• Aucun résultat trouvé

A Fault-Contained Spanning Tree Protocol for Arbitrary Networks

N/A
N/A
Protected

Academic year: 2021

Partager "A Fault-Contained Spanning Tree Protocol for Arbitrary Networks"

Copied!
6
0
0

Texte intégral

(1)

(2)    "!#%$&!#' ( *)+,!--!. /!#,!0213 546,!7(8  9 < : , ; ? =  > 5 @ # A B A 5 @ A D C < :  > 5 @ # A B A 5 @ A Ld,V#=l@5WYXZm\E?J\Jn@5[]FHG]A#WYJo^`GI_b@5E?A#a5@J5c'^]K<^Ide[]LJp@5MO[]A#WfGNQJpgqeP5@5@5R

(3) h#G]SG]i#T Wfj#rZV

(4) WfV#_ J Ld,V#=l@5WYXZm\E?J\Jp@5[]FHG]A#WYJo^`GI_b@5E?A#a5@J5c'^]KB^Ide[]LJn@5MO[]A#WfGkNUJpgqeP5@5@5R

(5) h#G]SG]i#T Wfj#rZV

(6) WfV#_ J PZsZPZPZstde@5[]WfGuvJ\A#Jxwzy|{KB}B[I@5V#m\J PZsZPZPZstde@5[]WfGuvJ\A#Jxw6y|{KB}B[I@5V#m\J ~o€+x‚\ƒ

(7) „| ’¥‡‰ †,›5“‘ –—†‘x–˜/˜ª‡‰˜Y†xˆ‡‰¬Ãˆ †IŠ ”—¤§ ˜ª‘ˆ +¬’ ‰“'ŠžŸ‰–e|—‡‰žž–—–x˜/†,ˆ ’  ’ Šž– £ £¯ –—‡ž “‘– †x–?£ ‡‰Šž›¥ˆ (ŠŒ¤‹Ž†¦‘\§‘‘Š ¨ež†xž’‡‰–]‰©|`’ Š‰Š †‰“•›5¡+–—˜ª”ŒŸ‡‰–—†ˆˆ «˜™¯ ‹Žˆ ’”š|‘Š Šš†x¬›‰”šeŠ ’ ˆ †x’žœ—Œ–]’Šž­\‰’ ‰‡‰“b“’ ž†x–—˜ªˆž “‘‘‘–— °ž\’ Š Šž†x”—Ÿ‰®

(8)  (Šž†xŸ‰”—ž¡¢–—›‰¤’’ Šž\ Šž†x‘žž|x¤ ‹‹ Šžž ê"£ ‡–Í©‰– £ž–]‘”Œ–—\‡Š#”Œ–”Œ‘£  ŠžŸ‰––]x”Œ˜‰–]Šž”#Ÿ‰†x–鉝ž©‰–]ž”Œ\–]†‘†x  Ÿ‰ –]Ÿ,”—¬§É‘ë'ž‡|À|ŠŒ”ÉŠžŠž–—Ÿ†+†xŠ# Ÿ£† ¯ì –D–—ˆ’ –—|“ ‹ ”šŠ ‘†+žŠžž–(‡‰©|†xŠž – £ £ Šž›¥Ÿ‰¤"–—¤²†n±”Œ³|’ ‰´Yµ “‘¶+ˆ –· ¸o˜Y†x”šŠ ‡‰†xˆ Š]›‰§n’ ˆ ’ º¥œ—‡–( ”šŸ*Š †x†xŒˆŠž“‘’ ‰‘ž“’ Šž˜ªŸ‰ž (‘ ¹”,†x†ž–”šŠ ‘†+›|Šž–‹ ’†o\Šž©5ž–—  £ ”Œ‡’¼”šŠž– –—£ \Š(ŠžŸ‰›‰–’ Škàá+†x³|ˆ ·“‘âB‘· žã]’ µ Šžá+Ÿ‰· Q´™âf¸ž†x–]©‰ ©‰¯ ž–—\ž†‘’  ‰Ÿ“n’ ˜ªpž‘Ö íI îØl¡|†t†‘”B¬‘ž–—žˆ Z‡‰†‘©|”‹ Š ”šŠ †x†x’ ‰›‰– ’ ˆ£ ’ œ—’–—‰’ Šž“»Ÿ‰–—†xˆ “‘›¥‘¤»ž’ Šž†xŸ‰² U† ‘£ (Ÿ‰›¥|¤•k†tŠž †x“‘–—‰”š˜ª–—‘žž’¼ (†+Šž Šž’†x‘»”š˜ªx‘˜'ž (†"†+”ŒŠž–—’ ‘ˆ ˜™ ‹ Šž”Œ’–—‘\Šž– x£ ˜B’‘H‰–,Ö Û›‰Ø<’ †oŠe†+âf´™Šeä(”Œåk‘ á‘æ‘– ážçZâf‰´™è+ å£ –]†x”—ˆ “‘§Ã‘¦ž’˜ªŠž–—Ÿ‰À -†x Šž£Ÿ†+Ô¢Š‘ˆ ‘– ¯ ¯ ©‰–—žŒ–Š ”‹ ¬“‘ˆ Ÿ‰–’¼˜Y †xŸ‡‰©‰ˆ Š]ž§# ½Ž£ (‡ŠžŸ‰–]”’¼”D†(©”Œ†xˆ ©5+–—¬]–—¡\¬”š–Š †xŠž›‰ †x’ ˆ ’ œ]”š†+˜ª‘Šžž’ ‘ z†’ n”Œ–——ˆ †‘˜™‹Ž”Œ”š–'Š †xx›‰˜B’ †(ˆ ’ œ—”Œ’ ’ ‰|“ ‹ ’†x\¥Šž¤e–— †x†‘ˆ `“‘Šž‘’ ž¯ ’ –IŠžÈDŸ‰ zŠžř«‰‘Ç|©5– –£ ‹l¬‘‡|’ ŠžŠžŸ ©‰‡|Š]¡+˜Y†x‰‡‰‘ˆ|Š ‹f”?«‰¬Ç|– ’ Šž£ Ÿ‰‹l’‘ ‡|Šž©‰‡|Š]¡]‘/¤|– ¯ ˆ –]–—”— § †x†xˆ¿“‘‘†xžž’ ›‰ŠžŸ‰’ Šž ¾ †xž˜ª‘¤Hv‰–‘Šš¬”š‘ŠžžžÀZ‡§Â`Šž’ ÁЉ“oŸ‰’¼†n”ž†x¥ˆ “‘x‘Šžž– ’£ ŠžŸ‰”Œ Ä©†x‰Ÿ‰†‘’”(‰“nŠš¬ŠžHž–—”Œ–k©5’– ‹ ¨eÖ ï¥‡‰¡]ð|©|¡+Š †ñ]Øl§’ \ÁʞžŸ‰ –B£ “‘‡\†x– ˆx£ x˜\ŠžŸ‰ŠžŸ‰–’¼”

(9) àá+Šž³|–] · â'Ÿ‰‰µ ã+’¼­\釉âŽá+–<´™’¼é”Zä(Šž?åé–—â'”Œ†x‡‰©‰ž©‰–#žŠž\Ÿ†‘†+ ŠÉŸoŠžŸ‰’  – “‘’‘«5ž’ ŠžŸ‰˜ª–] (†+Šž”—‡‰®pž–]ŠžŸ‰”k–—¬ž–p’ ŠžŸb’¼”kž‰–] ”Œ©5£–]’¼`”šŠkŠž’ Šž‰»“‘‡‰©‰’¼ž”Œ–Ÿ‰¯ – ’£ ‘‡‰”Œ ˆ ¤•£ –H† £ Ū’f†x§ ©|–‘§ÆŠž– £ –]†‘†x ˆŸ ‹ ”Œ”Œ¤|’ ‰”š“‘Šž–—ˆ –< òŠž ’¼†x”'”Œ”Œ–—’ –—ˆ ˜\Š”šŠ ˜Y†x†x›‰‡‰’ ˆ ˆ Š]’ œ—¡+’‘‰‰“ˆ ¡É¤†x†e ”Œ£o (£ †x‡‰ˆ ¥ž’¥‰‡‰“ ž›5–]–—# ¯x–—˜ž©‰¤ž|˜ªž‘–] ò”ž”Œ–]† ” ”›‰Œ’ ’ Šžˆ –’ œ]†+–Ç|Šž’ –]‘²‡|Šž’ – ¯ Šž‘Ÿ‰ˆ–¯ –]”ž”†x †t–“‘ˆ ‘ ›£ †x–Iˆ?È`¡

(10) †x¥ ‘£ £ Šž’ Ÿ‰–†+Šž©‰’ ‘ž»’ Šž’Ÿ‰©‰žˆ ‘–‡‰x“‘˜DŸ•”šŠ ž†+–‹‹ ¬©‰ž’ –]ˆ ¢”Œ–—›5\–"Šž– †x£ ˆ Šž+Ÿ‰¬ž––—–?£ –ŠžÇ‰»†x –Ç|©‰–]ˆ –]‡|”BŠžŠž–oŸ†+žŠ–]’ ˆ ¯‡–—”šžŠž¤H †+Šž†‘–`ŠžŠž’ Ÿ‰‘–”—˜ª–]§6†‘”Œ¨e’ ›‰‡‰’ ©|ˆ ’ Š Šš¤† ­Šž\’ ‡‰‘–]”šŠ “‘”e †x†x©‰ ŸÉ£ § ž–—©‰ˆ ’ –]”?˜ª‘ˆ +¬’ ‰“©†+ŠžŸ”ex˜BŠžŸ‰–(‘  ‡‰‰’¼—†+‹ x©‰˜žx£ Šž–]|”Œ’ “‘‘‰ˆ¼”’ ‰˜ª“v‘–ók’  ’©5–—‘\ŒŠŠ †x˜Y†x\‡‰Šˆ ŠŒ©‰‹Žž‘‘›‰\Š ˆ –—†x (’ ‰”— ®»–—\†»ŠÃˆ ”Œ–]–—† ˆ £˜™‹Ž–—”šŠ †x–—›‰ˆ –]’ ˆ `’ œ—Šž’’ ‘‰“ ©‰†ž”Œx’ Šž‰|“‘ˆ –‘ˆZŠžŠž Ÿ†x†+Š?”Œ’ –—ž–]\ŠD ˜Y¯ †x–—‡‰ ˆ ”Š’ ‘ k‘ž’ –—\ŠžŠž’–  £ –,ž’ ˜ª‰ž“k‘ -Ö ïIØl†(¡¥†”šŠ ›‰†+žŠž–]–† ¬£ Šž’ ŠžŸ|Ÿ ‹ «†xž ›‰”šŠ'’ Šž”Œ –]†x†xž¤t  Ÿn‰–”ŒŠš©¬†x‘‰ž‰À¿’ ‰Ö “kñ—ØlŠž¡ž†x–—–v£ ‘”Œ©”š†xŠž‰ž‡‰`’ ‰Šž’“x‘‹fpŠžž–—©‰–žx©‰Šž|žxŠž‘|ˆ/’ ‘oˆ†x’  Ê Ë\ÌDÍ|ΉÏТѢÒ5͉ӚÏDÌ £ £ x †   ‰ ‡  ’ ž  ] – `  ž Š – ‰   – š Š  ¬ ‘  ž  p À Ö I ð l Ø § Ž ½ H  ž Š ‰ Ÿ ¼ ’  ”  © x † 5 © — – ]  D ¡  ¬ n – —  x † ž  ž  t ¤ £ £ £ ÁŸ†‘”'֗Ÿ‰ – –—ž–]“‘”Œ– ’ “‘£ †‘x”˜Z†x”Œ"–—ˆ ˜™’‹Ž ”šŠ ©5†x‘›‰Œ’ ˆŠ ’ †xœ—\’ ‰Š“ ž–]”Œ’¼”š–]Šž†xž ’  ›‰Ÿ"‡|Šž†x– ž–]††xˆ ’“‘t‘žž’ –]ŠžŸ‰–— (\Š” ä(åéân›¥¤&©‰ž–]”Œ–—\Šž’ ‰“Ù†xÂ†xˆ “‘‘‘Hž’ ŠžŠžŸ‰+ õ¬Ã†x˜ª‘£ t”eà”Œá+©³|†x· ‰âv‰µ ’ ã+‰é“x⎋fŠžá+ž´™é–—– ô ¤‘›¥–]¤H†x Ô¢”—’§՚À|½l”šŠŠž ¬Ã†²†‘”eÖ ×+Øl«§Ù ”šŠº¥’ ’\Šž–ž Šž£ Ÿ‰‡–—b– £ ”Œ–—’ˆ »˜™‹Ž”š†nŠ †x¬›‰’–—ˆ ˆ ’ œ—‹l’À¥‰‰“t+¬©‰ž"xŠž©|†x©5‘–—ˆ¼” Š ”šŠ †‘†x”ŒÀZ›‰’§÷ˆ ’ œ—’ ‰ön“e‘†xžˆ –“‘‘©‰ž’žŠž–]Ÿ‰ O’¼”Œ–—˜ªˆ ‘¤‘B¡"”Œ©¬†x–‰‰ ’ ‰ “¢£ Šž’ ˜ªž¤ò–—–Æxò‘”š–]Šž†xžž‡ˆ ’`–—ŠžÙ’ ‘”Œ–—‘ˆ ˜™ ‹ Ÿ‡‰† ¯£ –Ö—ž›5ˆ ¤¥–—–—’ ‰ “•£ –]©‰”Œž’ ’ “‘‰–’ ©‰£ ˆ –]˜ª‘”DŸ†'† ˆ¼¯ †x–ož“‘›5– –—¯–—†x&ž’ ––Ç|Šš¤©‰ˆ x‘˜Zž–©‰£ ž‘›‰Ö Úˆ –—¡, (Û]Ü|”<¡?†xÝIØl£ § “‘ž’ –—¯ ‰–Ö—†¢ †x˜Yˆ†x‰‡‰–ˆ ŠŒŠš‹Ž¬‘‘\žÀ|Š †x”<’ ›¥‰¤k– £ ¦”Œ˜ª–—–—ˆ ÀZ˜™‹Ž¡|”šë'Š †x‡|›‰ŠŒ’ Šžˆ ’–—œ—’ ‰†x“, †x£(ˆ “‘ø ‘‡‰ž’‰Šž“Ÿ‰ Ö ùI§#ØZŠžº\ Š †x£ Œ–ŠŒ‹‹ Á¯Ã–—Ÿ‰ž–,“‘–—©‰ž’ –x’ ©‰˜'ˆ –,ŠžŸ‰x–o˜<”Œ”Œ¤|–—ˆ”š˜™Šž‹Ž–—”šŠ  U†x›‰Šž’ »ˆ ’ œ]”Œ†+‘Šž ’ ‘–’¼£ ”Ö]Šž”Œ’(ž– “‘£ ‡†x”š Š †x†x\›‰Šžˆ –—–o–'”šŠ ‘†+|Šž–‹ Šž’ ‰n“v†˜ªž”š‘Š  -†+Šž–(†x¥¬¤’ Šž†xŸ*ž›‰†’ Šž”Œ ©†x†xž¤k‰‰”š’Š ‰†+“Šž–‘Šž¡ž‘–—–‡‰?ž¥†xxˆ “‘Šž‘– ž£ ’ Šž†+Ÿ‰Š, úŠžŸ‰–(‘ ˆ¼¯†x–—ž“‘ž“‘–]–]”šŠ” ˜ª›‰ž’ ‘Šž Þ †xž†x’ ˆ Ù¤•†xˆ¼†xžž›‰“‘’ –nŠž †x¥ž‡‰¤H ’›5‰–—’ Šž’¼†xxˆ'˜'”š˜YŠ †x†+‡‰Šžˆ–oŠ ”—†x§6ž’¼”ŒÁÒ ‰Ÿ‰“»–p‘«‡| ”šŠŠ x£ ˜–]†x”Œ’Ù“‘‰†x– Œ£ ‹ ’£ £ ’ ók–—\Šž‡‰’ Ššˆ ¤Šš¤o‰x˜£ –‘Šž¡\Ÿ‰’’¼k”,†eŠž «†x‰’”šŠž˜ª–?‘ž¥ (‡‰†+ Šž›5’ ‘–—o<xˆ ’ ˜É–]””šŠž‘–—©"”—Šž§#Ÿ‰ÁÖ(Ÿ‰–¢†+”ŒŠž©5‡‰–]ž–(’ «5x ˜ ¥”Œ”šŠ –—‡‰†xˆ  ˜™Œ‹ŽŠ”š›5Š †,–—†xÃ›‰“‘’xˆ ˆ‘˜/’ œ—›Šž’ †x ‰ˆ5†x“‘©‰”Œ’ž–—x¯ \Šž–—ŠD|ž“‘˜Y†x‘–—‡‰ˆ¼”È Š –¬”–—†‘—ž`†x–'Šž‡’ “‘¯”Œ–]ˆ’ ‘Šš”D¤‘›Šž§#†xŸ‰ÁÈf–e§BŸ‰–—ÁÒ¼\”DŸŠžž’†+ž–]Š?–'’¼ ”Œ”—¯ ¤|¡–—”š†(žŠž¤–—”Œ ß (©‰ž†xŠžxˆ ‹ Šž‡Ÿ‰¥”Œ––‘£ ‘£ ž˜ª’ ’‘“‘†+’ ŠžŠž’ †xŸ‰‘ˆ#p–†x’¼‰ˆ ”'“‘ ‘’£ ž–]’¯ Šž”v‘Ÿ‰ˆŠž ¯ t– §£ ›‰ÁݞŠž–]ŸŸ‰†x†+žÀH‘Š,‡‰”Œ’¼“‘”—¤¥Ÿo¡É ‡‰ž ‰–]’¼­\–­\Šž‡‰‡‰ž–]¤»–”šŠ ’†x”'£  –—†x£ \ Šž£ †"’ Šž’ž“‘–]–—”,ˆ ©‰‘ˆ†x›’ ž–]†x–” ˆ †x–]›5”ž ” ¯ –£ ¥£ –]’¼”ž”k‡‰”žx”ŒŠ’ ‘”ž(—†x ˆ –xŠžŠž’ »¯ †+ Šž–]”D£ ”Œ–—– ž¯ b–— ˆ¼†x†xˆž†x“‘©‰–©‰‰ž\–Šš†‘¬ Ÿ‰‘–]ž”BÀ|”—†‘§&”/àÁÃá+³|Ÿ‰·– ⠘ª‘ˆ ÁÏ+¬Ÿ‰–v’ ‰ž“v–]”š©Še†+ŠžxŸ˜B”ÊžŸ‰x–v˜Šž©Ÿ‰†x–©5–—‘e ’¼”¢ ‘‡‰ž‰“\’¼†x—‰†+’ Šžœ—’ – ‘£ †‘“‘”? †x˜ª‘©‰ˆŸÉ+§ ¬?”—§'º¥–]`‹ · ã]‘µ  á+¯ · ¡#–—žâf“‘´™ä(–—å(–vá‘æ‘Šžáž"çZâf†p´™è+å‘ž‘ž–]`àŠvá+³|· ‘⢐|µ «ã+“‘釉âŽá+ †+´™éŠž’ä(‘tåéxâØŠžŠžŸ‰Ÿ–† ”Œ¯ ¤|–,”šŠž˜Y–—†‘ ”šŠ Šž×’ ‘•‘\ùŠ †x ’ ¯ ”D–— †¯ ’”Œ–—Ÿ‰¬?‘”'ŒŠ ŠžŸ‰£ ––]”ž ž’ ©|£ Šž–—’ ‘ˆkx˜¢x˜

(11) ‘ŠžŸ‰ –e©‰‘‡|žŠ ’ †+“‘Šž’ ’ ‘†xÉˆ5§t”Œ©º¥†x–]‰`‰Šž’’ ‘‰“ k. f. O(1). O(f ).

(12) Šžžˆ ‡–—–D£ –]†x”<ˆ “‘† ‘ž£ ’ –ŠžŠ Ÿ‰†x Ù’ ˆ – x£˜¦£ –]˜ª–—”žÀZž¡x’ ë'©|Šž‡|’ ‘ŠŒŠž–—x˜Z†x’ Š ”B£'Šžø  †x‡‰‰”š“˜ª§#‘žº¥ (–]`†+ŠžŠž’ ’‘‘vÚ?’ \’ Šž| ‹ †(‘˜Y\†xŠ ‡‰†xˆ ’ ŠŒ‹Ž”‘”Œ\‘Š  †x’–,‰–‘£ ”Œ–—ˆ ˆ‡ ˜™‹Ž£ ”š’ Š ‰†x“›‰’žˆ –—’ œ— (’ ‰†x“žÀ|†x”ˆ “‘†x‘ ž£ ’ Šž©5Ÿ‰–—  ”Œ§'©5º¥–]–]``ŠžŠž’ ¯’ ‘–]"”—§ ï QÏ Ð  ©‰‘ž –]ê"”Œ –—–k\‡‰Šž‰– ‘£’¼—›¥†+”Œ’Šž¤£ ’ ‰–—†e“,“‘Šž ¯ Ÿ‰†x’¼–k†"©‰Ÿ  ”ŒŸ †x£ ž–—– ˆ<£ x ˜?–—† ‰¡‘‘–¬žŠš¤‘¬Ÿ‰§²–—‘žžÁÖ ÀpŸ‰x–n˜Ã£ ‰©‰–—–‰žŠš|x¬Šž‘–]–]”ž”/ž”ŒÀ*Šž‘Ÿ‰ ’¼–”” Šž”ŒŸ‰–Š/–*x”Œ˜¥–‰Š £‘xž˜–]ž”

(13) –]– ž”Œ£ –—©5“‘©‰‘–]ž”–]£”Œž–—–—\Šž©‰nŠžž’ ‰–]†“”Œ–—©‰Šž\žŸ‰Šž|–<’ ‰©‰–]“*”žž”—|Šž¡/Ÿ‰–]†x–t”ž ”Œ£ˆ‘’ ‰ †x”—À|"¡—”—†x§ – £ £ D“‘– †‘ £ ŸÙ–—‰‰x Šž£ –]–” ©Šž‰Ÿž†+| Š?–]–] (”ž†x”Œ†x‘À‘”e–eŠžŸ‘Ÿ†‘‡‰†+”,Š † ‡‰ †x‰£ ’¼–—­\£ ˆB‡‰éZ–(ã+’ ép££ ’–—ž³|\–]銞`’´ ŠžàŠšˆ 㤑¤H `¡ÉävŠžŸ‰‘§<–( Áϑ Ÿ‰‰–'‡‰ˆ ¤o‰Šžx’¼—†‘Š †+”ž†xŠž”Œˆ

(14) ‡‰–‘¥§ ‡‰©| DŠž†‘›5’ ‘ –—Ÿ  ‰x˜–Šš©‰D¬ž†‘‘| žŸ*ÀZ–]§”ž©‰”Œž‘| ”—–]¡ ”ž”Œ‘¡É’¼”'Ÿ‡‰†‘‰”À¥†o‰+”Œ¬–ŠvpxŠž˜ˆ |ŠžŸ‰—†x–(ˆ ©‰¯ ž†x|ž’¼–]†x”ž›‰”Œˆ ‘–] ”—”?§px¦°˜DŠžˆ Ÿ‰x– ‹ —†x†xˆ  ¯ £ †xž†x’¼¥†x¤n›‰ˆ –kx˜›5’ –—Š ˆ”'‘‰‰“‘–—’’ “‘‰Ÿ¥“n›5Šž‘" ”—†p¡

(15) ›‰©‰‡|žŠ|—–]†x”ž"” ¬ž—’†xŠŒ»Šž–—"›5–’ \žŠž–]† £ ‘‰›¥ˆ ¤¤ ‘›¥—†x‰¤ ˆ ˆ ¤¯ §'†x’ Š žÁÔ?’¼†xŸ¥‰›‰‡–—ˆ ”—–]’ ¡

(16) “‘”—Ÿ¥†k¡›5†x©‰‘ ž £ |”¬’–]nž”ž’”¢ŠžŠžŸ‰’—‰†x–“k ‰’ –£\ŠšŠž’ ¬ž(–]‘`’ žŠ ŠžÀ”?ˆ ¤n+›¥¬¤‘ ž–]ˆ  †|£—‡‰’†x‰‰ˆ ’¼“¯—†+†xŠžŠžŸ‰ž–’¼–—†x’ ¬›‰¢ˆ ’ ˆ–]Šžx”—Ÿ ‹ § ‘ ‘Ù–] † ˆ £©‰|”‡|—†xŠ x†+ˆ,˜#Šž ‰’ ‘–—–—H’  “‘Ÿ¥†+‘Š›5ž‘¤b–] †‘”Æx žŸ» –t–—©‰ †+žŠž|‘‘ž –]¤”ž’¼”Œo†‘‘”ݏ‘¬©5–—–—‘ˆ /†+”Œ†‘Šž’¼’”š”‘Švž–]x”—†˜e§ú£ †oÁÆx”Œ Ÿ‰–]£ –t­\‡‰¬ˆ –—|ž—’ Šž†x–– ˆ x–— ˜†+ŠžŠž ’ †x‘k”ŒŠž’ ŠžŸ’ ‘†+Š”ଏ Ÿ‰¯ –]–—”<ž–'ŠžŸ‰–]–'†‘ ©‰Ÿž|Šž †x–]”ž”Œ”Œ‘’ ŠžD’ ‘˜ªžn‘ ß‘’ Š ”Œ”’¼”š”šŠ Š ”Æ+xŠž–'˜B†x›5–˜ª‘‘©|ž–‹ ŠžŸ‰–'ê"Šž –†x†‘”ž”Œ”Œ’ Šž‡‰’  ‘–eŠžŠž(Ÿ†+†xŠ?‰–]x†‘ŠžŸ‰ Ÿ–—?©‰”šžŠ |†+Šž–]–‘”ž§ ” Ÿ†‘”†©‰ž‘“‘ †x zŠžŸ†+Š ˜ª†‘‘ž›5 ¥”Œ’¼‘¡”šˆŠ –]”†xtx˜,©‰†"ž– «£ ‰’¼—’ †+Šž–pŠž–”Œ’– Šk¯ x‘˜'ˆ ¯ “‘’ ‰‡“†x Šž£ Ÿ‰– –k£ ˆ |”š¬Š —Ÿ‰†+†xŠž–—ˆ –—ž¯ –‘†x¡ –—ž\’¼†xŠ ›‰”ˆ –]x”'˜exŠž˜Ÿ‰’¼–” ’¼†x”v§* £†xÁÐHŠžŸ‰Ÿ‰†‘ – –n”ž”Œ

(17) ¢’ˆ “‘|µ‰âf—´Y†x ã+ˆ 鲖—¯\’¼†xŠ”vž’¼Šž–†xŸÇ|›‰†+–]ˆ Š–]”‡| Šžx–  ˜'£ £ ’’ Š ‘«”(‰–]ˆ”‰¤t–—Šž’Ÿ‰’ “‘˜¢–Ÿ¥Šž›5ˆŸ‰|‘–— †x”—ˆ¡‘ž¯†xž†x –]ž£”Œ’¼©5†x›‰‘ˆ –]£ ”’ ‰’ “ “‘”šŠ ‡†+†xŠž –—£  –—\Š – ¯ ’¼”†xˆ –—‡†+†xŠž›‰–]”È – Šž£ § Šžž‡‰–‘¡‰’ n¬Ÿ‰’¼ Ÿn—†‘”Œ–,¬–”ž†I¤  B̢̢ӌ Ì zÍ|Î &ÒZÏDÌ ‘Í|ÎÑ¢Ò5͉ӚÏDÌ ’†‘‰”Œ“b¤¥¦†x˜ª –—ˆŸ‰“‘ÀZž‘¡‘ž‰’ë'Šž‘Ÿ‰‡|‡  ŠŒ”ÉŠž‰–—˜ªÉ–‘Šš¡p¬†x‘ ž‘À'£Ù x©‰ø ˜‡|‡‰©‰Šž‰ž’ ‰|“ƍ“b–]Ö ùI”ž†b”ŒØ‘”Œ©‰ ©”

(18) ž†x‘Šž‰©5Ÿ‰†+\’ŠB”Œ‰– “•£ ‘ Šž†²ž –—”š–t‡‰Š †x‰’ ›‰Æ’¼—’ ˆ†+’†xŠžœ –‹ Šž’ £Ÿ‰–—ž\‘Šž‡‰’ “‘«Ÿo–— ”Œ”?Ÿ›‰†x‡|ž–Š,£ †xž ––—x ŠžŸ‰‘–—ž¤‘ž¬§e’¼ÁԌ–Ÿ‰–’ £ ©‰–—ž\|Šž’¼—–]†x”žˆf”Œ§?‘ ½Ž”|˜ªŸ‘† ž¯ (–†x‡‰ˆ ‰¤’¼­\Šž‡‰Ÿ‰–– Šž†x”Œž–—ˆ “‘’ˆ –]˜š‘§#”(žÁÒ ŠžŠž»Ÿ‰Ÿ‰– Þ›‰‡‰‘—’ ˆ†x£ ”š¿Šžž†t›5‡–`ŠžŠžž’–—£ ‘–p–],”ž’’²‰ž’’ ›5ŠžŠž’¼Ÿ‰– †+£–oŠž– ‰†‘£ –”k›¥Šš¬¤,˜ª‘‘†?ˆ ž+‰À»¬? ž”—£ ¥§ –Dx¬Šž – ’ £Šž¯ Ÿv–—˜ªž†ž¤²‘ˆ¼ î†x‰ž “‘’£ –—ŠŒ–‹ G = (V, E). V. E. v ∈V E. (u, v) ∈. u. v. n. i. žŠ’ £’ Šš–—¤‘‰\§Šž’ £ Šš¤(–¯ –—¬ \¯ ’ Šžˆ–—‡ɝž†xž ‡‰ˆ¯ ¤‘–—ž¡Z”BžŠžŠž‡‰Ÿ‰Ÿ‰––'†x›‰‘ˆ ‰‡‰

(19) –e’ Šžˆ Ÿ‰£ x–’ ˜#‰x†“Šž‰Ÿ‰’ ‰–—’£ Šž’¼–eŠž†+žŠž¬–—– –]’ £ Šž”?Ÿ›¥‘†¤ˆŠž”š+Ÿ‰Šž¬ž–‡–—ˆ¼`†xŠž’ž’ £ ‘“‘–—–]|”š”—Š‹ § ŠžŠž¦¿–—’ Šš¤‰ ¤‘’¼£”?§ –eˆ¼?†xˆ ž–]+“‘†¬–—¯ – ]–]¯ ¡‰”<–—†(’]Š ¡‘‰”<Šž Šž'£ž–—Õš–‘–¢’Ÿn¬†‘Ÿ‰”†x–—‰Šž(xŠž’ ©‰Ÿ‰Š ž–—£ ‘–©ŠžŠž†xž–]“\–—`–'†+Š ”Šž¬–†Ÿ‰†ˆ\|ž”Œ—–]–'†x­\žˆ5‡‰¥’ –]x”šŠŠ¢‘’  £ ”Œ–—–]’¼|”š”š‹‹‹ ”ž†x–—’“‘¯ ––e†x†ˆ ‘“‘‰ “¢†x\ŠžŸ‰Š–à‰–]–—”ž¬»”ž†xŠž“‘ž–¢–—–Û†‘›‰  ÀZ†x§# Á߉Ÿ‰–]’¼”É”Šž eŠž–]Ÿ‰ Ÿ–Æxž‰¥’¼x”ŒŠB  †x©‰£ž– Šž¯ '–—\žŠ –”‹ ŠžŠžŸ‰Ÿ‰––"‰‰–]–Šš–]¬”ž‘”Œž’ ŠšÀb¤n”ŒŠž’ œ—–‘À¥§ ‰+?¬z˜v† £‰‘£ ‡‰’  Šž”Œ’ ‘–pŠž†xŸ‰ˆB–]’ ”Œ|–t˜ª‘ ž (–]”ž†+”žŠž†x’ “‘‘–]t””Œ©‰‡ž ‘Ÿt©†‘†+”‹ “\††+”ŒŠž–]–­\‡‰ŠžŸ‰–—ž‘‡‰–,“‘xŸ²˜#žŠž–]Ÿ‰† –"£ ”Œ†xŸ †x£ ž– ¬£ ž ’ Šž–,–— ‘©5‘–—ž ’ –]†+”kŠž’ ‘x˜'”—Šž§DŸ‰Á/–o(‰–] ”š£ Š –]†x” ›‰ˆ ¯’¼”Œ’¼Ÿ† £†x”Œ–—’ Šžˆ £˜™’ ‹Ž‘”šŠžŠ †x”e›‰¬š’ žˆ Ÿ‰–]’ œ]’¼”š †+Š Ÿ"Šž†x’ Œ‘–—Š!ÉŠ¡\†xž¦›‰Ÿ‰ˆ ˜ª–p–(–—À ›‰†‡‰‰’ ˆ £ £ ’ ‰–v“*£ Šž– ©‰«ž£‰|–– Šž£ –]–]”ž`”Š,–—Œ›¥’ Š ¤²†x’ ‘k‘ˆ ”Œ|’¼”Œ—”š’Šž†x£ –—ˆ5–—ž‘’ ’‰|–]“ ”‹ ’ Š ”Œ–—ˆ ˜ŠžŸ‰–,ž¥xŠÃx˜B†”Œ’ ‰“‘ˆ –'‰ £ –'Šžž–—–‘§ « (“‘†x‡‰¦ ’ ž\–•Š ˜ª†x‘Ûo’ ž (”˜ª‘†xŠžˆ Ÿ‰£Šž– Ÿ‰–]”ž–t¯ †xžžž’ –]’¼©|†x† Šž›‰£ ’ ‘ˆ‹Ž–]*†x” ˆ 'x˜”šŠ Šž†+Ÿ‰Šž––t¡ †x ˆ “‘ ‘£ ž–—’ Šžˆf†xŸ‰§"  ¹£ D’¼†‘” ŸÙ”ŒŸ‰+‰Šž¬ £t£– ’– ‹ ”žž’ ›5–<ŠžŸ‰–DŠžž–—–”šŠžž‡`Šž‡‰ž–D¬’ ŠžŸŠžŸ‰–D˜ª‘ˆ +¬’ ‰“?©‰ž– £ ’¼—†+Šž–]”D®. id. et al.. i. rooti pari. i. i. i. label : P recon −→ Action. P recon. i Action. i. P recon label. Root(i) Child(i, j). ≡ ≡. T ree(i) Lmax(i) Sat(i). ≡ ≡ ≡. disi. rooti = i ∧ disi = 0 rooti = rootj > i ∧ pari = j ∈ N eighi ∧ disi = disj + 1 root(i) ∨ ∃j : Child(i, j) ∀j ∈ N eighi : rootp ≥ rootj T ree(i) ∧ Lmax(i). Šž#<Ÿ‰†x–tžön’¼†x©‘›‰†‘žˆ”ž–—– ”Œ ’ ¯‰–—“H?x–]˜†‘ ‘ŠžŸp\Ÿ‰Š –t‰†x’ ž£ –]”'–­\‡‰Šž (Ÿ‰–]–k”š†xŠn’ ‰\†xŠ  †x £ ’£–k” ¬ŠžŸ‰¯ Ÿ‰†x–t\ž”Œ’¼“‘–,†x ›‰†x՚ˆ‘\–]’Š”?*ž ž–—–]ˆ¼–]†+­\”žŠž‡‰”ž– †x–]£ “‘”šŠ–]Šž”— § ¬’¼”Ÿ‰˜ª‘‘ž‡‰  ¬Ãžž†x–— \£žŠž–]”'ˆ † ¤•’£ Š]©‰¡#ŠžžŸ‰†x|–,£ –]ž”ž–]”Œ­\’ ‡‰‰–]“”š¡ Š]’  ¡ £ ’¼—†+’¼Šž”–]”,Šž’¼Ÿ‰”(¬–,ŠžŸ‰‰Ÿ‰––—–"Šž’ Ÿ‰“‘‰–—Ÿ¥–—›5’ “‘‘ŠžŸ‰Ÿ¥Ã–k›5Šž‘ž(–]¬­\˜ªŸ‰‡‰ž‘’¼–]  ”šŸ Š ˜ª’¼ ”t‘ˆ–]“‘ +Ÿ ¬†x†x’\‰‰Šž’¼“*–”Œ ¾£ ©‰§2ž® – £ ¦¢’¼—”t†+Šž˜ª–]‘” *£ Šž–]Ÿ‰”ž–²žŠž’ ›5ž–—–p–bŠžŸ‰ž–—–oˆ¼†+žŠž–]– ­\£ ‡‰–]¯ ”š†xŠkž’¼˜ª†x‘›‰ž¬Ãˆ –]†x”—¡£ Šž’ ‰Ÿ‰“– reqi. i. f romi toi. i. i. diri. Idle(i) Asks(i, j). ≡ ≡. F orw(i, j). ≡. reqi = f romi = toi = diri = ⊥ ((root(i) ∧ reqi = i) ∨ Child(i, j))∧ toi = j ∧ diri = ask reqi = reqj ∧ f romi = j ∧ toj = i∧ toi = pari F orw(i, j) ∧ diri = grant. £ ‘–«/Á ”š‰¿Šž– ž£ ‡†‘` ›¥ŠžŸ‰’¤ ’‘– É¯ ¡–t†x”Œˆ ɖ—ˆŠž˜™Ÿ‰‹Ž”š–Š †x‰›‰ ’§ß£ ˆ ’ –]œ]”?¦¹†+Šž ’ ‰‘‡O”š£ Šex– ”ž˜v†+ŠžŠž’¼Ÿ‰¬”š–»˜ª’ ¤ŠžŸ”ŒŠž©Ÿ‰†x–‰‰‘’ ‰ “•£ ’˜YŠžŠž†x’žˆ¼‘–—”Œ–– Šž‰†+žŠŒ–—–—Šž’ –<–—“‘ Ÿ¥›¥›5¤ ©|‘Š  ”,’¼”/Šžn©5¬–—’–]ŒŠž”š˜ªŸkŠ ‘†xžŠž›‰ Ÿ‰ˆ –¢’¼– ”Œ£ Ÿ‰Ÿt’’ “‘’ ŠvŸ‰Šž–]›¥Ÿ‰”š¤ožŠ –—¯–D›5†x–]”šˆ Šž‡‰–—‘–¢© ”—x’§#˜ ‰ “’  Šž”šŸ‰Š]–¡ §% $‘›5Ÿ‰‘–]’ ’ˆ ‰£ ‘’ ‰ x“ ˜–]”/’ Š & † ”” ž) ¥xÈ`Še¡?ÅY†x†‘ `Šž£ ’ ‘«( '†xˆ ¤pÈ`¡\՚Šž‘Ÿ‰’ –—”(†‘¬”ŒÀ|Ÿ‰”<–— ˜ª‘É՚“‘‘ ’ †x\©5Š –—”vž ŠžŸ‰’¼–p”ž”Œ’©5‘–—pž ÅY†‘’¼`”žŠž”Œ’’ ‘‘ †xÅY†‘ `£2Šž’ 1 ‘+ È* ’  È`§©‰ˆ –—ÁàŸ‰–—–k\žŠB–—Šž (Ÿ‰†x–’ ž‰–]’ ­\‰‡‰“–]˜ª”š‘Š#‡‰˜ª‘ž†‘¬Ã`†xŠž’ ‘£ ’ ‰”k“e-Å , –]/¡  Ÿ. †x‰¡ ’¼”Œ0   ≡. Grant(i, j). ∀i : Sat(i). i. j. Sat(i). rootj. i. j. i. i. j. i. i. i. i. i. i.

(20) r. 

(21)   . r. i. . ¬T ree(i) rooti = pari = i; disti = 0; reqi = f romi = toi = diri = ⊥;. (r,1). i

(22)    ( i

(23)    ). i 

(24)    * i

(25)    +. i

(26)   . ∧ ¬Lmax(i)    "!   #$% j ∈ N eighi  reqi = i; f romi = i; toi = j; diri = ask;. &. rootj ;. Sat(i) ∧ ¬∃j : F orw(i, j) ∧ ¬Idle(i) reqi = f romi = toi = diri = ⊥; Sat(i) ∧ Idle(i) ∧ Asks(j, i) reqi = reqj ; f romi = j; toi = pari ; diri = ask; Sat(i) ∧ Root(i) ∧ F orw(i, j) ∧ diri = ask diri = grant;. ‘“ ‘’ “‘ž’‡‰ŠžžŸ‰–  ۑ®¢¦˜ª–—ÀZ¡/ë'‡|ŠŒŠž–—t†x £nø ‡‰‰“ & ”'”Œ©†x‰‰’ ‰“kŠžž–—–†xˆ ‹ †x £ †xž–'‘‰ˆ ¤k–Ç|–]‡|Šž– £ ›¥¤†v‰ £ – ¬’ ŠžŸ Šžž‡‰–‘§ ©5†(¥”Œ‘?’ ‰?+“‘˜Y¬ˆ†x–'–‡‰¯Šžˆ ŠŒ –—‹Ž†x]¡‘‘”Œ¦\’ –—Š ˜ª–—†x\ÀZ’Š‰¡|˜Y ë'†x‡‰–—‡|\ˆ ŠŒŠ]Š?Šž§D–—˜ª½Ž–]†+†xŠž˜Y‡‰†‘£vž`–]Šø ” ˜Y‡‰†x£ ‰‡‰‡‰“ˆ žŠ &’ ”¢”‰“k†x†xžˆ ž“‘– –]‘£ ž ’–Šž¯ŠžŸ‰–]–— zž`¤(Šž– Ÿ˜ª£ ž†‘‘”Dˆ x  † ‹ “‘’—†x †xˆ Šž©‰Ÿ‰¤Ÿ,–›‰”Œ‡|Ÿ‰‘Š'+¬”šŠž‘,žž‡ž’ ,–]`Šž`«–Šž–£“‘£‡‰”Œž©›¥–D†x¤ù‰‰“‘ÅY‰†\ˆ ’ ‘È`‰§›“¢†xÁʞˆÉžŸ‰‘–—–©5–‘”Œ¡+–—‘¬ ˆ †+’ ’ £ŠžŠž’Ÿ–B‘ˆÉŠž’ Ÿ‰‰§ ––]D”†x‘”ŒžŸ‰ž+”Œ+’¬?¬"£ ”É–—– ’ £  Šž“‘£ Ÿ‰–]’ –”‹ xˆ—’ †+˜<‰Šž–]–]’ ”‰†‘ “'”ŒŸnŸ‰Šž+Ÿ‰‰¬¿–? £©– –v†x£ ž“‘†x–—–]ž\”ÖŠ<’ ”ŒxŸ‰˜

(27) +Šž–]Ÿ‰¬†‘–,n Ÿ“‘›5 ‰†x–] ”Œ©‰’£ Ÿk£ –‘–Šž§BŸŠžÁÆ+Ÿ‰Ÿ‰Š?––†x‰žž –e¥£ x‰–‘ŠDx§e†xŠÁÐ ’ £Ÿ‰– ŠžŠžŸ‰Ÿ‰£ –?–,†‘ˆ”Œ– Ÿ‰‘¯ – |–—£ ‹ˆ Šž”šÛŠž ‹fž˜Y†x‡‡‰`¡+ŠžˆžŠš––]¤£”Œ‡‰”š”ŒˆŠ Šž©†+’ †x‰Šž‰–‘“¢¡‰’ ’'‰“(ŠžŸ‰’¼Šž”?–Ýž–—–—”š–‘Š †+§ †xŠž›‰É–È ––”ŒŠ'Ÿ‰£ +†v”Œ¬’ ˜Y†x‡‰’– ˆ Š'«†+“‘Š¢‡‰‰ž–Ï £ ù‰– Ū›5’¼”È`§”ŒŠž–ž½ŽŠ‡‰–‘Šž¡ZŸ‰†‘’¼”” ›5ÁÖ]Ÿ‰–—‘o –]–]†‘”v Ÿo†o‰ž¥ x£ Š– †x§¢ ¦›5£ –˜™ŠžŠš (–—¬e†x–—À‘–—‰–  £ †(– ՚†x‘ ’ –£HÇ|Šž–]žŸ‰–]‡|–v­\Šž‡‰ž–]–]¥”¢”šxŠ†‘Š `ŠžŠž ’ ‘¬ &’ ”ˆ 'BŠž©ž¡5†x–—–‘Œ’ Š‹ § ŠžŠž’¼Ÿ‰–(’ ©†‘†+`ŠžŠž–’ ‘’ ” ŠžŸ‰, –ž¡ –]. ­\‡‰¡–]”š†xŠ  I+£ž–—©‰1 ˆ ¤k§( ¦¢–] ”eŸ˜ª†x‘‰e’¼”ŒŠž úŸ‰–›¥ž¤¥x–Š]Ç|¡É–]’Š,‡|–Šž’Ç|‰–“ ‹ ›Šž¥ž‡|¤–—Šž–(–]–Ç|”'’¼”–]‘†n‡|Šž –(’ ‰Ÿ†‘2“†x`’ 5*Šž’ È`‘¡#§D†xön”ˆ <,‘‰ž–—  £†x¯ –] –—”£]¡\’ 0t’ ŠžŠžŸ‰Ÿ‰›5––,–˜ª”Œ¬‘¤|ž”š‘– Šž –—”š ¹Š?՚—‘ (†‘’ ”Œ†I–(”e¤"ŠžÅª’fŸ‰ § –‘Ÿ–v§B†xŠž‰ŠžžŸ‰“‘–—––– Šž”šŠ Ÿ‰†+–—Šž’ –‘§ ”šŠ †+Šž–]”D›5–˜ª‘ž–¢ŠžŸ‰–'”Œ¤|”šŠž–— °‘ –]”D›†‘ ÀvŠž†‘žž–]`Š ’ ˜ª¤z½Ž6¦˜ªŠž–—Ÿ‰ÀZ–•¡˜ªë'‘‡|ˆ ŠŒ+Šž¬–—É’ ‰¡“&†x”Œ –]£6`Šž’ø ‘‡‰É‰¡“ ¬& ”»–b†x”Œˆ Ÿ‰“‘+‘¬Už’ ŠžŸ‰Ÿ‰  +¬QŠžÆŠž&‘›| Š †x£’  ‹ Sat(i) ∧ Grants(pari , i) ∧ diri = ask diri = grant;. i. Sat(i). %,. %-. i. pari. k. ¬tree(i). i. i. j. p. p. .. p. r. p. r. i. i. r. i. (r,2). i. (r,3). (r,2) k. (r,3). i. (r,3). (r,3).  ’ “‘‡‰ž–ù|®<¦O˜Y†x‡‰ˆ Š?‰xŠˆ |—†xˆ ¤‘\Š †x’ ‰– £ ž’†»‰’ Šž“˜YŸ‰†x ˜ª‡‰ž‘ˆ §kŠŒ ß‹Žº\‘Š †v†x\Œ”ŒŠ Šž’†x‰’ ’ ‰‰“‘“ˆ– –?£ ˜ªŠžž ‘”Œ†x–— ¹ˆ ˜™”Œ‹Ž†"’”š–—Š \†xÛŠD‹f›‰˜Y’˜Y†xˆ †x’‡‰œ—‡‰ˆ ’ Ššˆ ‰ŠÃ¤p“²|”š—Š ”Œ†+©‡‰Šž†x–nž‰ž‰’ÅY‰†n’ ‰““H”š’Š †+ŠžŠžž†v––—–tž‘–]†xž”Œžˆ‡‰“‘–]ˆ x`ŠŒŠ‹‹  (ž”šŠ –]†+†x`Š?ŠžÀ‘–I–”šÈ`Š ¡†x†+¥Šž‘¤–‘‰§ ˆˆ ¤•|—Šž†xŸ‰ˆ–p”šŠ ˜Y†+†xŠž‡‰–¢ˆ Šš ¤²Ÿ†x‰‰“‘£–]”–p£ ‘‡‰ž’ ‘‰‰“,–ož–]x˜ ¯’ Š –—”kž¤'‰Šž–—’ “‘†,Ÿ¥›5‘‘ Œ”‹ B Ñ ŽÍ +ÒZÏDÌDÍ BӌÌ /Ð  B̢̢ӌÌ zÍ|Î  x¬˜–”Œ¢‘¬‡‰ ’ <ˆ –¢†x”š‰ˆ Šž“‘–—ž‘’ –—“‘ž‰’Ÿ¥Šž“x›5Ÿ‰Šž‘ ÆŸ‰ –—”D»ž–]¬­\‘’ ‡‰Šž‡‰Ÿ‰’vž’ –]  ”/£ Šž’¼Ÿ£ ”š†+–—Š ŠD†xˆÃ†ex˜¢‰–, ù,‘£  ˜ª–?ž©‰‘ Ÿ‰ ß‡|–]Š  †+’ À|Š]Šž’§<”/‘ŠžÁÐHŸ‰Ÿ‰–?›¥–—¤*”šžŠ –—†+›¥†‘Šž”š¤‘– ‹ ¡ ”Œ†‘‡‰— –]’”ž‰”,“Šž"ŠžŸ‰†+Š'–—’ “‘–]†‘Ÿ¥ ›5Ÿo‘ ‰”  £ ˆ |– —†x¡

(28) ˆ ’ ¯t†x†ž’¼£‰†x£ ›‰’ ˆ Šž–]’ ”—‘¡<p†xŠžˆ¼”ŒoŸŸ† †‘¯ ”’ ‰†p“žž–]–]†† ££ ‹‹ †‘—–]”ž”DŠžvŠžŸ‰–,ˆ |—†xˆ ¯ & †xž’¼†x›‰ˆ –]”x˜#‰–—’ “‘Ÿ¥›5‘ ” & ‰–—’ “‘Ÿ¥›5‘ ”—§ ”ˆŒ|’ ‘—»ÁÆxˆ‰Ÿ‰x’ –(˜?’Šž‘£ Ÿ‰–]–n†”Œ’¼†x”šxŠžˆ ˜“‘–—‘ŠžžŸ‰’ ¤‘–vŠž¡‘Ÿ‰˜Y’ %†xŠ ‡‰£ ˆ’¼¥ŠŒ”‹Ž–]Šž”<‘Ÿ‰\†+xŠ Š†xŠD’¬‰‰Ÿ‰–]– £–—–]•”ž”Œ”ž©†o†x†xž‰‰’ ˆ‰ ¤’£ ‰ (– “†x£ ŠžÀ‘–ž–?Šž–—–]–†,`Š ¯”‘–—ŒŒ† ‹‹ ŠžŠžžŸ‰Ÿ–]`–†+ŠžŠ¢’—‘Šž†x•Ÿ‰‡–v”Œ –,ˆ | x¯—˜#†x–‘Šžˆ#¡Ÿ‰’ ’’¼”?”šˆ‘Šž|–]—† ”Œ†x£’¼ˆ/”šŠž’ ’–—Šk«‘¤ ”š”Œ (Š’¼”š†IŠž†+–—¤ŠŒŠž–—›5 ¤‘– §©|£ ½lŠ ‡‰˜D”(–†ŠžŠž ‰ £ †(£ –– Šž˜Y†x–—ž‡‰ «ˆ Š, ’ ‰£†+–Š” †xˆ ‘‰–‘¡ÉŠžŸ‰–—*’ Šv‘žž–]`Š ”'’ Š ”ˆ |—†xˆD”šŠ †+Šž–k†x©‰©‰ž‘©‰ž’¼†+Šž–—ˆ ¤‘§ ?ŠžŸ‰–—ž¬’¼”Œ–‘¡’ ‘”Œ’¼”šŠž–—¤" (†I¤"›5– £ ‡‰–(Šž"†˜Y†x‡‰ˆ Š†+Šv† ˜Y‰†x–—‡‰’ “‘ˆ Š]Ÿ¥§ ›5‘ ¡ÉŠžŸ‰–—oŠžŸ‰–(‰ £ – ¬Ã†x’ Š ”e˜ª‘ Šžn‘žž–]`Š'’ Š ” x†x˜ £ ê"–DŠž‰Ÿ+†+¬tŠ £ ©‰–—ž›5‰–]–(x’¼Šž”ŒŠž–]–#Ÿ‰”–ŠžŠžŸ‰Ÿ‰”Œ’¼––”/Š’ ”Œ£ –x–]Š¢˜Ã†‰x‰§ ˜#–—É’’ “‘–£ ŠŸ¥–—›5\Šž‘’  Šž”'’ ›5–]x–”?˜ †Ã’ «§Šž‰Ÿ‰½Ž’ tŠž––D‰Šž’ Ÿ‰\–ŠžŠš–k¬–—ž‘¯–]ž†x”šÀ Š ˆ ŠžxŸ˜#†+ŠžŠŸ‰’¼ (”e†x©’ †x\©5Š †x–—’]¡5”¬Šš– ¬£–—“‘‰žx‘Šž‡‰–©›¥”¤ x˜ ¯ Šž†xŸ‰ž–’¼†x’ ›‰£ ˆ–—–]\”eŠž’ ® Šš¤x˜D†(‰ £ – ۑ§Á߉– ¯ †xž’¼†x›‰ˆŸ‰–]‘”ˆ £ž–—”kˆ¼†+ŠžŠžŸ‰– –o£ ’Šž£ –—\ŠžŸ‰Šž’–'Šš¤²Šžž–—x–,˜,”šŠžŠžŸ‰ž–"‡`žŠž¥‡‰xžŠ–‘® x˜,ŠžŸ‰– ŠžŠžžk–—–”Œ‘Šž –'¬‰Ÿ‰ ’¼£ Ÿp–'’‰  £ – ›5–—ˆ ‘‰“\”—§ ’¼”¢–]­\‡†xˆ ½lŠ?’¼”?†x’¼”Êž’ \Ÿ‰Šž– –—“‘£ –—’¼”šÃŠ †x’ Šž–'Ÿ‰–,˜ªž ‘†x ú‰“‘‰–  £ – Šž(’ Š ”?ž¥xŠ]§ (a). T ree(i) ∧ ¬Lmax(i) ∧ Grant(toi , i) rooti = rootj ; pari = j; disti = distj + 1; reqi = f romi = toi = diri = ⊥;. i. (r,1) j. (r,2) k. disti = distk + 1. (r,1). (r,2). i

(29)    Tree(i)   '. (r,1) j. /. 0. (b). $1. i. i. i. j. i. j. 2-. INf. IN N eighi. i. i. i. 3 rooti 3 disti. i INf 4. rooti. i [1 . . . |INf |] 4.

(30) ’¼”Œ”¢‘ ŠžŸ‰–'–’¼”?‰© Šž†xŸ‰£ ž–'––—\’’ Š'£ –—x\˜ Šž’ Šš¤’ oxŠž˜DŸ‰†(–v‰Šž–—ž’–—§ “‘–‘Ÿ¥§›5½l‘Š,¢’¼x”e˜ –]­\‡¬†xŸ‰ˆ#’¼ ŠžŸ ù|§Á߉– ¯ †x ž’¼–]†x”ž›‰”žˆ †x–]“‘”?–]ž”—–—® ˆ¼†+Šž– £ Šž©†‘”ž”Œ’ ‰“(ŠžŸ‰– †x £ ‡‰›5ž–—žˆ–—‘’¼\”‰Šž“\ˆ–—¤'”—’ Šž¡‰žŸ‰‘–]–—­\‡‰–]Šž–]­\Ÿ‰”š‡Šž–k†x’ ‰ˆZ’ “?£ Šž–— Šž\DŠžÕš’ ’Šš‘˜ ¤"’ x’Šž˜?Š Ÿ‰”Œ†––—ˆ Šž˜B‰ž’¼–—”–<£ Šž–(Šžž'¤¥Šž’Ÿ¬‰†+Ÿ‰“Šv’¼ Šž’¼Ÿ ” ՚’ ‘’ *†x‰xŠžŸ‰–—'Šžž–—–‘§k½lŠ’¼”,–]­\‡†xˆ#Šžp”Œ‘ –(‰ £ – ˜ª’ ˜ž‘ %Ÿ†‘¬”?’¼Ÿ‰”¢’ ’¼‰ –—’ Ÿ Šž’ Šž’¼†+Ÿ‰Šž–—–e£‘Šž©‰Ÿ‰†k’ ––ž£ –]’ £ ­\Šž–—‡‰Ÿ‰\–]– Šž”š’ Š¢¯Šš¤n†x’ oˆ ‡‰x–˜B†xoŠžxŸ‰˜ †+–vŠŒŠž‰–—–— ’ “‘¡B©|Ÿ¥‘Še›5 Šž‘  ՚‘’ p†(‰–—¬&Šžž–—–‘§½lŠe’¼”¢–]­\‡†xˆ

(31) Šž”Œ‘ –‰ £ –’  ¬ Ÿ‰–]’¼”ž ’¼”ž”Ÿ»†x“‘Šž’ –‘Ÿ‰Šv§–’¼”’ £ Šž½l–—žŠ6\¤¥Šž’ ‰’’¼Šš”Æ“p¤*–]Šžxo­\˜¢‡©‰‰†xž–—ˆt‘’ “‘©ŠžŸ¥¾†x›5“\‘†+”ŒŠž‘– x˜Šž– Ÿ‰–‰ŠžžŸ‰ –]£ž­\‘–߇‰‡‰–]“‘’”šŸ Š ¬ŠžžŸ‰–—–‘\¡x”Œ’¼–(‘” ’ –—£ ’ –—Šž\Ÿ‰Šž–—’ Šš¤tŠž,’¼””Œ’¡B’“‘ Šž‰*’ ˜ª¤'”Œ’ Šž“‘Ÿ‰¬†+’ ˜ªŠB’¼¤t”ŒŠžŸ‰Ÿ‰Šž–]Ÿ’¼”,”#†+žŠžŠ–]k­\ŠžŸ‰Õš‡‰‘––]’ ”štŠ#‰ŸŠžŸ‰£†‘––” ›5–—–—H“‘ †x\Šž– £ §"§½lŠ’¼”–]­\‡†xˆDŠžt”Œ‘ – ¯ †xˆ ‡‰–’  ˆÁ/+ ¬’£ ‰–]“”ž©‰žž’ ›5– £ –(’¼—Šž†+Ÿ‰Šž––]”—Šž® ž–—–”šŠžž‡`Šž‡‰ž–‘¡#¬–’ \Šžž £ ‡–(ŠžŸ‰–˜ª‘ˆ ‹ 3 pari. i. i N eighi ∪ {i}. request. grant 3 reqi i. i. i. INf ∪ {⊥} 4. 3 f romi. i. reqi. i. i. N eighi ∪ {i} ∪ {⊥} 4. 3 toi. i. F orwA(i, j) ≡ j ∈ N eighi ∪ {i} ∧ toi = j ∧ pari = j ∧ diri = grant ∧ Sat(i) ∧ f romi 6= i ∧ reqi 6= i ∧ reqi 6= ⊥ ∧ reqi = reqf romi ∧ ∀k ∈ Child(i) : (rootk = rooti ⇒ distk = disti + 1) Rgcorrect(i) ≡ Idle(i) ∨ ∃j : F orwN a(i, j) ∨ (∃j : F orwA(i, j) ∧ dirf romi = ask). ž‡‰’  ŠžŸ‰£– –—˜ª¡‘†ž¬–”Œ–p’ ¬‰’ “‘–ˆ ¯ –“‘–]’”šŠž¯ Šž –’†x“\†+† ”ŒŠž’ –£–—\–ŠžŠ Š'Ÿ‰†x˜Y–o’ †xˆ – ‡‰›5£•ˆ –—Š]Ÿ§£ † –]ɯ ”ž’–‘žŠk’ ©|†xŠž’˜,ˆ ‘–—H“‘ŠžŸ‰’ Šžx–o’ ˜¢ (†xŠž†+ˆ Ÿ‰“‘Šž–n–(‘ž”š†x’ ŠžŠ ˆ Ÿ‰“‘†+Šžx  – ‹ xx˜e˜DŠžŠžŸ‰Ÿ‰–k–p”Œ”Œ¤|¤|”š”šŠžŠž–—–— ¾ î’¼›5”,– †£ ˆ –—–«“‘’‰Šž–’  (£ †+†‘Šž”–(˜ª”š‘Š ˆ†+Šž+–‘¬?¡É”—’ §Ù˜†x¦  £ “‘ˆ‘‘‰›ˆ †x¤pˆ?’ ”š˜Š Šž†+Ÿ‰Šž–– Šž‰Ÿ–—†+’ “‘ŠŸ¥’¼›5” ‘žŸ‰¥ £ x˜–]†‘ Ÿ‰ £ – ’ ŠžŸ‰–,“‘ †x©‰Ÿ’¼”‘Ÿ‰–—ž–—\Š]¡. Grants(i, j) ≡ f romi = j ∧ diri = grant. -. i. Coherent(i) ≡ T ree(i) ∧ ∀k ∈ Child(i) : distk = disti + 1 ∧ ∀k ∈ N eighi : rootk = rooti. ½l†+Š<Š<’¼†e”B‰–]†‘ ”Œ£ ¤– Šž†x”Œ Ÿ‰£ +¬»ŠžŸ‰Šž’¼”BŸ†+‰ŠD £’ ˜

(32) –†,’¼””Œ’Šž‰Ÿ‰“‘–ˆ –Ýž¥Šžx †xŠBx”Œ˜5’ –—Šž\Ÿ‰Š#–ØYŠž†xž‡‰–—–‘ˆ ŠD¡+|ŠžŸ‰—–—(‡‰ † ” ”š”ŒŠ –†xŠŒŠž›‰’ ˆ‰–Ó'”šŠ ’ Š †+”#Šž–é†x’¼”Bž–—ž\–]ŠB†‘ †xŸ‰ – £ £ ž†x¥“\x†xŠ ’ ¯ †x›¥ž¤’¼†x†'›‰ˆ ”Œ–]’ ”‰“‘¯ †xˆ –È ‡‰ –]” ¯Šž'–x’ Š ˜5”Œ‰–—ˆ ˜š£¡‘–’ Š ” £¯ †x’¼”šžŠ ’¼†x†x›‰ˆ –]– ”—§¯ †xž?’¼†xŠž›‰Ÿ‰ˆ–—– ž¬¯ †x’¼”Œˆ –‘‡‰¡Ã–,‰Šž £ – †x £Šžž’ž–]–]”(”Œ–ŠžŠŒ Šž’ ‰£ “k–Šž’ –—Š ž”? ž–]’ ‰­\–n‡‰–]Šž”šŸ‰Š –” ž–]†‘”Œ‘”<x˜ÉŠžŸ‰–'ˆ |—†xˆZ’ ¬‘’Ÿ‰Šž–—Ÿ ž–—Šž–¢Ÿ‰–(›¥¤k‡‰ žŸ‰ž–]–— \À¥Š ’ ‰¯ “†xˆ ©‰‡‰ž–v– £x˜D’¼—Šž†+Ÿ‰Šž–– ©‰£ ’¼†x”šž£ Š –—†x– \Š(–’¼¬”¢¯’ †(Šž†xŸbžˆ –]’¼†xŠž†+Ÿ‰›‰˜B–ˆ Šž–Ÿ‰¯ x–—†x˜nˆ ‡‰ (¡– †x¥†¤‰–—‘’ ‡‰“‘’ ©‰Ÿ¥›5ˆ –]‘” ex˜ §?†‘†x”exžŠž–,¬–n–—©5ˆŠž\BŸ”ž†‘†+”Œ’”eŠ]›‰¡’ˆ Š –‘’ ”˜§ Šž?Ÿ‰ Šž–,Ÿ‰Ÿ‰–]–—¥ ž‡‰¬À| ”e’¼”Œ›5’–‘˜–—¡/†x‘ˆx‰#˜Bˆ ’ ¤oŠ ‘”,‘‡‰‰‰©‰–—– ˆ ’ –]“‘¯” Ÿ¥†x›5ˆ ‡‰‘–k ”¢xŸ˜ ’¼”† ¯ ž––]’¼”,”šŠžŠžŸ‰©5 –k†x\’ ”ž‰”ž”Œ†x–’ ›‰ £ ˆ §#––v †xž’ ¥ x”š£ Š]Š ¡‰Ÿ‰¯ ‰–—†xˆ ‡‰£ ––– Šž©5»¡Ã\”Œ¬Šž’ ŠžŸ‰Ÿ’ –—¯ †+’ –Š(n£ ’¼’ ”’¼£ ”š–—Š “‘\†xžŠž–]’ †+Šž–’Šž–]–—”—¯ v¡e†xŠžˆ †H‡‰Ÿ–‘†x©§# †x½lž˜/–—ž\†x¥Š  x£ŠD£ ’‰“‘Z ž–—£–]ž†+––—Šž\–—Š’¼”˜ªŠžžŸ†‘†x  ‰²–—’ ’ ‘“‘Šp(Ÿ¥†x›5–]‘­\£D‡x†x† ˜ˆ Á/£ ‡ –'£ –]Šž”žŸ‰–'ž’ ˜ª›5‘–nˆ +Šž¬Ÿ‰–o’ ‰“vž–]©‰­\ž‡‰– –]£ ”š’¼Š —I†+žŠž–—–]©‰”'ˆ ¤»®  –] Ÿ†x‰’¼”Œ ¡¬–p’ \Šžžx‹ Šž¡|Šž‘Ÿ‰–—†xˆ ‡ ’£ Še£ –] †o”'Ÿ‰–]©Šž Ÿ†xÀ|†+ž”Ö—Š\¬’ Š Ÿ‰–‘ŠžŸ‰Ÿ‰–]–—–—­\ž –—‡†xˆŸ¤oŠž†‘ ” († †I¤p§H£ ’¼›5½Ž”š»Š – †xŠž£ Ÿ‰‡‰’¼– –(”(¯ Šž—†xn†‘ˆ ”Œ‡‰–—–‘–,’ ¡<Šž–]Ÿ‰‰­\–— ‡£ †x†– ˆ ˜Y’ »†xˆ¼”Œ’ –Š ” ¯ £†x’¼ˆ ”š‡‰Š –†x’ »– ’ Š ¯ ”v†xžž’¼¥†xx›‰Š ˆ –‘¯ ¡†xŠžž+’¼†x¬Ã›‰†xˆ –k£ ‘”,v’ Š †x”»©’†xž–—‘\žŠvž–]‘`Š]¡ ‘¯‰†x–kˆ ‡‰x– ˜ ’©‰Š ž”–  £ Ÿ‰’¼—’ ˆ†+£ Šžž–¢–—É˜ª‘§<ˆ ¦&+¬?˜ª”—‘§ ž (†xˆÉ†x ££ –Š †x’ ˆ – ££ –]”žž’ ©|Šž’ ‘x˜ŠžŸ‰’¼” N eighi ∪ {i} ∪ {⊥} 4. 3 diri. ask. reqi. i. grant. i. {ask, grant, ⊥}. Child(i) ≡ {j ∈ N eighi : parj = i}. T ree(i) ≡ (rooti = i ∧ disti = 0 ∧ pari = i) ∨ (pari 6= i ∧ rooti = rootpari > i ∧ disti = distpari + 1). Ownrmax(i) ≡ if (∀k ∈ N eighi : rooti ≥ rootk ) then i else j = {M ink∈N eighi : rootj ≥ rootk }. 0. i. Onelocalf ault(i, d, j) d i j d−1 i. i distj (d, j). d. (d, j). i r. i. i. r. Sat(i) ≡ T ree(i) ∧ Ownrmax(i) = i. .. r. 0. id. r. i. Idle(i) ≡ reqi = ⊥ ∧ f romi = ⊥ ∧ toi = ⊥ ∧ diri = ⊥ Asks(i, j) ≡ j ∈ N eighi ∧ reqi = i ∧ f romi = i ∧ toi = j ∧ diri = ask ∧ Sat(j) ∧ rooti = i < rootj ∧ pari = j ∧ ∀k ∈ N eighi : (rootk = rootj ⇒ distk = distj + 2). F orwN a(i, j) ≡ j ∈ N eighi ∪ {i} ∧ toi = j ∧ pari = j ∧ diri = ask ∧ Sat(i) ∧ f romi 6= i ∧ reqi 6= i ∧ reqi 6= ⊥ ∧ reqi = reqf romi ∧ ∀k ∈ Child(i) : (rootk = rooti ⇒ distk = disti + 1). Incoherent(i) ≡ ¬Coherent(i). ‘ù|Û §§. ÅÅ+I‘‘‰Ÿ‰–e–—˜Yž†x–—‡‰\ˆŠÃŠ¢‰†+–—Š ’ “‘Ÿ¥x›5È ‘žŸ‰¥ £ xÈ. Onelocalf ault(i, d, j) ≡ j ∈ N eighi ∧ ∃r > i : Incoherent(i) ∀k ∈ N eighi :. i. • rootk = r ∧ k ≤ r ∧ (k = r ⇒ distr = 0 ∧ parr = r).

(33) ׉§ ›5‘ xÈ. ï|§,˜YņxI‡‰–—ˆˆ ’Š¢ †+’ Š?†+†Šž ’ ‘Ÿ‰H’ ˆ £ xx˜?È ˜Y†xˆ¼”Œ– £ –Šž–]`Šž’ ‘ £ ‡‰–Šžt†o‡‰‰’¼­\‡‰–. Å+—†‘”Œ–(x˜†‡‰‰’¼­\‡‰–k‰–—’ “‘Ÿ|‹. • k 6= r ⇒ park 6= k ∧ distk > 0. ∃k : N eighi = {k} ⇒. (rootpari = r ∧ distpari = distparpari + 1 ∧ Idle(pari )) ⇒. • ∀k 0 ∈ N eighk \ {i} : rootk0 = r ∧ k 0 ≤ r ∧ (k 0 = r ⇒ distr = 0 ∧ parr = r) • (k 6= r ∧ park 6= i) ⇒ distk = distpark + 1 • ∀k 0 6= i ∈ Child(k) : distk0 = distk + 1. Ú§ ÅI– ¯ –—\Šž‡†xˆÉ‘žž–]`Šž’ ‘k¬’ ŠžŸŠžŸ‰–,Ÿ‰–—ˆ ©x˜ xÈ ï|§,˜YÅ †xI‡‰–—ˆˆ ’Š¢ †+’ Š?†+†(Šž ’ ‘Ÿ‰H’ ˆ £ xx˜?È ˜Y†xˆ¼”Œ– £ –Šž–]`Šž’ ‘ £ ‡‰–Šžt†o‡‰‰’¼­\‡‰–. • |Child(pari )| > 1 ∨ • Child(pari ) = {i} ∧ ∃k 0 6= pari ∈ Child(i) ∧ (∀k 0 6= pari ∈ Child(i) : distk0 = disti + 1 ∨ parpari = i). ð‰§,ÅI–—ˆ ’  ’ †+Šž’ ‘x˜#ž\”ž”©†xž–—\Š xÈ. ∀k ∈ Child(i) : distk = d + 1 ∧ distj = d − 1 j. rooti = r ∧ disti = distpari + 1 ∧ Idle(i) ⇒. • |Child(i)| > 1 ∨ • ∃k : Child(i) = {k} ∧ ∃k 0 6= i ∈ Child(k) ∧ (∀k 0 6= i ∈ Child(k) : distk0 = distk + 1 ∨ pari = k). ð‰§,˜YņxI‡‰–—ˆˆ ’Š¢ †+’ ŠÃ†+ŠžŸ‰Šž’–,‘H©†xxž˜?–—\˜YŠ†xxˆ¼”ŒÈ – £ –Šž–]`Šž’ ‘ £ ‡‰–Šžt†o‡‰‰’¼­\‡‰–. (rooti = r ∧ ∀k ∈ Child(i) : distk = disti + 1 ∧ Idle(i) ∧ parpari 6= i) ⇒ (distpari = distparpari +1∧∀k 0 6= i ∈ Child(pari ) : distk0 = distpari + 1). ¥ñ §,ÅI–—ˆ ’  ’ †+Šž’ ‘x˜Bž\”ž”©†xž–—\Š xÈ ½Ž†(”Œ‘’ ‰ “‘£ ˆ–—–'#ŠžŠž ,†x†‘ ”ŒŸ‰’ –—’ \– ¯Š–˜Y†x˜Y†x‡‰‡‰ˆ Š¢ˆ ŠD|—‘\‡‰Š ž†xž–’ ‰£  †+–—Še\†Š]¡‘‰’ ( £ †'– ”šŠ ¡‰†+Šž¬––,¬ Ÿ‰‡–—ž”š–Š ’‰‰ Ÿ‰£ ’ –'›‰’ xŠ¢˜/–]Šž†‘Ÿ‰ –Ÿn”Œ ¤|Ÿ‰”š’ Šžˆ –—£  úx˜ †x £ Šž(Ÿ‰©‰–—ž–]”Œ–e‡‰Šž –'ˆ –]Šž† Ÿ¯ †+–¢Š¢Šž’ Ÿ‰Š¢–'’¼”ŠžžŠž–—Ÿ‰–'–,›¥˜Y†x¤(‡‰›5ˆ Šš–¤ ‹ ‘ ’ ‰“¢†ž¥xŠ]§/Á߉’¼”/†xˆ +¬?”

(34) ‡‰‡ ”É£ Šž–—,£ ¬–Ÿ‰«’¼‰ –Ÿo†–]†‘‰ –—Ÿo¬t ©‰Ÿ‰ž’ – ˆ ££ ’¼—x†+˜Šž†– ‰‰ ££ ––, (x˜/†IŠž¤vŸ‰– Ÿ‰”Œ–]¤| ”šÀŠž–—’ ˜

(35)  ’ Š § ”B©†xž–—\Š<–]”šŠž’  (†+Šž–]”Šž,›5–ŠžŸ‰–˜Y†x‡‰ˆ Šš¤ Ûù|‘§§ Å I‘‰–e˜Y†x‡‰ˆ Š¢†+Š xÈ Å+‘Ÿ‰–—ž–—\ŠÃ‰–—’ “‘Ÿ¥›5‘žŸ‰¥ £ xÈ. (rooti = r ∧ Idle(i) ∧ parpari = i ∧ pari 6= i) ⇒ ∀ k ∈ Child(pari ) \ {i} : distk = distpari + 1 i. i. Onelocalparf ault(i, d, j). Onelocalparf ault(i, d, j) ≡ pari 6= i ∧ j ∈ N eighpari ∧ ∃r > pari : Incoherent(pari ). pari. ∀k ∈ V oisinspari :. • rootk = r ∧ k ≤ r ∧ (k = r ⇒ distr = 0 ∧ parr = r) • k 6= r ⇒ park 6= k ∧ distk > 0. ׉§ ›5‘ xÈ. V oisinspari = {i} ⇒. Å+—†‘”Œ–x˜'†"‡‰‰’¼­\‡‰–‰–—’ “‘Ÿ|‹. • ∀k 0 ∈ N eighi \{pari } : rootk0 = r ∧ k 0 ≤ r ∧ (k 0 = r ⇒ distr = 0 ∧ parr = r) • ∀k 0 6= pari ∈ Child(i) : distk0 = disti + 1. Ú§ ÅI– ¯ –—\Šž‡†xˆÉ‘žž–]`Šž’ ‘k¬’ ŠžŸŠžŸ‰–,Ÿ‰–—ˆ ©x˜ x È. ∀k ∈ Child(pari ) : distk = d + 1 ∧ distj = d − 1 j. (rootpari = r ∧ Idle(pari ) ∧ parpari = i ∧ pari 6= i) ⇒ ∀k ∈ Child(i) \ {pari } : distk = disti + 1. ?–Ç¥Š]¡ ¬– ’ \Šžž £ ‡– † ¬Ÿ‰©‰–—ž–ž–°£ ’¼—Šž†+Ÿ‰Šž–-– ©†x†xž†x–—ˆ\‘Šz“‘‘x‡˜¿” ŠžŸ‰Šž– ‰ £ – ’¼”ÊžŸ‰–'˜Y†x‡‰ˆ Šš¤k‰ £ –†x £ ŠžŸ‰–,ž¥xŠx˜/ŠžŸ‰–'Šžž–—– . Onelocalparf ault(i, d, j) i. Onerootparf ault(i) ≡ pari 6= i ∧ ∀k ∈ N eighpari : (k < pari ) ∧ (rootk = pari ) ∧ ∀k ∈ N eighi \ {pari } : k < pari ∧ rootk = pari ∧. žŠÁ߉Ÿ‰–e–Šž˜ªž‘–—ˆ –,+’ ¬n’ ‰—†‘“e”Œ©‰–ežx– ˜B£ ’¼†—†+˜Y†xŠž–ljˆ©‰Ššž¤k– ¯©–—†x\ž–—Š ”#\Š†e‰ £ – ˜ªž‘ Âˆ –]† ¯ ’ ‰“ ”šŠ ’ †+“‘¦Šž‡‰–—ž –˜ª‘–—׉ž\ (§?Š ”v†x¦Âˆ ˜ª‘ £ ˆ –]‘+”žž¬?– ž”—’ £§¿©|–ŠžŠ ’¦‘†x²˜™’ Šžˆ – –—x£pk˜e£ŠžŠžŸ‰–]Ÿ‰–n”ž–pž|†x’ —©|ˆ “‘Šž‡‰‘’ ‘žžž’ Šž–—Ÿ‰x U˜B–ŠžŸ‰’¼x”(–˜,“‘“‘†"’‡¯ †x˜Y–—†x²£‡‰–ˆ ’ Š]£ ¡ ’‰˜' †o£ –'‰’ ‘|‹lŠžžŸ‰¥–'x‰Šv–‰Šš¬ £‘–žÀZ¡¥’–]Š?”šŠž–’ Ç| (–]†+‡|Šž–]Šž”–]”›5Šž–—Ÿ‰’ ‰–“o”šŠ Šž†+Ÿ‰Šž––— ‘–—‰\ˆ ¤tŠ ˜Y†x‡‰ˆ Šš¤ ¡ ”ŠžšžŠž–—–—›5–'©–—”—’”š‰§¢Šž“"ž ‡’’` Š Šž”š”v‡‰Š]ž¡5©–‘’†x˜<¡|ž’–—‰Š¢\ †+Š]£ ŠŒ§ – Šž–—$‘ ‘–]’©|”š‰ŠžŠ ’ ’”‰ (“Šž†+Šž–]–]& ””š”¢Š Šž†xŸž›‰† –—ˆ¯ –’¼’”Œ‰Ÿ ’¼”“k£†xp‘‰’ –’ ‘»Ÿ‰›¥Šž¤k–—Ÿ‰ž›5–—ž\–—––Š‹ ’†‘Š ‘`”<Šž ’©‘’ †x‰•ž“k–—\†‘ŠDž’¼”Œ¥”<’¼x”šŠžŠ ŠŸ‰”–¢ÅY†‘x‘`˜e‰Šž›5ˆ’ ¤‘–]  ˜Y†x‘' ‡‰ ˆ Šš’ÈЉ¤v’“*˜B‰’†"Š £ £ž–¢¥¥’ x(–]Š(”ŒŠž †xŸ‰& Š?–¢£ –]‰”š–ŠžžŠš’–]¬ (”Œ–‘†+ŠŒžŠžŠžÀZ–]’ ‰§”“tÁʞŸŸ‰ž†+–’¼Š”‹ ­\”šŠž‡‰ž–]‡”š`Š Šž‡‰¯ ž†x–?ž’¼†x†x ›‰£ ˆ –]†”—§ÆÁ߉–—¯ ¿†xˆ ‡‰‰–¢ ”Œ£  (– †xˆ ¡–—¬<’ŠžŠžŸ‰ŸÙ–—k†»†x¥‘¤ Ÿ‰–—ž–—\Š(¯ †xŠžžˆ ‡‰–—–– Šžx†xŸ‰˜< –£’ Š  ”e†‘Ÿ‰”Œ‰’ ˆÀ¥–—£ ’’ ‰“‘x“tŸ¥˜#›5’’ ‘Š Šk” ”—˜ª‰‘¡Z–—†+’ ŠŒ“‘†ŠžŸ¥–—Õš›5 ‘‘’ ©|²Š ”¢©5¬Šž–—ž’ Šž ՚Ÿ‘’¼”ž’Šž"”ŒŸ‰’ ‘–,†(ÆŸ‰Šž’žÅY“‘–—†‘Ÿ‰–`–]Šž›¥”š’ ‘Š¤ ž›5¥)–]xŠ ‘È`¯ §O†x’ˆ ‰‡‰½Ž“– Šž‘’ Š Ÿ ”,£†+Š–— Ÿ‰?’ Šžˆ £’¼”?ž––—ŠžÇ|oŸ‰–]–¬‡|‘’ Šž‰ŠžŸo–ˆ ¤ŠžŠžŸ‰˜YŸ‰†x’¼–k”'‡‰ˆ”ž†‘Šš†x¤` Šž’‰‘–  É£ ¡5–‰’ n£ ¯ –Šž†xŸ‰ˆ ‡‰––( ‰‡†‘–Šš””š¬Še‘‰ž xÀZŠ,‡¡5”š†‘†xŠ,”ž ”ŒŸ£ ‡‰†  †x¯ ˆ –– ¬†vŸ‰‘–—žž–]`“‘Š  £ †x’¼\”šŠ Š ”D†xŠžŸ‰– –,¯ ©5†x–—ˆ ž‡‰ –‘§B’¼”ž ”Œ’ ’ ‘t†xˆ ÅY¤‘†‘¡|`Šž‰’ ‘(£ – * È`՚§‘’ ”ŠžŸ‰–eŠžž–—– ©‰‡|ˆ –—ŠžÁà– £Ÿ‰–—–\›¥Špž¤"–—Šž (†nŸ‰–H†x‰’ ‰ž£’–]‰­\– “‡‰–]†‘”š¬`Š ŠžI’ ’Šž‘žŸ –—©‰”ˆ ¤Ù-Å ,  ¡ –]. ŠžŸž†x‡‰‰–‘’¼§”Œ¡   0¦ß†x‰†x   ££ £ – †x1 ž–»ÈÈ ––]’ Ç|†x v –”‹‹ ∀k ∈ Child(pari ) : distk = 1. i pari 6= i. Oneparf ault(i) ≡ Onerootparf ault(i) ∨ ∃(d, j) : Onelocalparf ault(i, d, j). i. i (j). . j. j. i. T ree(i). i. i. root. root. j. i. i. j. root. j. i. j. i. .. i. i. Sat(i). i (j). i. i. i.

(36) $ &  #$   "    

(37)  "%    i(j) 

(38)   ∃d : Onelocalf ault(i, d, j) ∧ ∀k : ¬Asks(i, k)    rooti = i; pari = j; reqi = i; f romi = i; toi = j; diri = ask;.       i 

(39)   . . ∀(k, d) : ¬Onelocalf ault(i, d, k) ∧ ¬T ree(i)∧ ∀k : ¬Asks(i, k) ∧ ¬Oneparf ault(i) rooti = pari = i; disti = 0; reqi = f romi = toi = diri = ⊥;. "         i 

(40)    '. .      i 

(41) ∃j : Asks(i, j) ∧ Grants(j, i) ∧ distj + 1 ∈ INf    rooti = rootj ; pari = j; disti = distj + 1; reqi = f romi = toi = diri = ⊥;.   . . ∀(k, d) : ¬Onelocalf ault(i, d, j) ∧ Sat(i)∧ ¬Rgcorrect(i) reqi = f romi = toi = diri = ⊥;. &%. '. (. -. .-0/. =<. .-. *       #$    i 

(42). Sat(i) ∧ i = root i ∧ F orwN a(i, i)    diri = grant;. ’ “‘‡‰ž–'׉®<Á߉–e˜Y†x‡‰ˆ ŠŒ‹Ž‘\Š †x’ ‰– £ †xˆ “‘‘ž’ ŠžŸ‰ . :9;1. 8/O1. K/. ML. -. P+. 21 ?/. .-0/ QSRT=<U6. WV. X<. ?<UZ. Y/. 21. 8V. ). diri = grant;. 8/. ?/. ?DFE GIHJC. >A. [6.          i 

(43) Sat(i) ∧ ∃j : (F orwN a(i, j) ∧ Grants(j, i))   . 76. >6 8/. @) BA=C. reqi = reqj ; f romi = j; toi = pari ; diri = ask;. *) ,+. 21 43 215) /. N 21,). )     #$    i (j) 

(44)  Sat(i) ∧ Idle(i) ∧ (Asks(j, i) ∨ F orwN a(j, i))   . +. #"$". i. T ree(i) ∧ Ownrmax(i) 6= i ∧ Sat(Ownrmax(i))∧ ∀k ∈ Child(i) : (rootk = rootOwnrmax(i) ⇒ distk = distOwnrmax(i) + 2) reqi = i; f romi = i; toi = Ownrmax(i); diri = ask; rooti = i; pari = Ownrmax(i). (     #$  !  $ . i 

(45) . Ñ #Î †x†‘ˆ”Œ“‘¤¥½Ž‘*ž ’ Ÿ‰ŠžŠžŸ‰Ÿ‰ž‘ z’¼”v‰‘˜ª©‘‡†xÃ”v©5›‰–—‰‡‰]–¡#’ Ššˆ ¬£¬’‘–‰ž“(ÀZŸ§Ù††v¯ ”Œ–kÁ韉†x©‰–p‰ž–]‰’”Œ’\–—‰Šž\“–—Šžž–Šž–]£ž”š–—Šk–'†ox’ ”Œ˜'–—ˆŠž†x˜™Ÿ‰‹Ž”š’¼”kŠ †x†xž¬›‰›‰’‘’ ˆ Šžž’  œ—À»†x’ ‰ž’¼¤“ ” Šž† Ÿ¯ †+–—Š/žŠž¤eŸ‰”Œ– (– †xZˆ –]\`‰Š –—”’ “‘xŸ¥˜›5†¢‘”Œž’ ‰Ÿ‰“‘¥ˆ –<£ ˜Y†x†x‡‰ž‘ˆ ŠB‡‰†x ž£ –<’ ŠžŠ]’ §“‘Ÿ\ÁʞŸ‰ˆ ¤,–D©‰‘ž‘\©5Š †x\’ ”Œ‰– – £ £ †x’ ˆ ‹ “‘‘—ž†x’ ŠžŸ‰£  &’ ž–]ž‡‰`Šžˆ ¤”#‡‰ž–] † £ £ –—ŠžŸ‰ŠžŸ‰–?–ˆ |”šŠž—ž†x‘ˆ ‰¯ “'†xž†‘’¼”ž†x”Œ›‰‡‰ˆ  –]”#©|xŠž˜

(46) ’ ‘’ Š”BŠžŸ‰†+–—Š<’ “‘†¢Ÿ¥›5‰‘ £ –” Šž‰Ÿ–—†+’ “‘ŠŸ¥’›5Š‘ ’¼”k”—§?©5ÁÏ\Ÿ‰”ž”Œ–’ ›‰‰ˆ –p–Ç¥ŠžŠ'»”šŠ –†xÇ¥“‘Šž––— x£ ˜<‘‘‡‰‡‰¢žž–]–]”Œ”Œ–]‡‰†xˆ Š Ÿ&›¥¤b’¼”?†»Šž”Œ’©‰ ž ©‰¯ ˆ & –– ”ž Ÿ‰–— –eŠžŸ†+Šž–—  ¯ –]”DŠžŸ‰’¼”?† £‰£ ’ Šž’ ‘†xˆÉ†‘”ž”Œ‡‰ ©|Šž’ ‘É§  ÉÎ /Ì¢Ò  Ö ÛØ øµ å §/å æ+¦´™é˜ª–—À"†x㚐àk£ ⠉ºZå §/+Ԣ⠏‘ˆ – ¯ ž§ á‘åÉ· |5—†x¸+ˆ<ä?”šçŠ 㠆x`›‰´™’³|ˆ äU’ œ—–—]ã+§ é `é ‰å. 㠞 `ã+¸ ô ãšà <ã+ä?çZ³|âf´™é á+éZæ 5¸ `âŽåä `¡

(47) Û]ݑݥñ¥§ Ö ùIØ ø–ók§,¦’ –—˜ª\–—Š'ÀZ¡k”Œ–—ºZˆ ˜™§,‹Ž”šŠ ë'†x‡|›‰ŠŒ’ Šžˆ ’ –—œ—É’ ‰¡(“k†x©‰ ž£ xŠžö*|§‘ˆ¼ø ”lj˜ª‘‰e“§“‘–—‰ön–— –—†x ˆÉ‘‰ž–¤\ŠŒ‹‹ ¬⠏‘žÀ|`”—é§ âŽå `éZ`éá+âf´Yã+éZá+·

(48) 㠞¶ ‰ãžç ´ `â ` ž´ ã]³|µ å âŽå å æ+æ ´™é

(49) ¢· \ ã `´™â ¥ä 5¡ Ú\í‘ð‰® ÛIï ‰ùx퉡Û]ݑݑ܉§ Ö ×+Ø ?x˜ §/£êƒ¼”š§ŠžžÔ¢’ ›‰’ ՚‡|À|Šž”š– Šž£  †‰§‘º¥\Šž–—žˆ ˜™‘‹Žˆf”š§ Š †x›‰<’ ˆ ã+’ œ—äv’ ‰äv“p³|”Œé¤|´Y”šµ Šžá+–—âf (´Yã+é”'»’ »ãšàt”Œ©‰â ’ ‰Šž–å

(50) n¡ÉÛ+ñ|ŚۑÛIÈ`® ðxÚ\× |ðxڑÚ¡‰Û]Ý¥ñIÚ§ Ö ÚxغZ§Ô¢‘ˆ – ¯ §

(51) å· à ô 5âŽá ´™· ´ ]á+âf´Yã+é§Dön½šÁ ì ž–]”ž”—¡ùxܑܑ܉§ Ö ïI؍ºZ‘§\¨eŠ †xŸ‰’ \‰”Œ Ÿ¿–—\†xŠ» £ ®Ù¦”Œ–—§ˆ ˜™¨e‹Ž”š‡‰Š ©|†xŠ ›‰†‰’ ˆ §Â’ œ]†+¦?Šž’b‘&–Ç|ˆ –—–] † £ ’¼”Œ–—–nn’–—bˆ –]`˜Y†xŠž’‡‰‘ˆ ÉŠŒ‹ § `é]à ã `ä(á+âf´Yã+é žã]µ å `´™é /åâfŽå `¡+ïx݉® ùxí‰Û ‰ùxí‘퉡+Û]Ý‘Ý‘ð‰§ Ö ð+ئ%ºZ§˜Y¨e†x‡‰Ÿ‰ˆ \ŠŒ‹Ž”ŒŸÉ‘¡o\Š ¦†x’§‰’¨e‰“¿‡‰©|”ŒŠ –—†‰ˆ ¡o˜™‹Ž”š†xŠ †x£›‰’ ˆ ’ºZœ—§’ ‰#“¿§ †xˆì “‘–—‘ ž’ Šž (Ÿ‰†x   †+˜ªÕš‘‡É § à”Œã © `†xä(‰‰á+’âf‰´Yã+“»é¡ZŠžžù|–—® –]×\”—ù‘§ ù ||בבã+³í‰ `¡éZÛ]á+ݑ·'ݑð‰ãš§à <ã+ä?çZ³|âf´™é bá+éZæ `éô Ö ñ]؍ºZ‘§+\¨eŠ Ÿ‰†x’\‰”Œ’ ŸÉ‰¡I“n¦‰§+–¨eŠš¬‡‰©|‘žŠ Ào†‰¡+©‰†xž x£ Šž|ºZ§ ‘#ˆ¼”—§ § ì –—`é  ( ž†xã] µ †+å Õšå ‡Éæ+§x´™é †x‡‰ˆ 㚊Œà‹ â<‰ã+å ä?çZ‘³|â âf´™é x

(52) ¢¡ÉéÛ]éݑ³Ý¥á+ñ¥· §

(53) 5¸+ä?çã `´™³|ä ã+é

(54) Dç‘çZ· ´Yå æ Ö í+Ø ºZ§#–—ë' £ ‡|’ ŠŒ‰Šž“–—§»`é†x £ žã]Ôµ å § å ì æ+´™–—é ˆ –—“?§nãšà ⠆x‰‡‰å ˆ ŠŒ‹lˆ |⠍—†x

(55) ¢ˆ é£ é’¼”š³Šžá+ž·’ ›‰

(56) ‡|Šž– £ çZ5³|¸+ä?âf´™éçxã ¡É`´™Û]³|ݑä Ý\ï|§ ã+é `´™éZµ´ çZ· å Hãšà ´ `â `´ ³|âŽå µ æ <ã+ävô Ö Ý+Øö*`³|§Ã´™ä º| <Ÿ‰‰ã+ä?–—’ çZ£ –—³|]âf´™§Æé º¥–—5ˆ ³˜™‹Ž `”šè+Š å†x¸ ›‰`’ ¡ˆ ’ ù‘œ]ï|†+Šž® Ú¥’ ‘ï É|𥧠ñ¥¡5

(57) Û]ݑݑ׉§ 5¸+ä?çã+ô Ö Û]Ü+بv†x§ Á/›‰–—žˆf§’ £ “‘`– é⠞?ã]æ+‰³’ ¯µ–—âf´Y ã+”Œé¿’ Šš¤ âŽã ì ž´–]`”žâ ”— `¡ú´ ³|”ŒâŽ–]å æ ‘

Références

Documents relatifs

The receiving order can be expected if those parameters are set correctly – however, in real implementations, there might exist mis-configured routers, or even compromised routers

The computation of minimum spanning tree (MST) on the gradient of an image is one of the main ingredients for the characterization of structures in different image processing

Le protocole spanning tree utilise les BPDU pour élire le commutateur root et le port root pour le réseau commuté, aussi bien que le port root et le port désigné pour chaque

• For each reachable neighbor j, node i maintains a neighbor verifier N V i,j. When a sensor is deployed, the administrator pre-loads it with its local chain for one hop

Keywords Home Network · WiFi · HomePlug AV · Agent · QoS · Knowledge Plane · Ontology · Through- put

Key words: continuum percolation, hyperbolic space, stochastic geometry, random geometric tree, Radial Spanning Tree, Poisson point processes.. AMS 2010 Subject Classification:

Moreover, when used for xed classes G of graphs having optimum (APSPs) compact routing schemes, the construction of an MDST of G ∈ G may be performed by using interval, linear

Therefore, having a spanning tree with minimum diameter of arbitrary networks makes it possible to design a wide variety of time- efficient distributed algorithms.. In order