e e z i n g and f r o s t heaving. Swedish Geol. Soc., S e r . C., 26th Year, Book No. 3, T r a n s l a t i o n by

J.O. O s t e r b e r g (194 7).

McRoberts, E .C . and J .F. Nixon (1975). Some g e o t e c h n i c a l o b s e r v a t i o n s on t h e r o l e o f surcharge i n s o i l f r e e z i n g . P r o c . , Conf. on S o i l Water Problems i n Cold Regions, Calgary 1975, p . 42-57.

Figure

TABLE  1  -  PHYSICAL  PROPERTY  OF  SOILS
Fig.  3  F r o s t   p e n e t r a t i o n   and  heave  r a t e   The  &#34; s h u t - o f f &#34;   p r e s -   measurements  a t  4  kg/cm2  f o r   S o i l   No
TABLE  1 1 1   -  COMPARISON  O F   CALCULATED  VALUES  AND  OBSERVED  VALUES  BASED  ON  E Q

Références

Documents relatifs

Chaskey comes with a proof of security, based on the security of an underlying Even-Mansour block cipher.. The proof states that if an at- tacker obtains D message blocks in

Vidal, Paul-Etienne and Medjahed, Hassen and Dienot, Jean-Marc and Nogarède, Bertrand Mechanical stress induced by electromagnetic forces. on wire bonds of high

Also, this thesis could help real estate companies in the United States to know more about Chinese institutional investors, and to better cooperate with them

Les informations fournies par un spectre détaillé ou à bande étroite peuvent être utiles pour l'analyse des résonnances, mais en acoustique du bâtiment, les spectres

Second, based on the generic modeling language of Unified Cubes, we propose a two-stage process to (a) transform various schemas into a generic conceptual representation

Afin de mieux comprendre la communication os/cartilage dans la physiopathologie de l’arthrose, ce travail de thèse s’est consacré à étudier le rôle de la

The TRPV1 antagonist SB366791 did reduce post-fracture heat and mechanical hyperalgesia and subjective pain behavior in WT fractured mice, but this effect was not lost in the