• Aucun résultat trouvé

ANALY~]S A~i:i .DES]GN·OF

N/A
N/A
Protected

Academic year: 2022

Partager "ANALY~]S A~i:i .DES]GN·OF"

Copied!
199
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

--- .

.;"."

'\

. '

.

~ .- / :

ANALY~]S A~i:i .DES]GN·OF

DELTA PWM

STA1'JCAC_'TO DC CONVERT ERS. . "

"/

...~-.'

'I

~:

/ .

--,~

by

.. ,

A'th'esi~subm ittedinp~rtialCUlftllm e'nt

c-:

oftilereq uirem e nts(orthedegr-ee-of ,Mast e.rofErigit'leer~ng.

1

~"'"

Me m or ialcf; . .

.Uni~mit~or~:~dland ~.,;~.. !.

Science

December 198 8

r.

.' .~

St.Johii's .-Newfound land Canada

(6)

~:'"

.

~erJlis81on ~

..ha"'been granted' to..tJre National'.Libra~y of Canada to:.icrofilm this theds and' 't o .lend or·s e ll -..e c p fee'of th~,film; "

.

.

.

"

'. \

The"'--author (copyright owner) - ---11a s r e8e r v'ed 0t"h'e r pUblication.,.~ ~ 9h t.s, :a n d

neither the thesis nor

extensive ext;ra<;:'t8.:f r o m i t llIay'be printed'or otherwise 'r e p r od uce d .with o ut hi s/h e r .\.wr itte~'pc:rmiuion.

L' autorhation a 't6 accor'd6e .

~u laca:~~~iot::q~:i~~~t::f:~:

..

'ce t t:e·,.t h l\s et·et de-prater ou

~il:~nd~~d,es.exem~~~,i.rell ~~

L'aut:e~r',(~it:'ulai~~'du"'droi~'

~d' auteur) .sa r6serve :lea\

,llu!: re s:..,.r01t 8depbbl1c_a.tionr;~ .n i lat=, ·116 11-& ni. der.longs", ex t r a ee d e c e l l'e-c! ne

.ecivet"at,re .,'lllpr.iJa6a.OU'·

Ilutre ment reproduits's a ne,_o n' autorlellt'on6,crite•.' " ..'.

' . -

'. ,

ISBN 0-315-504$9- 5

... .

,

'. c .

.

...(

' .

'" I.

(7)

'.. ,:- "',

(

"

Abstract

. ~ -' . . I: . " " ,

Inthis thesis, the modelling, analysis and implementa.tlonofthe_~!e1~amodulation

"" , .D '1" _'

technique asusedin controlledac·t"o-dcconver ters are'presente d. The'proposed.~..

mod.~i9~ s~~e. £undam~ntally.

differ:

fr~m CQn~nti~n~,

PWM

t_~,~ni~.e~_:

by'virtue of'itsaelf-ca:riergenerati~gability.;T hi sintrinsicfeatureprcvldeethe-:

added

advant~~eB'~£e~ of'im~lemen;'aiio~; :~~ti~u~~s_ conver~~-v01ta~e~~nyof '; ' . ", .~

and

'~~re im~~t~tly

•.a

.J!,rec~ .cont~~

onthe.

~in~ h~rcinie~~~tent_~,:

.:_.c _, " ',;'.: :

An~~ytic_~.~ode~_i?_~~elo.~~"Y'h~"chprovideskeyinrorm~ti~nonthe~,ax:>_..., ::;

imu~'.~o~~e1er:·~witchi~g . fre fl!l' .: 1~~fiOri~

of:

dO~\n~t,_~ar~om~-.~?_.~,he ·

':'

,.-:-,~~

P'YM8~~tchinginst~~,o~~~m~~atio,~'~~the,~elta,~o~utator..par~~~~rll ~8, .· ':~+

also carried out

b"

meansofpar~etric·v.ariation8.~naelngle-ph eseconverter.

The deltaPWM·technique~is im~lem'ent~dinboth s"singIe-phn:;eWid"Uu,ce.:.

phasetr ansist m: bridge

conv~~,~r: :I~ ',e~ch

case,

't.he"oretic~ ~armonie " imaiysfs'

of, the converterwavefo~----sare'i>~e8~nte"db~edon'*e'di8~eF~u~~l~r'~fQr~If'a~'"

·"~roach. T~e

pe; :inentconverterwaveforms

rexl~cri?~d ~~' tf~ of"~ener""~i~~d

.

ewitchiug~ionsand the harmonic components are evaluatedusing:anFFT_

",

.

algorithm"Attention hasbeengiventothe design ofjhe'poWe! andlogic drcuit,.

,confor~ingto thed~ltamodul~tor8~itching spe~ifications.Theorerleelresult e, are'

~ubs~~tiated

byexperimental"

resuits,~co~du~te~"onpr;tot'ype 'singl~p~as'c

andthree-phase...

tr~sjst,?r

converters. " ':'

f. . . "

Perform ance ofthe three-phase:deltamodulatedconverterwi,tb typicaln-L-tI,"' and. dynamicmotorloadsare also considered.Th,e,resultsindicatc~the enhanced

s ;

(8)

pe~oJmancc

of thedelta'mo'dul a tcd

~nverter yieldi~g

impr oved

~ctot;

'nci sinu90idal linecurr ents and minimum filteringrequirements,

\

~---'0'~'-~~ ~'--'--""-- '

/. , r

. .

"

iii

(9)

"

...

-

,;'-",

¢;":.',.

.

'

')

-Acknowledgements

Iwoul d like/to exPress.

..

my

..

eineere

.

giatitude to Professors,

.

. '

. M

.

.A.~an

.

. ·

and

J.E.Qu akoefo~beirinw¥u~bieguida,s{~andcon·9tant.BuPR~rttbrough~iI.'the prep~8tionoftb~sthe:.is.. _ . .• . -', \" . ."

ISP.eci!U:th anks areduetothet~chnicalstafh.tthe Facultyoi Engineering

and .

.-

-A;p~ed ~i~ce £or

their

~i8t~~

in.the

e~perjme~t,al)i8.rt o;t~~

thesis,.:

> .: - ...

""1..,'.

Th.~·hi!lP:

of others

dir~'cily

''or

i~dir~~tl! in~olv~~<

withthte

Bt~~r i~.~~~4

acknowledged.

Fin~lly,I'oweitWIto~ydear Iem ily fortheir"patience,'encou ragement1Wd".

'I,.

blessin gs.

.\

(10)

{

Contents

Abst r a ct . ,

..

~/ '.

"

"

Ack~owle~q~~,..

" " Of.FigU:eS

V '

ListofTables 1 Int ro d uctio n

1'.1~Review<!.rPWM Techniques. . 13'-Objcdive3'o{the Ilrese,ntWork

2 Delta·PW¥ Techniqu e' 2.1"Int~dudio~toDelta Moduiation'..

2.1.1'Types of DeltaM9dulat~~s

,ii

.,

10

. '2

12 14 2.1.2

~ ~urvey

of Delta

Modulati~n Si~ategies

in

Pow~Elettronics

1'8

2.1.3"")Re~uirementsof DeltarWMConverter

".2.2 g~lta'Modula tionTechnique".' ..:.. . 2.2.·1 DeltaModblated Converter..•'. 2.2.2

,; ."

'Delt a

~odulator.ci;rcuit 'rmpl~entation .\

19 21/.

24 25

(11)

66 66,

, . . ' . '. 'I

2.3, OM,SystemModelling,.", .", ._•..••'; "

'.;j; . ". ." . ' ;,

~

'', "

2.3.i

·An~ytia.i 'Model

.

.I. , . ..• , : :

0,''' ' ' ". 33

2.3.~

.

De.ternii,~.tion ~lsf't~ng pOint8'

" .','"

~ . :':~

.: '",36

-2.4 Condudin~~arb. .','....•.... .•.•_. 38

' \ . j

3 SinglePh~seDe~ta;P WM,,~onverter . ..:)9

:~.1},,ualysis of Singlefhase"l~~vert~~

... ...,. .. .: i: .

~

.

,'.?J,, : '.40

~·f.'-,~.in&l~:h.~e~MC<tfv~tiwi~h'fl:SiB,t~ve~~.-'.','.• ','. ','.4&

,3,~,1 y."r.tion~n,,~~m,jCon't"" L ',. : "'.:',.,,.; ,. 411' 3.2.2 yarta tlonmReference Signal Amphtude.'.. ...,,~".'., fi5~ 3.3',

Co~~erter' Petjo~mance\\'. I

..'.''.:..',"-" :.". •.. 3.4 Exp";;m,nt;UV<rifi"tion'olCo,,,';"t';Pcl6':;"an<a'.) :"

. ' :, .'',I, : · , ' . ;'

3.4.1 .Implementation 0j'the~gi~Circuit~",',.'..'..._._"

3.4.2

Exp~rimentalRe~~lts

.' ,.'.,.",,••.•. 71--.' 3.4.3 ExperimentalP~orIIl;an~o£ Single Phase Converter .... 80,'. 3.5 Compara tiveEval,,\atio~

6 ( .

D¥ ConverterwithPhaseControlled

Co~verter''. ... ..,8~

'3.6 ConcludingRemarks•..\.,,/.

" !.. . .

Three PhaseDM convertet

.4.1"

An,"Y'i~

01 Thr".Phase

~M c'onva;'~

With Reeietive .Loed

4.2.:Theoret~c,a1Perfo~mance

, f

Three~haseOM:Converter '4.3::Implementat ionl#Th'reefhaseOMCo~verter.. . .. . 4.3.1 Power CircuitTopology

4.3,2 B; idge

Selectio~

"Logic

~

, i

'I

90 91 .:103

<,,' ...107 . ,..107.

....110

.v.:

(12)

l\

4.3.3 Lo~Circujt ..

4.4 Experimental

Results.

4.5 C.qncluding Remarks.

. ... .. .. . 1 ,1(.

·,116

·•112 Experh;"e nta l Perfo rm an ce ofDM'Converte~'

.. ...

with'R. Lnnd Me-

torLoads 12 3

\

134

· .1 23 (f

142 .. . ...142 5.1 DM.Convert er with R-LLoad; ... . . •,.

5.1.1 PerfcemenceofConv er terwith R-L Lead .12.7

~.2·De1taModul~tedDCMbtorDrive .. .130

:b."l Sepe.ra.~e1Y~Exci~ed

DC

¥ot.o~

. ... 131

5.2.2 Basic Equationsor·the"Motor 131

5.3

Perf~nn'~~

Characteristicsof

I?~ Mot'6~

Drive

.

5.4' ConcludingRemarks . . .' 141

6.. CO~l~lusiOI1S 6.1 Summary ..\

. \'

\

\.

.Q.3 Recommendationsfor Future Wotk. . . .

6.2 Major;;Contributions .

... .. " ,"

· .,144.

....'.145

... REF F;REN C ES

VAPP'ENDIX•,A: Oerivat ion of DMSWit~hingIn st an ces 151 .AP~ENDIX-B: Co-mp ut e r Programs / 154 .n.i NumerieR\~olutionofDel~aPWM S"';itchingInst a nces•. ... . .154 B.2 SinglePhaSe DM Converter ... ....!'"1,58

/ " .B.2.1·InputCurrentHAtmonic.Analysis. ·.158

vii'

(13)

.:

.

' .-1

.-:. '-1',

..I. .... '

,/

.:' .B.2.2 9ut p u t

Vol~age H'an;Ot;U~ Ana1~il

:.".. •.. . . ",160

B.3'I'hr ee Pheee DM Converter ••. .••..•..••" 162 B.3.1 Inp..~tCua:rentHarmonic An'a1ysi...:.:..":. ....:.1~2' B.3.2 OutputVoltageHarmonicAnalYsis. ..•...• •'.. • . •165"-

B.4 Subroutines: .., . . " '..•..167

. ,

~

.

.DA.l SubrcdtineFFT ." . .• • •• .. .... ...•'.',••'.•167

/ .

.

D.4.2 Subrou tinePWMWAVE.•. ...'.•:.,•• •'.'...168 B.4.3 Su~utineCARRIE~WA'VE •.", .•.~".',~.",.~.•.'.-170 ..-' .B.4~4 SubroutineRECONSTRUcr•:.•:•,..:•.•"•'..•"I ii..,.

~PPi:ND;~ . c. Sfh'~i4 D;~gram. : ' " ·· .~ 1;2

' . . " I'

.APP ENDiX.D:Circ9itPeeemetere .1 7.~."'·

. / '

/

.

, ',1 '

f\

.\

./ /

/

' /

A..f'\

A ! '/ .

I

"

,:

·.viii

. ' .

,..

(14)

List of- Figures

I

1.1 PWM strategies (a) Natural Sampling(b ) UniformSampling

1.2 Adaptivecontrol PWM .. ,;.

2.1 Linear delta

m,odul~tors: (~)

single

~tegrli.tor ~M

(b).sigmaDM

-..rt'-

16 17

22

26

27 I

....

·28

,

t-

34

\c) exponentialDM. " ','."',,. 2.2'(~)Asyncb'ronous.DM(b) Adaptive DM .. . . .. . • . . . 2.3 Rectangular wavedelta modu lation:{a} schematic of encoder (b)

typical

wa~eforms of

the

~~dulation pr~ess

:

~.

'.-: ..

2.4.Schematicdiagram ofthe modified delta modulatorwith esymmet-

....

~hyst~reliis '

/ .

2.5 Graphical illustration'::'rthe DMtechn ique forconverters . . ..'i 2.6 ApracticalDMcircuit[0'pWd~iogsinglephase1t~hingsignals 2.7·Outp utof deltamodulator over'successives\Yitchin~interval e . . .

~h , Singl~

ph ase DM

~onvert~r

(a) Bchemati; of converter (b) typical wavefo~~!ora teBiBtive lo~" ." " " ,',' /:-"\',.'. . .'. 41 3;2'Graphical illustra tiori'for defining converter waveformsin,terms'of

\ -

general switching functions 43

ix

(15)

,3,3 (A)Simulatedco~verter wa~eforms: V.=.5 pu: switchingfre- ',,' , quency=1kHz,(a)outpu t Voltage(b)input current ,,~" ,~.'46

3,3'(B)Si~ulated converte~ w~veforms:~.=.5pu, switching£requ~ncy

=1.5 kHz,(a) out put,voltage(~). in~utc~nt,, .'. :,'.:;'. .:47' 3.4 Simula tedi~putline curren tspectr umofsinglephaseDM

eon'·

v~rter,

A,=:.5V','An

=

.5V,VR=·2.5V(a)

paramet~r

r =,,2

p~,,'

.

(b) peremeterr

=

.1p~, ,... .t'" '",,• •,,. ...... , 3.4

continu~:

(c)

p~ameter r

=.075pu

(d)

'parameter.,.:

=.O.5~u ,

"

3.5 (A)

Va.ri~tion

in

ri~~le'frequeney with'param~ter"r ~ incl.epeid~nt

variable',. , .". , ,,. ,,',,,,' ,',_.,' , : , , , . ,3.5, ,(B)Inp~tcurr~htharmonle order asefunctionofparamet~r;.'",:

3.6 Simula~edinputlinecurrentepe ct r urnof 'Single phaseDMccn-

verte r.

t:J., =

.5V,A~

=

.5V,'"='.2 pu(a)parameter

V

R=·lY(b) /.

parameterVR=2V 56

3.6 eontimied:.Jc)parameterV~=3V (d)parameterVR=3.~V 57

'v . . . . .

3.7 Ripplefrequencyas'afunctfonofreferencesignal amplitude. 58

, , " , '('

3.8 Nonpalized A settingsrequir ed tocontroloutput voltage .'61 3-.9 Number of

commlitation~ pe~

eyeL:

~er~us. q.~e;'."ge. o~tput

volt age

,.',,., '~,., 61 3.10In put power factor as

'a'fu~ctiol)

of

a~ernge OU:tp'u~

voljage

'~ith -r-

as

~

parameter (singlephase'DM

c~nvcrter)

.' ..., 62 ",.:' 3,11Disto rtion Iactoraa a Iunction ofaverage out pu t~olt~ge·w\ih.,.M'

a parameter(singlephaseOM converter)

...

\

".

(16)

(0'

, r

.-.' 67

3.14

BI~~iagr~

DClogie-cirC1;1it for

8i~gi; ph~LlM

converter'.

6~

3.15 Timingdiagr~'ofsi"ngle phaseOMlogic circuit-. .69

3.16 Expe rimental~i1iogr~~jlll;Jlftratiogkeywaveformsof delremod-

ulator

(bMef

en 60Hz.

op;"'ati~n). ··~- .=

1.5V

p~ak.

tJ.p

=

An'•.

=.5V. :.;.', : ".~ ~.: " :. 70

"I..3.17.

Ex'~e;imcntal

oscillogram s'o(

~¥tgle ~h~

OMconverter:Output

j.'

voltngctuldou~~I;t curr~twaveCorm8 ·:

.."; . . ,", . 72'

3.18Expctimentalosdllpgramsofsinglephase

OM

l:Oo vcrte r:Irput '•.

curr~~t "'(avero~ms~ .

'/ ..', :....•": •. .": ....'... 1S

3,.19~~m~talosCillograJl!Sofsi~glephU;eDMconver te r:l0I!ut c:ur'renthermouiespectra'•:" :.:.. , " 78. 3.20&mparl!!On ofpower:actor

~.UB·a.":era~e

output.,.voltage for phase.

controlledbridgeeonverter,andDMconverter'.';. B:i

'I. . ,... . . -

~.21Compl'lrisono~ displac~ent

fa;\or

~uso;er~e.~~putvOltage . .forphasecontrolledbridge·eoh~er·M.d~Mconverter", ,.! 86 3.22Distort ion factoras'afunc.ti.on ofaverage"outputvoltageforph~

;;,

.<$ '

" .

3.12Di8plllCC.men~factor u a~nction'of_av~ageoutput~oltakewith'

T &8ap~ameter (.iiiglephase OM09overter).

3.13SingleP,hase tran sistor'OM converter...'.•. .

controlledand

DM

convertersy~~ems : •." ••• .,. 4.1' Gcrt'cralthreeph~bridg econv~rtcr'topology.

4.2.·,Typicalweve formaoftli~,phaSeDM converter (a)outputvoltage (b)inputcurre n.tofone phase

xi

"

64

87 92

93

(17)

,,;,.\.' ; '.

. .

.

.4:3 Simulatedthree phaseOMco~ver~waveConns~~lwitehi.ng·rri- -quen cy

=

1.8 kHz:V.'=0.3pu;(a)outputvoltag e (b)inputcurren t 96 4.4 Simul ated threephaseOM

con~rter

waveforD1Jl

for~tching ~ "

q~ency=1.8kHt :V.'=O.Spu;(a)outputvoltage (b)inputcurtcnt 07 4.5 Simula tedt~eephaseOMco.p.v6rterwavelonnl forlwit<:hingIre-

,quency

=

1.~kHz:l'.=0.7I'" ;(a) output voltage (b)inpu t curren t'98 4.6 Theoret.ic~har910nic~Peetraofthree phaseOM'converterf~r

switchin gfrequ ency=1.8 kHz:,~

=

O.~pu;(a )ou tput_vo.l~age f

..

"

4.1,Theore tical harmonic spectraofthreephaseDMconverte rfor swit chingfreq ue ncy=1,8 .kHz:.Vo=

O .S

pu;(a)

ot.it~ut

voltage

.(b)inp ut'current,, , . . ,., •.,,...,.". .',•.. ..,,'.100

, . . . ' ..

4.8 TheQreticalhar monic spectraofthreephaseDMconverte rfor switching frequency=.1.8kHz:

v.. "'"

0.7pUi(a)outpu tvolt~e

(b) inputcurrent ,•... ... .•,101

I 4.9 .Inputpowerfactor&I.a.function of average outp u tvoltage (thr«- r.

i

(b)i1w ut current,,,,•,, ,,: ' . , . ....•.. ..., 99

"

phaseDMconverter).:.,., .•.•... ,.. . .. 4.10DistortionfactorM

-

a function, of averageoutp u t voltage(three.

phaseDMconverter) -. ....•. .,. ,..•. . . . ... . 104

105, 4.11Displac ementfactor as afunctionof;v~rageou tputvoltage(three

phaseDMconverter)

! , , , . , ,

,.106

4,12Threeph aseOMtransistorbridgeconfiguration,

xii

, ,.:,lOS'

(18)

4.13- Selectionoftr.~js~rconductionintervals: (8.)Line to.neutra.,l referencevoltages(b)lineto line refer ence voltages(c)transistor switchingsequence (d)statesofthe three phases~!1rcevolt ages ..112 ,4.14 Timing diagramofthe Intermediate sign als:(a ) command eignala

(b)intermediate transistor signals 4.15Block diagramof threephase logiccircuit

113 ...115~

4.16(a )Exp erimcntalthree~hase delim~dUlatorsWitchi~.gwaveforms. . (b)Command signals to identify ates of the supply voltages ...117 4.16(c)Inter media te~atingsign~s'~ }PMtransistorbasedrivesign als118 4.17Exp~rlm·cntal·w8.~eformsofthree phase OM converter{orVI> "'"0.3

pu; (a).outputvolt age' (b ) input·line current. . . 119 4.18Ex.;eri·mentelwaveforms of

thr~ p~ke

DM conve rterfQiVI>',=0.7

pu; (a) output voltage (b).inputline~un·ent . 129c::

/4.19 Experimental input line currentharmonic spectrumof three phase

DM'converter.. .. . . .121

:).1 Threeph aseDM converterconJigure.tio~withfreewheelingdiode . 125 5.2 Typical outp utvoltage waveformof threephaseOMconver terwith

R-Lloa d .

5.3 Experimentaloscillograrnsof threephaseDM converterwithR-

C

Iced(a)'Outp u t current,we.~erorm,(b)e~rrespondinghar~oni~_.

I spectrum . .128

5,4

Exp;rim~ntal os'cillogr~s

of three ph'aseDM converter;ith

R-L '

load (a)'inp uteurte~twavef~nn(b) correspondinglinehar~onic spectr um

.

~.

j

xiii

_ .

..129

(19)

\."

" . .\ .,:.:

..

~

''': ..:.J

. .

'

.

:-:~

'

..

tiC"'."';':< , '•.•.. --",..,""

v

5.5 Threeph~

DM m otor

drivelI;St em•

.r ,', . .',. .. . . .

132.:

~rques~ cb~aet~~tiCsof 1/4·Hp",di:·~tor controll~dby ..: '.

three phase DMconverter.. ..••..••~'.~•. • '.' ••.. •\35 ;.

5.7 Power"facto rasafunction of motorspeed{experimental':esults)",13G 5.8

Di5~rt.ion raC~

asa.

fu~tn

or

m?tor .~ (~inent~ result~)137

5.9 Displacement factoras a fundionpCmotorspeed (experimen t ll1 . . results) .' :',... •.,...• . • • . •: ~.'138

·5.1~

Experiment al

oscill~grams-~h~'ec

phase DMconver terwithmotor .

.\load:(a)ermetcrecurre nt'wavefo'rm(b),.corr espondingharmoni~..:

spectrum .<:>: :., ~." "._~..139 5.10cont inued:(e)inpu tcurrentofone phase (d)coriPl Pon,ding Iinc",

har'm~ruc l~ctrUm.•" ', '''- ',' 140

I

~

xiv '0

0'·'

(20)

."(;.2

. .

-.t.

~

·' '.

.,

List of Tables J \ c

3.1 Experi mental frequencyepeereeandcalculated performancepa-

~amctCI"8o.~9.ingle pheeeDMcon'f'terf~rT=.2pu ,,,,,.',. 80 Ex,p~rimenta1frequency6pectr~and~!~ula.ted per~~~c~ .po.-. ramct~r6ofsingle'phase J;>M converterfor '"

=

.1 pu;'.. . .",.. •81

3.3.Experimentalfrequency spectr a andcalculated performancepe-.

ram~tersofeinglep~Me,:DMconverter ferT=.075pu. .''':...,82

.'

r

r---. /' v

(21)

',"

l. . hapter 1

ntroduction.

:.•low operating p'ower

fac.~~ .(eSpe~ia.lly at.lig'ht l~a)'

)

;•gener ationof loworder harmonics in theeclinecur rent

ana

'~-- output.

timum perfcrrneace

~~ievable

by f.<ilseWi,dt h

~oduiatio~ (P~M)

techni.q\lel;l .h revolutloni aedtheReIdofstati~)ac"todcconverters:,Implementatiqn of .

,~ e:s~ 'teclpliqU~"~been ltilitatei ~y

the adventof

P(l~.~ tr~~i~t.or8 :'Oft'~,r-.

i J

g

~~tstan:di~g'eh~e:Cte;isti~

of

'hi~'po~~~

han dling

capabilitie8.~fMt Bwnching

Jd

~oat

significantly,

~/1e

'ab:enceof

c~mmutation'

circuitryin

~nverter .io~l~.

I ' . " :

. giles.Come;uen~IY,,conv~nti~nal t~:tor.based.C9~xerter.sare~adUnllY~cing Areplacedbysolid statePW. controlled transilltor-ecnvert era.

J

\Traditionalphaseangle contro lled

conver'ter6'pro~e,d

particularly

att'ra'c~.ivc d~e ~

the

inher~t

ruggedness,simplicity,iow

mainten~ce'

and;ease

~£. ~;Urol

I

aIfordedbythenaturalcommutatio~of thyristors ,Hcwevcr.theyhev,un1~.ir- able prop erties

and

i~posecertaindisadvantagesonth~power ne t wor:The'two

~i~f

demerits

~f

theseconvertefaare:

y .

(22)

r.· .

'1

. F"""':'

\

.2

.Moreover.IStheoutpu tvoltage is decreased.theinput

~

factordeer

necessit a t iD,!I;theBesour cetosup plyreeetbepower.The harmon icsgenera ted

. , .

. "

tendtopollutethepower network and cau.seinterference't~th~her~uiprnentin doseproximity.Inde drives, theripplecausesoverheating andageneral derati

ns

of themo

. .

tor. ~ .

To'compenset e~epoo rperf o rmanceand.en hancethecon~ionefficiency, variousmethod s havebeenprcpoeed.Principalschemes'(or powerfactorimprove- rncni include;

1.Re~ti~e cOmpen8Rtio~

.r..,2.MultiphlU!erec(iRcRtion

4.PW~tech nlquee

1.ReactiveCompen&ation:.~1.2J

B~kauy.

this

m~hod

isa

lil~n~'a~proacb, ~tilizinll shunt~nduetor'

ca.t>acitor' (LC) filten.1theacside~d:'a·smoothi~. ructorin~es.attheoutp utde stage,..T~e L~fil~erlOcated at th ehar.m0niclOu~ceis{un ed lo resonance,a t_lowI ordercharaeteri~tic h~moniCll.T~~filterserves asa,lowimpedancepath}o r the harmoni c current'toflow,'virtual ly eliminatingtheirpresence in the,acsyst em,. .

~lthol,1gh th~ sch~~c ~eSU1t8

in

~. de~te improve~ent

in the';urre ntwaveform,

./ it bes the'

f~Uo;ing di~ad~t~ges: ·

(1)

~

se parate

filt~r

isre qu iredforevery"m ajor .h~.oniccomponent,or~,tematiV~y,.continuouittun~gis css;ntialtoelimin~te trou~l~omebermcnic'ordere, (2)-duetothel ergemagnit u deofcurrentand low

... .. .. ,

~

.. .

".:: ,.:/;:

" -:' , . : .. . ..

'

(23)

.';!

. '. I

...

"'. .' .

----. . .. '

".

". '

hannQllie..omponen~a,~&.e.8izediJ:duclotsaridcap !lcitorJare.~uired,(3)~he . ;filtereausesVf!ltagefi~et~tiotul,end(4)it

resuila

ininae~dloeee.

2.

M~lt.iph~e Re~tiftcatiol1;

(2.3}

"Sincc"han:no mccurre"ntiareafunctionofcon verterpui~,improvementinpower

fact orcanbeobtafned by increasingthenumberofou tput

~ub-:'"

In-.g:Uera1,

an

"n; 'ulse,cof:l.V:rter

ge~~a~

hJl"lloclc compo nents

o~

ord;ra

n~ % 1.,

where.kia. .

Myinteger. Asfor example.asixpulse converlercontainsharmonicsof~rderl ,

~jll.

7CII,

l~th,

13:\.:'"'andccrreepcndlnglr;,8.twelvepulse

,c~nver.te~

is'

chnract~r-

ieed

by

n» ,13'11,23111;25cll,.'••h'~monicorde rs.-.This procedu re,uhin g a higher! numberofphasesfo rlow'orderharmo niccancel'lation

i.

ref:rredto88

phll8~ mui .·

~ '

.

. \

. ' " .

-

::

\

•tiplic ation: Multiph ase rectificationiarestrlct e dtohig h~",:,erec todeconverte r?

l'uch88

iu

gh:voll11gede

~r~.nU~ion(HYDe)

ayetemawhere

th~ ~t

of

~djtion~

.powerappu atutandcompl~ ~tryarejustified,

.

,

3.Se quenti".l~ntrol:14,5) ,

Improvement

in

power factorisachie vedby~ng~wo conve~rbrid~eaand usi~gsequent.ial~~rol.Inthisp~,DoeI;>rid~eismaint~nedinfull·advance (re::tifying)orfllli

r~tard

(in verting) and the d,her"

brid&~·

is

c.ootn:l1~.

Since

oneconverter operat.es.88adiod ebrldge.fbecaaesde

conn~tion simul~tce

asemi

.,co.nverterhi.lboththemotorin~lISwellsstheregen.er atingmodell>~esultingin

an.i~p~vernentindiaplecement ang le.T~esequent i:ucont rolmethodiscorn-"

pliceted,expensiveandonly,p~~in1lyeffccti v e" andhcncei~hasfounlllimitt:ld

uses.

r ...

'.':-'

"

(~

.

(24)

"-:.;..:.

4.PWMTec hnique s:

•Unitydispl"c~entfllctor

.. f

•Highop~ratrn~powerract~r

Theline'c:omm.utationmethod offenlittleflexibili tyillcontrollin~"t.hyristor switch-, ingduetothc'natural commutatioDof.thyristors bylineVoltages::and subsequent coodu dionofthyristorll ondiffen-ntphaseS.Hence,thephaseangle controltech·'

~qucismoreorl~-resiridedastheonly~tro)parame~illthyristorecm-en inlllant s.with_tum-off.dictatedbyconverteroper~tio~. Incont rast,theforced commutationpri nciple'all~sthyristorcommuta tion~tanydesiredinstantby proVi·ding. each't fayrillto r' with

it~ own com~utation drcui~.

,InotherWor ds,. /

~U~

We'offorced commuta.tionincr easesthe versatilityorthe convert erand permits 'a'dlrect

co~ol

orthyr iljtorIlwi tch ingtoimprove'perfcemenee.I ' ,

" '.' ". 'f ..... , «. :

'Initially,contro lschem~inCO£]l(?iatio!:rorCedeommutetlorawerebased on

,a'singlepulseappfoach~Ilynirnetricall y:trigg er'thyristorpeire'perfialfcycle.' Variou ssingle"pulsecontrol,8ch~'havebeen';por t ed

in

theliterat ure

I S-

"1}

~d; m~e~,

when

~' in CODjun~t~

wit.h

~e

aI+ entioned

sc~..

- \

resultedinageneralim proVement.inconverler.performari ce.Howeer,itwas

aoaD

~~z.cd'~~maximum powerfactoTand~uctioninioworder

h r cs

~d"

beachievedb)'lwin!:multiplepulsesperhal!cycle.This openedthe ave nuefor , "'\"..

.pw{l, teclmi'que'1!I, wherethyristormI tehingsare governed" by

certai~modul~ioD

, \

lawssuetthatthe'ecwaveformcloselyresemble sa sinusOid'

PWM

techn~~~

ha vPgainedconsiderable attt:llti'o;11':l

~'nt y~du~

tothe, ."., optimumperforni~ceattainablewith,asimpleco~vertertopol~gy,:~lesaJ~enf features of"PWMcontrolledac/dcconverterarc: ! '

. l

i

1 ·

\ ..:

",

' . ~-,.:.' ,.'....\'.

(25)

"

•Control1abilit~,..

•Reduced filt er size Limitat.ionsoftheprocess are:

•Complex eocteolcircuiu.

.,.' . 'l I, ''''f

./•Auxiliiuycommutet.icncircu'its \

, ' I

.•Incre8.'led1os~csdueto,high. switchingfrequency

.

"" \ ,, ,

1:1 .R evie w of PWM-Thc hp.iq u es

V an,

ue

';"';'0£ PWM'ech~;,u'B'ex;.' L d

eonbe

"l!g~,;,oo

..'

1.N~turalSampling 2.U~orfnSampling 3.6pfi~aI

P W1.f

and 4.-Ad aptive control PW M

'/...

"

. '

1.Natu r alSam.pling:

Inthena.tural sampling~cltniqueas shownjnFig .1;1(8.),t~,e,ilwitching'point~

are determi nedbythecro~singsofthe modulatingwavefonn, typicallya sine wave. ead anis oscelestriangle carrier wa ve.Th isteehniqti~.mostco~monlyrererr ed toasSi~usoiaa1'PWM[7 -

. 9r.

hasthemodulatedwavcform containi ng harmonlea / as afundion~fthe'freque ncyrati o . Thefrequenc y ratio or'modulationindexis

(26)

2;

Uniro~mSRlIlp ling:

..1

..

r

defined as thera t io~fthe carrierfrequen.cy

to

mod ulating frequency.Thehi~er thefrequencyratio, the more distant thedominantharmonics are fromth e £un- damcntal component.

A~other ver8r~n

of the

carrie~

modulatedrwttechnique described~bove.uses a tJjan gularwave and a..,onstant derefere nce waveform.

Inthis ease,'~8tionin the delevelcontrolsthepulsewidths.Similar tothe Sinu!!Oida:IPWM,~ethd~~the harmoiu'ccontentis afunctionofthetriangular wave frequency[10].:'Highcarrierfrequency caus esthe dominantharmonicsto

. . .

eppcarin the upperfrequency spectru:n./~

/

1;hisPW_M'technique

..

Isbaaed on

.

a.sampl;andhold

.

principle,/ withthe

.

modulating.~

"(ave'repr~n~ed.by piecewiseline~eegrn ents,TheuniformsaIn pling a p p roach as ehownIn Fig.1.1(b),is essentially aderiVativeof thenat,ur~sam pling precess,"

withthecontinuoussine'waver~placedbyanequivalentsteppedversion .Ithas .the~dvantage'th a tthesam pling pulse canbemedesymmet rical aboutthetrough'~

of thecarrier.This result s inasignificant.reduct ionoflow':equency harmonics andelim ina'tion ofsubh~onic8atnon-in teger frequencyratios.Thetechniqu.!!'"

is particularlysu it able for microprocessorimplemen tation .

3. Opti malPWM:·

r

OptimalPW¥strategies,fCb~d·onthem~nimizationofcer~aincrit e.ria[11;i 2.J;

for:~fUllple'iliminationorminimization ofp.art icular harmonics,.haimoni ccur- rent distortion,peak current..etc.Asopposedto thenatural or uniform sampling methods, optimalPWMtechniquesrequireth~PWMwaveform to bed~fineda priori inte rmsofthe desired switchinginstancesandfollowed by their determluc-.

+.

.

',

(27)

(a )

(.

+ v

/

. . (

-v

'-'"

SA"".'O' CARRIERWAVE

.f\ WAVE

(b )

I -

~' °1\ A

~

tr 1\/

~\ II

;

--:.::-.

Figu re1.1:yWMstra tegies (a)Natura lSAmpling(b)UniforlllSml;lplin p;.

, J

(28)

I

\

I,

,

"

O~L!L':"""_M-=2.-_--""""",,....>..:>;

...

t

. v

a -v

-

~

c-

~

.

L - L -.

PWM SIGNAL

Figure1.2;Ada pt ivecon trol PWM

\

;....-1-,.

\

(29)

/ ,

--tion through numerical teehnlquea,OptimalPWM techniques are

.

-computational

.

in!ep.siveandreq uirededicatedmicroproc~sforBuc~ulin{plcrilenta~ion. . 4.AdaptiveCont r o lPWM:

_ .~rlnciple, ad&ptiv~PWMt~chniq~esutilizea "bang. bang" hyatetcsiscontro l approach to'~inimizea desiredBi~al(uBuallyan errorsignal)with ineertnin

_. ,, ' . .- . f . .,

critical limits.Inthisappro~h.MshownFig. l.2~'the.switchingins~anecsare inttiosically det enn in ed

.

\- - -

by

theintersection of the err or

.

" slgrialwiththe

uppc~

; /-""

andlower hyeeereeie boundarie;" For a8inu~ojdeJrefere nceeiguel,themodulated waveformhas afund amental'frequen cyco~~~nent"equalto thereferenceIre- 'luene;,and-the?oll\iuant1iarmo~ic~appear~~.ib'~rip~lef/'t'<tuericie~:,T~Crcf~re.

by adj usting thehys t eresislim its,dominanthar moni cs tanbe laterallyshifted towa:9.Sthe higherend ,ot-thefrequency spedrum;·'PhebdaptivePWMtech.~~que has adual ad\-ant"age:(i)itallows ac1~l~pcontrol process, and(2) t;e' Il!?dulatio~pr0'iess inherentlyeli~i~ateslower-order harmonjee.

~

hepresentworkutili~~an edeptfvetontrolPWMteehniqubto,genera te the rtching waveforms for ec to de converters. TIle~r.oP09ed.PWM technique, . refe"edtolIS deltarnodulet jonincom~unic~tion terminology~ ,ha.. 'bee nused extensivelyindigit~signaltransmis~ion.Recently, the modulation.tcch:~iq~e has been 9ueCEi"ssfully incorporated ininvert<;r and ec motordrive applications , "{1l,13- 19J.Howeve r , itsuse incont~011edrectifier applications'hM~notbeen eddrease d. This thesis is directedtowar~8.comprehensivestUdy ofthe delt a modulation technique as applied to ac to dc converters.

.

~

(30)

,~

"

10

, ~

1.2 < O b j e c t iv es of the Present Work'

The objectivesofthif> thesisIU"Cto:

1.Investigate the characteristics

.

of the deltamodulationtechniq ueand develop ano.nalyticalmod elt,oaccuratelydescribethemodulatio~process.

2. UndertakeIl.quantitative analysiswith theperspe ct iveof predictingthe perfo rman ce of delt aPWMsingl:-phaseend'tbree-ph ese ec to deconverters.

. ,I

3.Provideexperi ment alresultst~valida tethepredicted result s.

,. I' "

Chap~cr2 covers the,essentials .ofthemodulat iontechnique.Ananalytical model ispresentedelongwith'a methodology fordetermini ng theswitchi ngchar- .ucteristicsof the'modulator.

Chapte r3isdevoted'to the study oft~e single--phase~ltaModulated(DM) converter. The procedureforsimulatingthe convert eris explainedand theoretical r~9u~tsofthec.onvcrt:;:~rfonn,fllcewith a.resi~tiveload

are

presen ted .Impl e- men tationaspects ofthe converter are discussedand experimental resul ts are also included. Anequitablecomparison ofthe

pM

converterwith othernoted PWM co~verters,althou gh desirab le;lsbeyond the scopepfthisthesis.However, the lAtter par tofthischaptercomparestheperforman ce crthcDM converterwit h the conventionAl phase anglecontro lledconverter:

IIICh apter4, thethree-p hase DM converte ris stud ied"indetail. The analysis. procedur eforpredic ting converte r performan ceispresented ,Implementa tion~f the three phesel~giccircu itIUJ.d th epower converter topologyarc described, Experim ent alresul ts of theconvert erwithresistivelondsare provided.

(31)

11

~...~..

. I .t

Perform enee ofthe three-ph-:OMconverte rwith pasaiveR·Landmotor .:

loadsis investip;a.tcdinChapter 6.The anal,..ispresentedisbasedoncontinu~

ecrrent paode of operation .Experimental.retlults of a1/4I'aP, 120 volt,demotor areprovided.

'Conclusions an..dsuggestionsfor future workBUou~linedinChapter 6.

·.... ;...:-:.>'.

I

(32)

t

Chapter 2

~,'

Delta PWM Technique

This chapter isdev~tedto the study oft~edelta PWM technique asapplied to/l-Cto de converters,The principleof operetjon,methodof control end an anaJ,yticalmodel

de8cri~n~

the modulationprocess arepresented . At.the outset;

. the fSlpil)':.-oC delle. modulators is intro?uced,leading to the development of the rcct~gular ~~v~delta modulator.A practical circuit to realize the .m0clulatoris presented along with the control scheme usedtovarythe outputvoltage. The delta PWM system is,modelled and a~umericalapproach fordetennining)h~

switchingiost,anees'isprovided.Finally,'inherent features,of the PWM scheme

are

outlined.

·2.1 Intr~duction to Delta Mud'ulat. ion "

.

,

III cdrnmunication systems,f'b.:e most prominent digital encoding technique ttl. ' .- , continuoussignals is·pulse code modulation (PCM). Several'variant or alternate

·tecllDiqu~

(19,2014ave

b~

proposed, the mosti';llport nnt class

compri~ng

del;a

modulatio nandallied differentialencodingmethods.

.ClassicalPCM

entail~

the sampling, quantization end coding of an analog .12

..

(33)

13

)

. .

signal to a series of pulses. Theprocess'is inltiatedby samplingthean.n1~gelgnnl followe~yquantization,in which each sample isrepresc.nt ed byRdiscrete value chosenfrom a fixed number of possible levels.!the quantizedsamples arc then convertedinto a series

of

binarydigitsf~rmjngthecode word. In contraSt"the basicprinciple of differentia!encodingis to quantizeand encode changes in the signal, rather than instantaneoussamplevalues.

In the case of deltamodulation,~singleblnery digitisIPsed todescriM the chang~from o,nesamplevaluetothenex t. Thisdi~itis derived~~ coinparing'~

signal'amplitudeatone samplinginstan t withthe velue obtainedby rcconstruc.t-

"",thesign al fromthepreviousdigits.Hence,deltam~dulationcan bevi~w~d ~, a:~i~pl~type of predictive,quantizingsystemend ia cssent iaily a.I-digit ,(2.1~v~l)

diff~rential.pul~e c~de

modulationsylite; "

~~ativ~ t~

PCM, delta modulat;on'is

"thesimplestknown methodfor analog Codigitalend digitalto analog conversion.

Thesalient featur esof thedeltamodulationtechnique a;e summo.rizcd {20 - 221

~a highresolutionAIr)inte rface since quantizingaccuracydepends on n single welldefinedstep, not aseries of thresholdlevelsas ill conventional AIDcC?nverters,.

• lowcomplexity resultingin inexpensive implementat ion.

•robustnessto transmissionerrors, nnd

•simple filtering require,?cnts,

In

.

additiontothesefeatures,the modulation~ ' technique offcrBthe option of either, '\

-

,

.

adigit al or analogcircuitimplementation. Thesepromisinguttribu tr..'8ofthc

./ ...

(34)

delta modulati ontechnique make ita potenti al eandid t te forpowerelectronic applications.

2.1.1 Types of De lt aMo d ul a tor s

. ,.

i- f'

I

I r r

!

3.

~incethedi~co~!. ~Lg~ltamodulati on in' the early1950's ,variousmodifications tothesin~leintegrat or delt a modulat orhave evolved. The familyofdelta mod- ul ator s,fro~abroaderperspecti,ve,can becategorized.int othefollowing three classesas[23].

1.Lineardelta modulat or

2.Asynch ronous deljemodulat~r

\

3.Adap tivedeltamodula tor

1.Lin ear deltamQ~2datOl;

The chiefcomponents'~fa linear delta modularare aquanti zer orhard-limiter , sam ple andholdcircuitryand afilter.Dependingontheconfigur ationofthese clements andthe type of filter employed, various

,

modulatorshave been dcvel-. , oped.Figure 2.1{a) depicts

a:

singleintegra tor delt amodulator(24]inwhich the' filterconsist sof en 'idealintegratorplaced inthefeedbackpath. An alternat e configurationFig...2:1(b),·designated88,'~igmadeltamodul::tor.r21,24]USC9an idcnl.intcgrat or inth~fecdforwar dpathwithunity feedback-closelooparrange- ment. Inthecaseofth~ exponenti~deltamoduiator[23]88shown in Fig. 2.1(c), theideal integratori~replaced by an RC combin ation serving as a low-passfilter.

••Thoughthe

topo~~

ofeach modulatoris unique;';h cirfutputsare characterized

o by pulses quantized bothin time and amplitude.Hence,from thepowerelectron ic

. ,

!'

(35)

viewpoiil~.thiselMSofmodulatorsi~ad8pt~blefor micropro cessor~on~l.

15

I I

modula t

2. Asynchronousd~ltamodblator .

Asyrichron~:;usdelta'modul at !onschem~[23]~echaracterizedby'their ou\put' . pulsesquantizedonly inamplitudeand~notintime.Consequently,no satnpli.t:lg proces~e6'areinvo lved. Thi6clese of mc dulatc rederi vesitsname,~y,;iriueof thenonlinearcharacteristicsof the quentizer,Fig. 2.2(1l.)illustratesatypical

8S;;~n?Us.

delta

niQ<1~a.tor ~orisi8ting ~r

ahysteresis'

q~antiaer

.and an

1id~td

integrator.The part icular corifigur a.;ionterin~Il.9arectMgul~wave'd~'lta

mod-

'uletor{22]

a11~7l co~~i~UOU8

eri'coding

o~ the

reference signal,

Sin~in this

system',

.e" 'in Corm ation is.

~ntained

inthevarying-pu lsewid ths ;o'nlY"the z"ero crossingsof the"pulses

~eed

be

tr~smitted. ,

AS,a'result;

88yri~r~no'us d~lta. modula~or8

are ideallysuit~for~a.l~~circuitimpl eme ntation.

3.Adaptivedeltamodulators>

Complexittof t edeltamoduleeorincorporat jng adapt ive schemes

is~fnr

greater.

than thelineardesignedrasynchron oustcf encodemodula tors.signals

.

Thisisdue to the factthat.'the

.

h~viJ;lg .widebandwidthch~acteri8tiC8 andhen improve rcsclurionof the encodedsignal. Various.edepeivceeberace e been proposed,J.l1~tcommonamong~arebased onanoptio'taleo~t~ol

strat~gy

such astile use of amult ilevel

qu~ntizer)t

multist agedelt a

~odulator

(23J:An adapt ivedelta

~o'd~lator

us'ing

~ ~ultil~vel qu~ntizer

isshown in

Fig~

112.2(h).The quantizerlevel isinheren~lyselected,by themodulatorand therefore, it can accommoda teab ru ptchangesin the slope of theinp'ut eignal.A multi-

)0

'st~e en~der, ~nt~s

a

num~cr

of

del~8

modulation

8tages.wher~~eacJ~

delta

t:

(36)

tit1 "It)

' .,

". :

QUANTIZER

;

. .

."

.

~'.

IG SAMPL ER

Q.

) .~ltl

+ . ~

'.«tr

m(l)

",.

'., ~

£ ,

Fig ure 2,1:LilleR!'(.Ieltl~uiodulato rs:(a)singleintegratorOM(b)slgmaDM(e)

expo nenti al OM g

. ,

.

"~.,

.

.; :

.. .

,

.. ..

(37)

,.

xft)'~ etl)

ffi

m(tl

+

:,

l..'l

;..

.

HYSTERESIS

.9.

~UANTIZ ER

J -;

~ .

SAMPl£R.

x(tJ e(t1 ~s mill

f'

MUlTI·LEVEL.

.Q

a.UAN Tl ZE~

J

Figure2.2:(a)Asynchronous OM (b)Adaptive OM

") r

.~

.;

~~~

..

..1'

(38)

18

mod ulator'e neo des the ba ndlimi tederrorsignalofthepreviou s'deltamod~lator.

Ofthewide~ray of~~eltamodulatorsaY¢lable, the mos tauifable onefor a powerc1ce<.tIon ic·ai;pU"cationisdetermined byfactors8u~hes the power c:onven i0!1 scheme,eitherecto"dc.(red ifier ) orde to ac (inverter)and, theimplementation and controlschemes(microprocessorcbese or analog-base].In invertera~pli­

cationll,the outpu tfre quen cy (eithe rfixed orvariable)alsodict a te s thechoi~

thedelta modulat ionscheme.

2.1 .2 Survey

or

Delt a ModulationStrategiesin PowerElec- ercnice .

Recentl y,th~delta modulationt~chniqu~h85 gained considera bleat~tionas a.....

pot ent ialPW~scheme~or't:ont~lofPower conver ters. Most of);heliter ature on thesubject pertain s tothe.implemenre tionorinvertersand'adjustablespeed acdc!vCll. Char~ctecisticofthese applicationsereout putparameterssuchas variable-vol tage.varlable ,frequency operatiolJorvariable- voltage,coneten r.

freqUency.~pcratiJ whichmust

he afforded

~~

the modulator. ' Ziogll8[131has impl emented a freerunningrectangularwave.delta modulator to controla\olt~gesourceinverter."RJiliman,etel[14,151havemadeuse ofthe in- hcre n tVIf(voltage/ frequenc!)charactecisti~sor the symmetricalhyste resisdelta modu lator tocontrolthe speed of inductionandpermanent-magnetsynchronous .motors.ManiRS,eta.l'11~1have~uggCllteditsusein currentcontrolofasWit~

moderectifier (SMR),thoughprovisionforcontrol lingthe outputvoltage is not

~ccounted fo~

by themodulationcircui t.'Itsuseinunfntecruptible power'supplies (l! PS).forcontrollingboth therectifierstage aswellasinver ter switchinghasalso been reported117).

--j

(39)

.

~ .

.

/ Kheraluw~et a!J18] haveemployed theSi~adelta~odulatorfor a.reao- nant delinkinverter.The eempleddata nature of thedelt~modulationstrategy .baa been exploited t.')realize the ewitchi c ge atthe zero

cros8ing~~f

thelink

v~lt

•.

age.

An optimalcontrol~trategyincorpor ating amultist agedeltamodulat or has .beenrepor ted by~man,etal(p]~~improveth~ per£ormanc~of a.single phase,

inverter.The modulat ionsystem~nsist~of a rectangularw~ve,delta.module-' tor followJd by anacti~efilternetwork,the outp utofwhich~sfedtoan.other rectangu larwa~edelta modulato r.

Altho~ghtheSi~adelta modulatorbaa beenU8~~inreson~t Ii~kinverters, itsapplica tion'in motordrivesisrestrict eddue"to the absence ofaV

If

con'trol. strategy. High samplingfrequ~ncydcm~dedbythedigitalencodingprocess' results in substantial

trarisist~r

switchinglosses.

On

'the otherbend--eberect- angularwave delta modufiito.r, besidesprovidi,ng.the desiredV/f -characterist ic, offeVlgood currenttrackinpbitit y,.Itis, theref? re suited forapplicationssuchee inverters,drives~wellas non-linearcontrol-systems.

#-

2.1.3 Requiremerlts of.Del~a PW~Convert er For PWM control ofa rectifierby the delta modula tiontechnique,themodulator must be instrumentalinprovidingthe following featur es:

~~ontimiouscontrolofthe output~~IJageovertheentireoperatingr!,nge,

•reduceand/oreliminatelower orderharmonics

•minimizeoutputvol~llgeripple

\..

(40)

•ease of implementati on.•

\

."

To meetthe first criterion,itisnecessarytohaveanindir~tcon troloft~epulse widthsof themodulatedpulses such that theratioof "on" pulsesto "off" pulses determinestheout put voltage.'Clearly,the family ofLineardelt amodulators are unable to satisfythis requirem ent due to thefact that the pulsesare~f~etion

'of sampling frequencyanda preset step size.

.Oneap~ro~in'over coming-thlelimitationinLinear deltamodulators is

t o"

adopt adifferent'scheme ofeontr~llingthe;out~utvolta ge.,Rather than-havinga.'.. filter of presetcharaderi8ti~,thetimecQn~tantll.!!8C?-9ateawith'the"on" pulse,~

is

maintain~

aifferentfrom that-of'the

" off". pUIs~. CO~gequently,

.control

of"

the~ut;rlvoltage,is,,-,ch ieved by con tin uously 'changingr6c.tw~ti~e con~tants".

Needlessto say,

t~e

procedu re

sU'bsta.nti~lY ~plicates th~cuit

implement a- tion ,

Rectan gular wavedelt a mcduletor has theinherentability toy-ackthe. refer-

~ncesiYl:al within awell defined boundary esta blishedbythe hyater osiathr~hold levels.-Thc modulator can thereforebe usedforeith'~rvoltageor curr en tcontr ol dc~ending'onthe reference9i~al. Anothe;~;'tributeofth ismodu lator concern s titcswitch ing frequency.SWit~j~g'frequcncyandh~nceharmoniccon t.,:0lcan beechievedin tbreeuniqu eways; (1) byadjustin g the-integ:~torparameters, (2) by changing theam~li~~deofthe reference signal, and (3)bycontr olling the hyst eresisthres~~ldlevels.

The use of adaptiveschemesforconver terapplication~ is'debat~bleconsider- ,/iug that the mO,dula torisresponsibl eforencodinga well

de~ned

J;linusold nlsign al

I

of constantfrequency.Again,for controlpurp oses, the ad5.ptive scheme must

. .

'/"

(41)

either,mai nt ai nsorc~angesstatescausingthe outp utpulse to similarlymaintain

J , alte rnativepositiveand negativeslo~esof equel magnitudeA..Depen di ng on

(

\ 21

/ .

incorp orat e8hysteresiscompar ator ..l!ndoubted1y,.adaptive deltamcdulatora. providesuperiorperformanceb~tattheexpense

o t

a8ubst lft1.tiall ycom plexcir-

~uit.The same qualityperfOtit'ance canbeobtainedb;a singlerectan gularwave.

deltamodulatorusing a simple filternetwork .

Inlight oftheargumentspresented,rectapgul~wave delta modul atoris capa;

ble of meeting thecontrolled,rectifier,criteria.The intri nsicfeat ure'b~the'asyn- chronous~odulatOr,isclassifiedasanadaptivePWMtechniqueasmentioned

e~lier.~

As 81,lch,.the

~odulator'ser~es

adu8J. puryt.,of

e~co~in~ a

tyPicalainu-

"

BOid~'refer~ce 8!~

asW.e.U'M

contr~iiing' th~ outpu~

,.roftage,:< '. .

" ' .

. . .. ' .

2.2 D el t a M odula t ion Technique

Rectangu lar'wave deltamodulationis8.d~fferentialencodingtechnique..The modu la tedpulsesare producedby theinteractionof the-referen cesignal andar locallyreconstru cted signal: As applied in.signalprocessing, therectangulardelta mod ula tionprocess

c~

be

i1lustr~ted

withthe Il.;id ofFig.

p . 3

The inputsignal,x(t) ,is eomperedwith the recons tructe d signal"y(t).The differenceis examined by the'comparatorcirc~it.In thissystem, the comparator consis isr"ofa hysteresisquantizerwithsymmetricalAuantization levels±~.The binarywaveform:,(t)at the outp utofthemodulato rconsis tsofPUI~8of~qual magni tu de±Y.butofvaryingwidths.The pulsesareintf'gTllted in thefeedb ac k pQ,th to establish the car,rierwavefor~,,(t),consistingoflinearsegmentshavin~

the polarityof the'error e(t)defin~dasIx(t)- I/(t)j,the hysteresiscompar8.to~

'\

c.

.

.

(42)

..

22

~ ' -y

y(lJ' ('(tl

1ff ""

'Zjll)

'I

\

J

I

. . Q.

"

.

<:

,y

' ~ .,,, ' J!41V ' . . ~ .

,tl , .

· : : a t

Figure 2.3:'Rectangularwavedeltamodul~tio(J:(a)schematic of encoder(b) tYP\cn!wnveformsofflllti1J{Jduh\t ionprocess

,

"

~

-.

(43)

/

. 23

/

~r

changepolarity.The -closedlooparran gemen t

ens~res

that the carrier'

f~th­

fullytrll.~~theinput signalandthe modu iat orin turngives au-t p ut informo.tion correspondingtothediffe~till.tionof~hex(D-signal:

.Mathem8.tic~y,t_he sam pled mod ulat edswitchi~gwaveform%;(t)

c an

beex-

pressed as-\23}

,;(t)~v. L:1i. gn[x(kT. )- u(kT. )]

. . .

where :'

±L.\ quanpizaticn level

± v. .

level of8witch i.Il8~ulBes

.(2.1)

,(kT.) u(kT.)

~odulll.tingsign al predictedeignalatkT.

sgn .indica~~thesignof[x(kT. } -y(kT. )]

T. samplingtime.

Theequal slopeapproxim ationas illustratedinFig,2.3{b) isimplement edin' anefficie'ntman n erwitha simpledifferentiat ionofthelinear segmentsresul ting inaposit iveor negative pulse ofequal"heigh tQutofvarying width andfrequency.

Thedeltamod ul ati on processisessenti~lIy.conti nuous! providing8.digital repro- sentatio n6fthei~put'signalaslong~theinpu t,signal doesnotchan"tc

n t

nlatc~

greaterthanthe maximumaver age siopeofthecarrier waveform .Ifthl s occurs, the carrierwaveillunabl e

~o

track the referencesignaland-t he modulationproceaa ' fails. :rhephenomenon termedas slope overlo ad(21-241istheiillJiting~IUICof th~.~elta m~ulatiQntechni que.Beeau ae themodu latorenco desinform ationcor-

~8pondingto thederivat ive.oft.'l~messagefuncti on,the over lendchnrn.ctc\,istic 8

.... .

(44)

1.'·

.'/

24 arc0.{unction of theeiguei slope instead ofthe amplitude. In the absence of an inputelgnal,8.condition commonlyreferredto as the idle channel condition, the modulator outputs aSqUMCwave~jgnflj-illdicntingtheosci11atorynature of the circuit.

The switching frequencyof themodulato~canhecontrolled in threediffer- ent ways: by changingthe amplitude ofth~ r~fetencesignal,by changing the slope of thetri8.ngul~carrier wave or bydinngingthe magnitude of the window widths(±6 quantization

t~~l~).

Theflexibility offered by the rectangular delta modulationsystem has mEl., it veryo.ttr~.tivefor converterapplications.

2,.2. 1 DeltaMod ulat ed Converter

TheW1Yllchrono~op6-ation of therectallgul~DM circuityieldsthe moduluted.J

pulsesquantized in amplitudewith thepuls~widthstI<;te~inedbythe-positive and nega"tiveslopetransitions in the currier wave. Forrec~ifierimplementation ,itis'necessary to control the output dc voltage viathe modulatedpulses which govern the transistor'on--off'. switchingaction.With a constant frequency mod- ulntillgsignal,theinherent self-carri.er.genera featureof theD~Itechnique allowsII.simplecontrol processfor varying the drthe converter.

-r:hemodifjed.rectangular~ave'delt a modulator shown inFi~.2,4 permits the voltage to be controlledviaWIM-ymmetricnl hysteresis quantizer.Thequan tlzcr thrc~holdlevels (Fig:2.4)or alternately, thedelta window )ridths, designated.6., und.6."'.controlthe outputvoltage s.uchthnt,maintainingt:J., greater ,than t:J...

leeds to no :ncrenscinthe output de level.'Qo~vel'sclY,if6 ..~sgreater than 6, Ute out putvcltegodecreesesr

(45)

26

ThesimplecontrolprocessthroughtbeMym.me·~ricGIdellAcontrol(ADO) procedureisgraphically illustrated in Fig. 2.6. In'this case,the modulated switchingpulaeetlM{t)areobt ained bytheinteraction

o r

th~ re{er~ncesineweve vnO) and the.triangularcarrier wavevc(t)generatedinthefeedback path. T1).e carrier isalJow~tooscillatewithinthe'deltawindowdefined

by

6., and

'A

n loca tedabout thereference sinusoid. Wheneverthe'magnit ude of thecarrier wavereachesthe

bo.u~dary

ofeitherA"oranitreversesits slopeandthe output

switchingpulsesaccordinglychangepolarity. Sincethe referenceinput aigna!

"tothe

modulat~r

is'Rsinusoidalsignal

of-fi.~ea

frequency,the'PWM..8wi:ching

sign!;ll generated

at

theotitp~tofthemodulatorhasasinusoldelly'~ingaverage value.This characteristicfeatureof the modulator,in essence,isth?principle behind PWM~+iques(S.-:-101.which aim toattenuatethe 10;.'~derharmonic components.pr esentintheconverter waveforms.

2.2.2 DeltaModulator Circ u it Ir.np1em,en t ation

Aprac tical circuit whichreeliaeetheDMschemeis shownin Fig.2.6.Com- para torAIc~nfim.11"edasa Schmitttrigger serves as ahysteresis comparat or and outputs pulses of gnitud eproportional to itssr.tur efion;olta ges of+V.and -V•.The sinusriidalrferenceormodulatingwa+:VR(t)is'ppliedt.othe input of compar\~,(.orAIand the car riervc(t ) isgeneratedin thefollowingmanner; when- ever theout putvoltage of Aaexceeds the thresh oldlimitsofCOIlilP8.ratorAllit

, .1 ,'

reversesthej;Q~arityofVM(t)at theout pu t-ofA1. Thisreversesthe slope of vc(t ) attheoutputofA3 •Itforces the carrier wavevc(t) to oecillete around the reference waveformVR(t) at ripplefrequencyf•.

(46)

.' 2G

".'':'\

r

,

• VIl(I).

Velt)

H~T ~ --J

,tfjgure2.4:Schelllllticdiagramofthe modifieddelt a modulator with~nctrical

)IYSlCre sis

- .

(47)

t

- i

f/

(48)

\ '\

! . . ,

\

/ v.ll)

(49)

29

The hysteresis comparator

.

threshoid limits or

. ,

ttltem at ivelytbe delte, window

~idth!ll'lXe'es tab lished by thearms ratio.RtlR~such that:

.~

(2.2)

."'-.

, • ".

~I - V.I,

(2.3).

The frequency'of the

modulat~

waveform I"

d~te<min~

by theRTCT

oom~in!

'

t~o~of integrator':42 •The risingand fallingslopes of the carrier wayeare given by:

- '.

where:

·1 .

Mp'= RTCT1+V,1

Mp positiveslopeofvc(l ) M..i1egll.tiveslope ofvc(t) RTGT timeconstan t of integratorA2

(2.')

(2.5)

In the circuit,the ratioRIIR2is set at aconst an t valuegiving~pand.6."di- redly propdrtional to the comperatcr's saturation voltages,Thi,sal1'o~lI.thcADC scheme to beimplementedin an efficient manner bythepertinentpfl.l'nmcte~8

+v,

,

.

and -

v..

By independently controlling

+

V.end-yo,the converter'soutputvolt-

.

/

age can be controlled over theentirerange of opera tion.Since theslopesof the

,

.

carrier waveformare diree;tlYproportional to the pulse~~gnitudc"(+V, or /'

V ,,;

_th e control schcZ£:issimilar to the dual

inte~~tion

[251'control process..--

./

(50)

30

H~wever,withtheADC schemee~pandingover't.hecontrol range,particular attentionmustbe giventoth~,elopeov~rloadlimitation of the modulator , In thi scase,slope overl oad occurswhenth~slopeofeithertlie ;ositive or negative seg m ents ofvc(t)islessthanthema."xi~umslopeof tbeeeferenceairiusoid. For&.

constantamplitude 'modula t ingsine wave;tIR(t)=VRi1in(lUt),themax im um slope

.~ '

.

. .

.

and therefor e slopeoverload occurs when'the instantaneous slopesofeitherM~

orM~'goc s below theminimumlimit of 211'"jVR:Methemat.ically,theoondition

Icrs~opeoverload is givenby

forrisi~g 81~pein

voW, }

forIcll 'ingslopeinvc(t)

(2.6)

This sets the limitation on~and M n andconseque~ly"onthetimecon stantof the integrat,orwith+Y.and-V.beingthe controlverieblee.

Anotherfactorwhich bas been taken intoconsiderationin designing thedelta

;.modulato{issynchronizing the carrierwave withthereferencesinusoidalsign al, Fora particulnr'6pandl}. ..setiin-g,"8.situat ionmay arise wherethefu ndame ntal frequencyofihe carrier wave may deviate from that ofthe referencesinewave, To ensure."synchronization between these"twosignals,the capacitor CT is mo- mentarily snortedto ground'!'t each zero'crossing ofthe referencesign~.This per m its thccepecltort~"discharge, f~rCingthecarrier.wave to besynchroni~ed-/

with thesi.~uBOidalreference,signal. forall6, 8Dd 6" values)·The different,ial encodingprincipleof the delta modulatorresults-Inthe modulatedwaveformbe.

ing'dispiac~d

by 90

degr,~s

with'resp ect io the sinusoidalinput,The

pro~l~m

is'

Références

Documents relatifs

The difference between i* and CSRML is that an actor playing a role can participate in individual or collaborative tasks (through participation links) and can be the

WĂƌƚ /// Ͳ ZĞƐƵůƚƐ ĂŶĚ ĚŝƐĐƵƐƐŝŽŶ Ϯϵ /Ŷ Ă ƐĞŶƐŝŶŐ ĐŽŶƚĞdžƚ͕ ŽŶĞ ǁŽƵůĚ ĚĞĮŶŝƟǀĞůLJ ĚĞƐŝƌĞ ƚŽ ŐĞƚ Ă ƚƌƵĞ K&amp;&amp;ʹKE ƌĞƐƉŽŶƐĞ ƚŽǁĂƌĚ Ă ƚĂƌŐĞƚ ĂŶĂůLJƚĞ͘ dŚƵƐ͕ Ă

Continuum photometric measurements of cometary dust coma can allow us to evaluate the amount of dust produced by a comet nucleus at a given time. We introduce for the first time

Les plantes médicinales utilisées dans les affections urinaires sont riches en molécules bioactives appartenant à diverses classes chimiques et présentent des activités

Keywords: fuzzy cognitive maps, hebbian learning, Arduino platform, process control, fuzzy logic.. 1

As an assay of bacterial abundance, the number of 16S rRNA gene copies per gram of soil was significantly higher in the rhizosphere (root-adhering soil fraction) of pearl millet

The unitary maps ϕ 12 will be very useful in the study of the diagonal action of U(2) on triples of Lagrangian subspaces of C 2 (see section 3).. 2.4

Heatmaps of (guess vs. slip) LL of 4 sample real GLOP datasets and the corresponding two simulated datasets that were generated with the best fitting