• Aucun résultat trouvé

On the max-domain of attractions of bivariate elliptical arrays

N/A
N/A
Protected

Academic year: 2021

Partager "On the max-domain of attractions of bivariate elliptical arrays"

Copied!
9
0
0

Texte intégral

(1)Extremes (2006) 8: 225–233 DOI 10.1007/s10687-006-7969-6. On the max-domain of attractions of bivariate elliptical arrays Enkelejd Hashorva. Received: 11 August 2004 / Revised: 6 July 2005 / Accepted: 22 September 2005 # Springer Science + Business Media, LLC 2006. Abstract Let ðUni ; Vni Þ; 1  i  n; n  1 be a triangular array of independent  bivariate random vectors with the same distribution function as S1 ; n S1 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi elliptical p  1  2n S2 ; n 2 ð0; 1Þ where ðS1 ; S2 Þ is a bivariate spherical random vector. Under assumptions on the speed of convergence of n ! 1 we show in this paper that the maxima of this triangular array is in the max-domain of attraction of a new max-id. qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi distribution function H; , provided that S21 þ S22 has distribution function in the max-domain of attraction of the Weibull distribution function Y . Keywords Maxima of triangular arrays . Bivariate elliptical random vectors Weibull max-domain of attraction . Hu¨sler-Reiss distribution . Coefficient of the upper tail dependence . Weak convergence AMS 2000 Subject Classification Primary—60G70, 60F05. 1. Introduction. qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 Let ðS1 ; S2 Þ be a bivariate spherical random vector with radius R :¼ S1 þ S2 and let ðUni ; Vni Þ; 1  i  n; n  1 be a triangular array of independent bivariate elliptical random vectors with stochastic representation pffiffiffiffiffiffiffiffiffiffiffiffiffi    d  ð1Þ ¼ S1 ; n S1 þ 1  2n S2 ; 1  i  n; n  1; Uni ; Vni ¼ where n 2 ð1; 1Þ and ¼d means equality of distribution functions. Denote further by Mn1 :¼ max1  i  n Uni ; Mn2 :¼ max1 i  n Vni the componentwise maxima. Suppose E. Hashorva (*) Allianz Suisse Insurance Company, Laupenstrasse 27, CH-3001 Bern, Switzerland e-mail: enkelejd.hashorva@Allianz-Suisse.ch E. Hashorva Department of Statistics, University of Bern,Sidlerstrasse 5, CH-3012 Bern, Switzerland.

(2) 226. E. Hashorva. that the distribution function F of R is in the max-domain of attraction of the unit Gumbel distribution LðxÞ ¼ expðexpðxÞÞ; x 2 IR, i.e., for constants cðnÞ > 0; dðnÞ     lim sup F n ðcðnÞx þ dðnÞÞ  LðxÞ ¼ 0: n!1 x 2IR. Let G denote the distribution function of S1 with upper endpoint ! :¼ supft : GðtÞ < 1g ¼ supft : FðtÞ < 1g and put Z ! ð1  GðsÞÞ ds=ð1  GðbðnÞÞÞ; n > 1: bðnÞ :¼ G1 ð1  1=nÞ; aðnÞ :¼ bðnÞ. Under the assumption lim ð1  n ÞbðnÞ=aðnÞ ¼ 22 2 ½0; 1. ð2Þ. n!1. Hashorva (2005a) shows the convergence in distribution  d  ðM1 ; M2 Þ; ðMn1  bðnÞÞ=aðnÞ; ðMn2  bðnÞÞ=aðnÞ !. n!1. ð3Þ. where the limiting random vector ðM1 ; M2 Þ has distribution function given by    y  x x  y  H ðx; yÞ ¼ exp expðxÞF  þ  expðyÞF  þ ; x; y 2 IR; 2 2 with F the univariate standard Gaussian distribution.. Remarks: (1). The bivariate Hu¨sler-Reiss distribution function H (introduced in Hu¨sler and Reiss (1989)), is max-stable with unit Gumbel marginal distributions. For  ¼ 0 and  ¼ 1 the asymptotic complete dependence and asymptotic independence of the components holds, respectively, in the limit i.e.,   H0 ðx; yÞ ¼ min LðxÞ; LðyÞ ; x; y 2 IR and H1 ðx; yÞ ¼ LðxÞLðyÞ;. (2). x; y 2 IR:. The random vector ðS1 ; S2 Þ is spherically distributed if its distribution is invariant under orthogonal transformations in IR2 . See Cambanis et al. (1981), Fang et al. (1990) or Berman (1992).. Condition (2) for S1 ; S2 two independent standard Gaussian random variables was first imposed in Hu¨sler and Reiss (1989). In that context it is equivalent to lim ð1  n Þln n ¼ 2 2 ½0; 1:. n!1. ð4Þ. Sibuya (1960) showed that if n does not depend on n then (3) holds with M1 ; M2 two independent unit Gumbel random variables. Condition (4) implies limn!1 n ¼ 1 which in its turn makes it possible to have a limiting distribution H different from H1 ..

(3) On the max-domain of attractions of bivariate elliptical arrays. 227. It is well-known from extreme value theory (for details consult one of the standard references: de Haan (1970), Leadbetter et al. (1983), Galambos (1987), Geluk and de Haan (1987), Resnick (1987), Reiss (1989), Berman (1992), Embrechts et al. (1997), Kotz and Nadarajah (2000), and Falk et al. (2004)) that F can be in the maxdomain of attraction of either unit Gumbel distribution L, unit Weibull distribution < ðxÞ ¼ expðjxj Þ;  > 0; x < 0, or unit Fre´chet distribution F ðxÞ ¼ expðx Þ;  > 0; x > 0: If F is in the max-domain of attraction of F , then (see Berman (1992) and Eq. 12 below) the maxima of bivariate elliptical random sequences has asymptotic dependent components. So, for the Fre´chet case letting n ! 1 is not of interest. In this paper we investigate therefore only the case F is in the Weibull maxdomain of attraction. If n ! 1, then it is possible to force the maxima to have asymptotic dependent components. More precisely, we prove in the present article that under the same condition on the sequence n ; n  1 as in the Gumbel case, the maxima of the bivariate elliptical triangular array above is in the max-domain of attraction of a new max-id. distribution function H; introduced in this paper (see below Eq. 9 and refer to Resnick (1987) for definition and properties of multivariate max-id. distribution functions). There are several applications and softwares incorporating the max-stable Hu¨sler<Reiss distribution function H . We expect that the new distribution function H; will extend the known applications for the case where the marginal distributions have finite upper endpoints and the distribution function of the random radius R is not in the Gumbel but in the Weibull max-domain of attraction.. 2. Main result In this section we provide first a well-known fact about the Weibull max-domain of attraction, needed to formulate the main result. From extreme value theory we know that the distribution function F is in the Weibull max-domain of attraction, i.e.,     lim sup F n ðcðnÞx þ dðnÞÞ  < ðxÞ ¼ 0. ð5Þ. n!1 x<0. if and only if ! < 1 and 1  Fð!  sÞ ¼ s  LðsÞ; s > 0 with LðsÞ a slowly varying function. Furthermore, the constants can be chosen as cðnÞ :¼ !  F 1 ð1  1=nÞ;. dðnÞ :¼ !;. ð6Þ. n > 1;. where F 1 is the generalised inverse of F. We assume for simplicity that the upper endpoint of F is 1. Next, let in the following  be a distribution function defined on ½1; 1 by  ðzÞ :¼. Gð þ 3=2Þ pffiffiffi Gð þ 1Þ . Z. z. ð1  s2 Þ ds;.  > 0; z 2 ½1; 1:. 1. Define  in the usual way in the whole real line putting  ðzÞ :¼ 1; 8z  1..  ðzÞ :¼. 0; 8z  1 and.

(4) 228. E. Hashorva. We state now the main result of this paper:. Theorem 2.1: Let ðS1 ; S2 Þ be a bivariate spherical random vector with almost surely positive random radius R with distribution function F. Let ðUni ; Vni Þ; 1  i  n; n  1 be a triangular array satisfying Eq. 1 with n 2 ð0; 1Þ. Define the constants aðnÞ :¼ 1  G1 ð1  1=nÞ; n 2 IN with G the distribution function of S1 and G1 its generalised inverse function. Assume that F has upper endpoint equal 1 and further F is in the max-domain of attraction of <* ; * > 0 satisfying Eq. 5. If lim ð1  n Þ=aðnÞ ¼ 22 2 ½0; 1. ð7Þ. n!1. holds, then lim. sup. n!1 ðx;yÞ2ð1;0Þ.      1 þ aðnÞx; M  1 þ aðnÞyg  H ðx; yÞ  ¼ 0; PfM n1 n2 ; 2. with.  H; ðx; yÞ ¼ exp jxj.  .  p1ffiffiffiffiffiffi  þ yx  jyj 2 2jxj.  .  p1ffiffiffiffiffiffi  þ xy ; 2 2jyj. ð8Þ. x; y < 0 ð9Þ. where  :¼ * þ 1=2.. Remarks: (1). (2) (3). (4). (5). Condition (7) is the same as the corresponding condition (2) for the Gumbel case since we can take bðnÞ :¼ 1; n  1. Further, it implies that limn!1 n ¼ 1 since aðnÞ ! 0 as n ! 1. For the limiting cases  ¼ 0 and  ¼ 1 the limiting distributions H;0 and H;1 have complete dependent/independent marginals, respectively. The bivariate distribution function H; is a max-id. distribution function. Its marginal distributions are unit Weibull with parameter . See Resnick (1987) for properties of max-id. distribution functions. Elliptical random vectors are defined as linear transformation of spherical ones, i.e., an elliptical random vector Z 2 IRd ; d  2 has stochastic representad dAS þ m, with A a d-dimensional square matrix, S a spherical random tion Z ¼ vector in IRd and m 2 IRd . See Cambanis et al. (1981) or Fang et al. (1990) for more details. Let ðUn1 ; Vn1 Þ; n  1 be bivariate elliptical random vectors with stochastic representation (1). In view of Lemma 3.3 of Hashorva (2005a) we have for any n 2 IN R =2 arccosðn Þ=2 ½1  Fðu=cosðÞÞ d ; 8u > 0; ð10Þ P fUn1 > ujVn1 > ug ¼ R =2 0 ½1  Fðu=cosðÞÞ d qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi with F the distribution function of S21 þ S22 . If limn!1 n ¼  2 ½1; 1Þ and F is in the Gumbel or Weibull max-domain of attraction we have [see Hashorva (2005b)] lim PfUn1 > un jVn1 > un g ¼ 0. n!1. ð11Þ. for any un ! 1 as n ! 1. Equation 11 is the motivation for both Eqs. 2 and 7..

(5) On the max-domain of attractions of bivariate elliptical arrays. 229. In case that limn!1 n ¼  2 ð1; 1 and F is in the max-domain of attraction of F ;  > 0 we get using Eq. 10 R =2  arccosðÞ=2 cos ðÞ d lim PfUn1 > un j Vn1 > un g ¼ R =2 ¼: ð; Þ > 0: ð12Þ n!1 cos ðÞ d 0 The limit ð; Þ is the so-called coefficient of the upper tailp dependence for ffiffiffiffiffiffiffiffiffiffiffiffiffi d ðS1 ; S1 þ 1  2 S2 Þ. The Z1 and Z2 with stochastic representation ðZ1 ; Z2 Þ ¼ fact that ð; Þ is positive for any  2 ð1; 1 implies that the triangular array setup for F in the Fre´chet max-domain of attraction is not interesting. Hashorva (2005b) derives Eq. 12 in the case n ¼  2 ð1; 1; 8n  1. See Frahm et al. (2003) for an alternative formula. (6) Both the Hu¨sler-Reiss distribution H and the bivariate distribution H; are exchangeable bivariate distributions. This is consequence of the fact that d ðS2 ; S1 Þ for any bivariate spherical random vector ðS1 ; S2 Þ. ðS1 ; S2 Þ ¼ Next, we present a simple example.. Example 1: Let R be a positive random variable uniformly distributed in ð0; 1Þ and let ðO1 ; O2 Þ be a bivariate random vector uniformly distributed on the unit circle of IR2 being further independent of R. Define a random triangular array ðUni ; Vni Þ; 1  i  n; n  1 by the stochastic representation qffiffiffiffiffiffiffiffiffiffiffiffiffi d RðO ;  O þ 1  2n O2 Þ; 1  i  n; n  1; ðUni ; Vni Þ ¼ 1 n 1 with n 2 ð1; 1Þ; n  1. The random vector ðUni ; Vni Þ is elliptically distributed with d Vni ; 1  i  n; n  1. It is well-known that the uniform distribution on ð0; 1Þ is Uni ¼ in the max-domain of attraction of <1 . With n ; aðnÞ; and  as in the above theorem we have that Eq. 8 holds with  ¼ 3=2. The new limiting distribution function is . .    1 yx 1 xy jyj3=2 3=2 pffiffiffiffiffiffiffiffi  þ ; H3=2; ðx; yÞ¼exp jxj3=2 3=2 pffiffiffiffiffiffiffiffi  þ 2 2 2jxj 2jyj ðx; yÞ 2 ð1; 0Þ2 : Straightforward calculations yield 3=2 ðzÞ. ¼.

(6) 1 zð1  z2 Þ1=2 ½2ð1  z2 Þ=3 þ 1 þ arcsinðzÞ þ =2 ; . 8z 2 ½1; 1:. In order to prove the main theorem, we need a minor generalisation of Theorem 12.3.3 of Berman (1992).. Theorem 2.2: Let W be a Beta distributed random variable with positive parameters a and b and let further qi : ½0; 1Þ ! ½0; 1Þ; i ¼ 1; 2 be two functions such that q2 ðuÞ > q1 ðuÞ; 8u > 0. Assume that the distribution function F with upper endpoint ! 2 ð0; 1Þ is in the max-domain of attraction of < ;  > 0. If for i ¼ 1; 2 lim. u!!. qi ðuÞ ¼ q*i 2ð!  uÞ. ð13Þ.

(7) 230. E. Hashorva. holds, then we have Ef1ðW 2 ½q1 ðuÞ; q2 ðuÞÞ½1  Fðuð1  WÞ1=2 Þg Gða þ bÞ ¼ ð1 þ oð1ÞÞð!  uÞ 2 ½1  FðuÞ GðaÞGðbÞ a a. Z. minðq*2 ;1Þ. minðq* 1 ;1Þ. ð1  sÞ sa1 ds; u ! !; ð14Þ. with 1ð 2 ½q1 ðuÞ; q2 ðuÞÞ the indicator function.. Proof of Theorem 2.2: If q1 ðuÞ equals 0 and q2 ðuÞ equals 1 for all u > 0, then the claim is shown in Theorem 12.3.3 of Berman (1992). The other case follows along the same lines of the proof of the aforementioned theorem.. Í. Proof of Theorem 2.1: By the assumptions S1 ; S2 ; Uni ; Vni ; 1  i  n; n  1 have common distribution function G with upper endpoint 1. Further by Corollary 12.1.1 of Berman (1992) we have for all x > 0 1  GðxÞ ¼ Ef1  Fðxð1  WÞ1=2 g=2;. ð15Þ. with W a Beta distributed random variable with parameters 1/2,1/2. Hence in view of Theorem 12.3.3 of Berman (1992) or directly by Eq. 14 we obtain for all s  0 lim PfMn1  tn ðsÞg ¼ lim PfMn2  tn ðsÞg ¼ expð j s j Þ. n!1. n!1. ð16Þ. where  :¼ * þ 1=2; tn ðsÞ :¼ 1 þ aðnÞs, with aðnÞ :¼ 1  G1 ð1  1=nÞ; n > 1: In view of Lemma 4.1.3 of Falk et al. (2004) in order to complete the proof we need to determine further the following function Lðx; yÞ :¼ lim nPfUn1 > tn ðxÞ; Vn1 > tn ðyÞg; n!1. x; y < 0:. Note in passing that the above limit need not exist in general. By the assumptions we have the stochastic representation qffiffiffiffiffiffiffiffiffiffiffiffiffi     d d Un1 ; Vn1 ¼ S1 ; n S1 þ 1  2n S2 ¼ R cosðQÞ; R cosðQ  n Þ ; n  1; with Q a random angle uniformly distributed on ð; Þ and n :¼ arccosðn Þ. Hence for x > 0; y  0 we get (see also Lemma 3.3 of Hashorva (2005a)) PfUn1 > x; Vn1 > yg Z =2 Z maxðn ðx;yÞ;n =2Þ 1 1 ½1Fðx=cosðÞÞ d þ ½1Fðy=cosð  n ÞÞ d ¼ 2 minðn ðx;yÞ;=2Þ 2 n =2 Z =2 Z maxðn ðx;yÞn ;=2Þ 1 1 ¼ ½1  Fðx=cosðÞÞ d þ ½1  Fðy=cosðÞÞ d 2 minðn ðx;yÞ;=2Þ 2 =2 Z =2 Z =2 1 1 ¼ ½1  Fðx=cosðÞÞ d þ ½1  Fðy=cosðÞÞ d; 2 minðn ðx;yÞ;=2Þ 2 minð~n ðx;yÞ;=2Þ. with n ðx; yÞ :¼ arctanððy=x  n Þ=sinðn ÞÞ and en ðx; yÞ :¼ n  n ðx; yÞ; n  1..

(8) On the max-domain of attractions of bivariate elliptical arrays. 231. For any x; y negative we have lim tn ðxÞ ¼ lim tn ðyÞ ¼ 1;. n!1. n!1. hence we may write for large n PfUn1 > tn ðxÞ; Vn1 > tn ðyÞg ¼. 1 2. Z. =2. ½1  Fðtn ðxÞ=cosðÞÞ d minðn ðtn ðxÞ;tn ðyÞÞ;=2Þ. 1 þ 2. Z. =2 ~ minð n ðtn ðxÞ;tn ðyÞÞ;=2Þ. ½1  Fðtn ðyÞ=cosðÞÞ d. ¼: In ðx; yÞ þ Jn ðx; yÞ: pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Condition (7) implies n ! 1 and n = 2ð1  n Þ ¼ 1 þ Oð1  n Þ for n ! 1. We calculate next the limit of both integrals In ðx; yÞ; Jn ðx; yÞ above. We consider only the case  2 ð0; 1Þ. The other cases ( ¼ 0 and  ¼ 1) follow using similar arguments. Assume that lim inf n!1 n ðtn ðxÞ; tn ðyÞÞ  0. Changing the variables we get for large n In ðx; yÞ ¼ Ef1ðW 2 ½minð1; sin2 ðn ðtn ðxÞ; tn ðyÞÞÞÞ; 1Þ½1  Fðtn ðxÞð1  WÞ1=2 Þg=4: By the assumptions we may write lim. n!1. n ðtn ðxÞ; tn ðyÞÞ arctanððtn ðyÞ=tn ðxÞ  n Þ=sinðn ÞÞ pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi ¼ lim n!1 aðnÞ aðnÞ 1  n þ tn ðyÞ=tn ðxÞ  1 yx pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : ¼ lim ¼þ n!1 2 2aðnÞð1  n Þ. Hence Eqs. 15, 16 and Theorem 2.2 yield. lim nIn ðx; yÞ ¼ lim n½1  Gðtn ðxÞÞ lim. n!1. n!1. n!1. nIn ðx; yÞ n½1  Gðtn ðxÞÞ. !. Z n½1  Gðtn ðxÞÞ 1 ð1  sÞ s1=2 ds n!1 2c minðlimn!1 sin2 ðn ðtn ðxÞ;tn ðyÞÞÞ=ð2aðnÞxÞ;1Þ Z j x j 1 ð1  sÞ s1=2 ds ¼ 2c minððþðyxÞ=ð2ÞÞ2 =ð2jxjÞ;1Þ .   1 yx ; ¼ j x j 1   pffiffiffiffiffiffiffiffi  þ 2 2jxj ¼ lim. with Z. 1. c :¼ 0. ð1  sÞ s1=2 ds ¼. pffiffiffi Gð þ 1Þ  : Gð þ 3=2Þ.

(9) 232. E. Hashorva. If lim infn!1 n ðtn ðxÞ; tn ðyÞÞ < 0 we write for large n In ðx; yÞ ¼ Ef1ðW 2 ½0; 1Þ½1  Fðtn ðxÞð1  WÞ1=2 Þg=4 þ Ef1ðW 2 ½0; sin2 ðn ðtn ðxÞ; tn ðyÞÞÞÞ½1  Fðtn ðxÞð1  WÞ1=2 Þg=4: Hence this case can be handled similarly using further the result of Theorem 2.2. By the assumptions n  n ðtn ðxÞ; tn ðyÞÞ xy en ðtn ðxÞ; tn ðyÞÞ pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi ¼ lim ¼þ n!1 n!1 2 aðnÞ aðnÞ lim. consequently using the same arguments as above we obtain .   1 xy  p ffiffiffiffiffiffiffi ffi þ ; lim Jn ðx; yÞ ¼ jyj 1   n!1 2 2jyj thus the function Lðx; yÞ is given by .    1 yx þ jyj 1  jxj 1   pffiffiffiffiffiffiffiffi  þ 2 2jxj.  . . 1 xy pffiffiffiffiffiffiffiffi  þ ; 2 2jyj. 8ðx; yÞ 2 ð1; 0Þ2 ; hence the proof follows.. Í. Acknowledgments I would like to thank both Professor Ju¨rg Hu¨sler for several discussions motivating this paper, and two Referees for various corrections and suggestions.. References Berman, M.S.: Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/Cole (1992) Cambanis, S., Huang, S., Simons, G.: On the theory of elliptically contured distributions. J. Multivariate Anal. 11, 368–385 (1981) de Haan, L.: On Regular Variation and its Applications to the Weak Convergence of Sample Extremes. Mathematisch Centrum Amsterdam (1970) Embrechts, P., Klueppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin Heidelberg New York (1997) Falk, M., Hu¨sler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. DMV Seminar vol. 23, 2nd edn. Birkha¨user, Basel (2004) Fang, K.-T., Kotz, S., Ng, K.-W.: Symmetric Multivariate and Related Distributions. Chapman & Hall, London (1990) Frahm, G., Junker, M., Szimayer, A.: Elliptical copulas: applicability and limitations. Stat. Probab. Lett. 63(3): 275–286 (2003) Galambos, J.: The Asymptotic Theory of Extreme Order Statistics. 2nd edn. Krieger, Malabar (1987) Geluk, J.L., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems, Stichting Mathematisch Centrum voor Wiskunde en Informatica, Amsterdam (1987) Hashorva, E.: Elliptical triangular arrays in the max-domain of attraction of Hu¨sler–Reiss distribution. Stat. Probab. Lett. 72(2): 125–135 (2005a) Hashorva, E.: Extremes of asymptotically spherical and elliptical random vectors. Insur., Math. Econ. 36(3): 285–302 (2005b) Hu¨sler, J., Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7, 283–286 (1989).

(10) On the max-domain of attractions of bivariate elliptical arrays. 233. Kotz, S., Nadarajah, S.: Extreme Value Distributions, Theory and Applications. Imperial College (2000) Leadbetter, M.R., Lindgren, G., Rootze´n, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin Heidelberg New York (1983) Reiss, R.-D.: Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics. Springer, Berlin Heidelberg New York (1989) Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer, Berlin Heidelberg New York (1987) Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Stat. Math. 11, 195–210 (1960).

(11)

Références

Documents relatifs

Changes in coefficient of determination, efficiency, optimum number of functional groups and Jaccard index in simulated datasets, versus relative error of ecosystem function and

We consider the estimation of the bivariate stable tail dependence function and propose a bias-corrected and robust estimator.. We establish its asymptotic behavior under

We fitted four different models to the data: first, a bivariate Skellam and a shifted bivariate Skellam distribution.. Secondly, mixtures of bivariate Skel- lam and shifted

In Section 3, we focus on the stationary case and establish strong connections between asymptotic properties of C(0) and properties of the max-stable random field η such as

Abstract: In this note it is shown that the index coefficients and location parameters in the standard triangular binary-choice model are identified under an assumption of symmetry

In this section we obtain Fr´echet lower bound by a greedy algorithm based on max-plus linearity of the Fr´echet problem and the well-known Monge property (see e.g.. the detailed

This corrected BLF is in good qualitative agreement with optical luminosity-H i mass distributions from the ALFALFA survey and is able to accurately reproduce blind survey

distribution are: the Pearson correlation coefficient ρ, and the index of regular variation of R (say α) or an auxiliary function of R (say ψ), depending on wether R has a regularly