• Aucun résultat trouvé

Cloning and Sequencing of the Low-Affinity Penicillin-Binding Protein 3r-Encoding Gene of Enterococcus Hirae S185: Modular Design and Structural Organization of the Protein

N/A
N/A
Protected

Academic year: 2021

Partager "Cloning and Sequencing of the Low-Affinity Penicillin-Binding Protein 3r-Encoding Gene of Enterococcus Hirae S185: Modular Design and Structural Organization of the Protein"

Copied!
9
0
0

Texte intégral

(1)

Vol. 175, No. 10 JOURNAL OF BACTERIOLOGY,May1993,p. 2844-2852

0021-9193/93/102844-09$02.00/0

Copyright X 1993, AmericanSociety forMicrobiology

Cloning

and

Sequencing

of

the Low-Affinity

Penicillin-Binding

Protein

3r-Encoding

Gene of Enterococcus hirae S185:

Modular Design and

Structural

Organization

of the

Protein

GRAZIELLAPIRASt

DOMINIQUE RAZE,

ABOUBAKER EL

KHARROUBI,4

DANIELE

HASTIR,

SERGE ENGLEBERT, JACQUES COYE'1TE,* ANDJEAN-MARIEGHUYSEN Centred'Inge6nierie des Proteines, Institut de Chimie, B6, Universite de Liege,

B-4000Sart Tilman

(Liege

1),

Belgium

Received13November1992/Accepted9 March 1993

Theclinical isolate Enterococcus hiraeS185 has a peculiar mode of resistance to penicillin in that it possesses two

low-affinity

penicillin-binding proteins (PBPs): the 71-kDa PBP5, also found in other enterococci, and the 77-kDaPBP3r. The two PBPs have the same low

affinity

for thedrug and are

immunochemically

related toeach other. ThePBP3r-encoding gene has been cloned and sequenced, and the derived amino.acid sequence has been compared bycomputer-assistedhydrophobic cluster

analysis

with thatof the

low-affinity

PBP5 ofE. hirae R40, the

low-affinity

PBP2' of Staphylococcus aureus, and the PBP2 of Escherichia coli used as the standard of reference of the

high-Mr

PBPsof class B. On the basis of the shapes, sizes, and distributions of thehydrophobic and nonhydrophobic clusters along the sequences and the linear amino acid alignments derived from this analysis, the dyadPBP3rPBP5has anidentity index of 78.5%, the triadPBP3rPBP5-PBP2' has an

identity

index of291%,and the tetradPBP3rPBP5-PBP2'-PBP2 (of E. coli) has an

identity

index of 13%. In spite of this divergence, thelow-affinityPBPs are of identical modular design and possess the nine amino acid groupings (boxes)typical of the N-terminal and C-terminal domains of the

high-Mr

PBPs ofclass B. At variance with the latter PBPs, however, the low-affinityPBPs have an additional =110-amino-acid polypeptide stretch that is inserted between the amino end of the N-terminal domain and thecarboxyend of themembrane anchor. While the enterococcal PBP5 geneis chromosome borne, the PBP3r gene appears to be

physically

linked to theerin gene,which confers resistance to erythromycin and is known to be plasmid borne in almost all the Streptococcus spp.examined.

Therelatively lowsusceptibilityto,B-lactamantibioticsof enterococci compared with that of other streptococci is attributed to the presence of membrane-bound penicillin-binding proteins (PBPs) with low affinity for the drug (10, 22). Presumably, these PBPs are able to take over the functionsof the other PBPs when thecells aregrown in the presence of

13-lactam

antibiotics (10, 23).Enterococcus hirae ATCC 9790 and E. hiraeS185, aclinical isolate from swine intestine, have been studied in some detail (6, 7, 11, 23). Benzylpenicillin has a MIC for E. hirae ATCC 9790 of 1 pg

ml-'.

E. hirae ATCC9790possesses alow-affinityPBP which, on the basis of its migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE),

is referred to as the 71-kDa PBP5. Serial cultures in the presence of increasing concentrations of benzylpenicillin have led to the isolation of a mutant, strain R40, for which the MIC is 80

tFg.

ml-1 and which, in parallel to this, overproduces PBP5 (11). The MICforE. hirae S185 is 16

,ug.

ml-'.

Unexpectedly, that strain possesses two

low-affinity

PBPs,the71-kDaPBP5and 77-kDaPBP3r.Exposure to

increasing

concentrations of

penicillin

has led to the isolation ofa mutant, strain S185r, for which the MIC is considerablyincreased(175

,ug.

ml-')

andwhich,inparallel to this, selectively overproduces the 77-kDa PBP3r.

Irre-*Correspondingauthor.

tPresent address:

Laboratory

of Molecular Virology, National CancerInstitute, Bethesda,MD20892.

*Presentaddress: Laboratoryof Viral and Molecular

Pathogen-esis, National Institutes ofHealth,Bethesda,MD20892.

spectiveof the strainsfromwhich theyareisolated,

PBP3Y

and PBP5 have the same low affinity for penicillin as expressed by the same low value (20 M-1 s') of the second-order rate constant of protein acylation. The two proteins have distinct tryptic digestion patterns but are nevertheless immunochemically related (7, 23).

Withthisinformationprovided, questionsaroseregarding the molecular organizationofPBP3rcompared with that of PBP5 and theexpressionof the PBP3Yand PBP5 genes. As a

prerequisite

to an answer to these questions, the PBP3Y genehas beenclonedandsequenced andthemodulardesign of PBP3Y has been investigated by

hydrophobic

cluster analysis of the amino acidsequence. Thepossible existence of a

specific

linkagebetween thelow-affinity PBP-encoding genes and othernon-,B-lactam antibiotic resistance determi-nants has also beenexamined. The results of these investi-gationsaredescribedbelow.

(Most of this workwasconducted by G. Piras in

partial

fulfillmentof the requirements fora Ph.D. degree from the UniversityofLiege, Liege,

Belgium.)

MATERIALSANDMETHODS

Bacterial strains, MICs, and DNA recombination tech-niques. E. hirae S185 and S185r were grown as described elsewhere

(23).

MICsweredeterminedin

liquid

SBmedium

(6).

Escherichiacoli HB101andJM105

(grown

inLuria broth or

2XYT

broth) and

plasmids pBR322

and

pBR325

were used for genecloning

experiments

(25).

The DNA recombi-nationtechniques,theenzymes, and theE.hiraeS185r total DNAwere used asdescribed in references 7 and 23. DNA 2844

(2)

E. HIRAE LOW-AFFINITY PENICILLIN-BINDING PROTEIN 3r 2845

fragments

were purified by the GeneClean procedure (Bio 101, LaJolla,Calif.)orbyelectroelution in 10mMTris-HCl

(pH

8.0) containing 5 mM NaCl and 1 mM EDTA. The 29-mer probe (Tm = 80'C) and the other oligonucleotides described inResults were fromEurogentec, Liege, Belgium.

Hybridization

and posthybridization washings were carried outat55and 70'C, respectively. Double-strand sequencing wascarried out asdescribed previously (29).

PBP

analysis

and immunoassays. Membranes were pre-pared, protein contents were estimated, PBPswere labeled withbenzyl[14C]penicillin, andSDS-PAGEandfluorography were performed as described elsewhere (5, 23). Rabbit anti-PBP3r andanti-PBP5 antibodies prepared and partially

purified

by immunoadsorption as described previously (7,

23)

wereused forimmunoblotting experimentsanddetection of both PBP3r andPBP5 (see the introduction).

Isolation from E. hirae S185ofpenicillin-sensitive mutants (strainSS22) andpenicillin-resistant revertants (strain

SS22D).

Samples

ofastationary-phase culture of E. hirae S185 grown in SB medium were treated with 50 mM sodium nitrite in sodium acetate buffer, pH 4.6, for 30 or 60min at370C (4). Alternatively, samples of an exponential-phase culture of strain S185 grown inbrainheart(BH) medium were diluted to 104

cells.

ml-'

(in fivefold-diluted BH medium) and treatedwith acridine half-mustard ICR-191 (Serva,

Feinbio-chemica,

Heidelberg, Germany) at final concentrations of5 and 12.5

,ug.

ml-1,

at37°Cfor 4 to 5 h(4). After nitrous acid or acridine half-mustard ICR-191 treatment, samples (0.25

ml)

of diluted cell suspensions were spread on BH agar

plates

and maintained at 37°C for 24 h. Randomly chosen, surviving colonieswerestreaked onpenicillin-free and pen-icillin-containing (0.25

,ug.

ml-')

BH agar plates. After incubation at 37°Cfor 24 h, penicillin-sensitive clones (se-lectedonpenicillin-freeagarplates) were grown in liquid SB mediumand the

benzylpenicillin

MICs for them were deter-mined. The twomutagens yielded 70 mutantsfor which the MIC was very low (0.1

jig

ml-').

These mutants repre-sented about 9% of the surviving colonies. Strain SS22, obtainedby nitrous acid treatment,was one ofthem.

Penicillin-resistant revertants wereobtainedbyserial sub-cultures of strain SS22on agar plates containing increasing amountsof

penicillin,

from0.1 to 30 ,ug

ml-'.

The MIC for these revertantswasconsiderably increased (35

pg.

ml-').

StrainSS22rwasoneof theserevertants.

Hydrophobic cluster

analysis.

Hydrophobic cluster analy-sis is a powerful method for comparing proteins that are

weakly

related in theprimary structure (12). It restsupon a

duplicated

representation ofthe amino acidsequenceson an a-helical two-dimensional pattern (inwhich thehydrophobic residuestend to formclusters) and comparesthedistribution of the

hydrophobic

clusters along the sequences.Theshapes of the clustersareusually associated with definite secondary structures, and therefore, clusters of similar shapes, sizes, and relative

positions

express similarity in the polypeptide

folding

of the

proteins.

In this method, the six residues

adjacent

totheaminoacidiare i- 4, i- 3, i - 1, i + 1, i +

3,

andi +4. Hence,comparedwithmethodsbased only on a

single

amino acidproperty or identity,hydrophobiccluster

analysis

allows distant information tobecomevisible more

readily

and allows deletions or insertions to be introduced more

easily

between thesecondarystructures.

Nucleotidesequence accession number. The EMBL acces-sion number for the nucleotidesequence shown in Fig. 3 (see

below)

is X69092.

Sl8Sr

SS22r

S185

SS22

ATCC9790

F

I

I

PB

P33

PBPS

P <-

PBPS

FIG. 1. Membrane-bound PBP3Y and PBP5 of E. hirae ATCC 9790, S185, S185 , SS22, and SS22F. SDS-PAGEand immunodetec-tion of thePBPswith theanti-PBP3r andanti-PBP5 antibodies.

RESULTS

Linkage between the

PBP3Y

anderm genes. It was known (see the introduction) that E. hirae S185 has two low-affinity PBPs, the 71-kDa PBP5 and the 77-kDa

PBP3r,

and that, by exposure to increasing concentrations of penicillin, E. hirae S185 gave rise to penicillin-resistant mutants, in particular, strainS185r,which selectively overproduced

PBP3Y

(seeFig. 1 and 5 in reference 23). The first run of exposure to penicillin caused a 6-fold-increased MIC, from 16 to 100

Rg*

ml-',

and aconcomitant 3- to4-fold-increased amount ofPBP3r. In contrast, the subsequent runs resulted, each, in a small increment in the MIC, which reached 175 xg

.ml-'

afterthe fourth run. In parallel to this, the amount of

PBP3r

seemed to remain constant but there was a detectable, progressive decrease in the amounts of the other PBPs present in the membranes.

Chemical mutagenesis of strain S185 under the conditions described in Materials and Methods led to the isolation of hypersensitive mutants, in particular, strain SS22. SDS-PAGE of the isolated membranes and Western blot (immu-noblot) analysis with the anti-PBP3' and anti-PBP5 antibod-ies showed that, to all appearances, strain SS22 had lost the capacity of producing

PBP3Y

but still contained low levels of PBP5 (about 25 and 8% of the amounts of PBP5 present in strain S185 and strain ATCC 9790, respectively) (Fig. 1). Consistent with this observation, serial cultures of strain SS22 in the presence of increasing concentrations of penicil-lin led to the isolation of resistant revertants, in particular, strain SS22r, which overproduced PBP5 but still lacked PBP3r (Fig. 1). In contrast with penicillin-resistant

S185r

mutants, the increase in penicillin resistance of SS22 rever-tants was progressive and apparently associated withregular increases in PBP5 amounts in the cell membranes. Note that the PBP pattern of the mutants of eachclass derived from strain S185 was similar to that of the respective prototypic strains S185r, SS22, and SS22r. Sometimes, but not always, PBP5 of strain ATCC 9790 and PBP5 of strain S185 (and its derivatives) migrated somewhat differently, suggesting that minor modifications in the proteins might occur.

Given that the parental strain S185 was also resistantto erythromycin and tetracycline, thereby probably possessing the erm and tet genes, the susceptibility of the mutantsto these

non-p-lactam

antibiotics was determined. The MICs (Table 1) revealed that strains SS22 andSS22r, which had lostthecapacity of producing

PBP3Y

but not PBP5, had also lost the ability to resist erythromycin, suggesting that the VOL. 175, 1993

(3)

2846 PIRAS ET AL.

TABLE 1. Susceptibilitytothree antimicrobial agents and content ofmembrane-bound low-affinityPBPs

infive E. hirae strains

MIC(jug.ml-')of: Levela of: Strain Benzyl- Erythro- Tetra- PBP5

PBP3r

penicillin mycin cycline

ATCC9790 1 1 1 + 0

S185 16 360 100 + + +

S185r 175 360 100 + ++++

SS22 0.1 1 100 Verylow 0

SS22r 35 1 100 + + 0

aVisual estimation from thegels shown inFig.1and in Fig. 1and5of

reference23, on ascale fromverylowto + + + + (0,notpresent).

PBP3r and erm genes were linked physically and deleted concomitantly bychemical mutagenesisofstrain S185.

Cloning of the PBP3rgene. Ina previous study

(23),

two degenerated oligodeoxynucleotidesweresynthesizedonthe basis of the known N-terminal sequences of peptides iso-latedfrom atryptic digestof the E. hiraePBP3Yand usedto amplify a 233-bp DNA segment by the polymerase chain reaction procedure. This segment was cloned, and on the basisofits established nucleotide sequence, the nondegen-erated

5'-CATFITTGTTlTGGATCATAGCJ'lGGAGAGC-3'

29-mer probe (complementary to the SSPSYDPNKK de-capeptide-encodingDNA

strand)

was

synthesized

and

_y32p

labeledatthe 5' end. Libraries of E. hirae S185r total DNA were prepared into pBR322 or pBR325 depending on the available restriction sites and used to transform E. coli HB101 cells. Of the7,400coloniescloned, 16gave astrong hybridization signalwith the radioactive29-merprobeafter extensivewashingsunder

stringent

conditions.Recombinant plasmidswhoseinsertsranged from0.7to14kb insizewere identified by Southern blot

analysis.

To prove that the inserts contained the PBP3Y gene, membranes of trans-formed E. coli cells were isolated and

subjected

to SDS-PAGE followed by Western blot analysis with anti-PBP3r (and anti-PBP5) antibodies. E. coli actually produced a novel, membrane-bound, low-affinity PBP which migrated with an apparent molecular mass of 77 kDa (and thus distinguished itself fromthe 71-kDa

PBP5).

Of the available plasmids, pDML501, i.e., pBR325 harboring a4.5-kbNcoI insert, served to sequencethe PBP3r gene. Comparison of the restriction map of pDML501 with that of the PBP5 gene-containing pDML540 (7) confirmedthatpDML501 did contain thePBP3rgene

(Fig. 2).

Nucleotide sequence of the PBP3' gene and amino acid sequence of

PBP3F.

Byusing the strategy shown in Fig. 2, sequencing ofthe pDML501 inserton bothstrandsyielded anopenreadingframe whichstartedatposition 261 withan ATG codon and terminated atposition 2095 by a TAA stop codon (orfromposition 6010 to position 8044 by using the numbering of pDML501) (Fig. 3). A perfect ribosome bind-ing site, AGGAGG, which matched exactly the sequence consensus(27) occurred 5 bp upstreamfrom the ATG start codon.Computer analysis of the secondary structure of the corresponding RNA showed that the AGGAGG sequence was on asingle-stranded region optimal for the expression of prokaryotic genes (19). The TAA stop codon was followed by palindromic regionsabletoformahairpinorstem-loopin the corresponding RNA, a structure typical of many pro-karyotic terminators (19). The 39.7% GC content of the sequencewassimilar to that of other streptococcal genes (9).

A) B) ATG Hl Ps Ss Pl KpTAG pbp5gene I - I A 1 371 6X0 1139 175018032034 C) 500 60106170 6818 7208 5600 ATG

r6200

6761|7018 7338 Cl P11 HIllPs PllPu Cl NIl PS ~~~~~~HII 80ow TAA %//// l **pbp3rgene HIl Cl HTill/Ps X , PCR Ps/ Ps 4-.' Ps/Ps PNi/Hl Hil/Ps Hill/Hill Pn/HNU1 4- .X Hill Hill/P F X X E Hill/HilU

FIG. 2. Cloningand sequencingofthe PBP3rgene ofE. hirae S185'. (A) Restrictionmap ofpDML501. The arrowin the insert indicates the position and orientation of the PBP3Y gene. (B) Restrictionmapof the PBP5gene(seereference7). (C)Restriction mapof the PBP3rgeneand sequencingstrategy. Restrictionsites: Ba,BamHI; Cl, ClaI; Ec,EcoRI; HII,Hindu; HIII, HindIII; Kp, KpnI; Nc, NcoI; Ps, PstI; PI, PvuI; PII, PvuII; Ss,SstI.The 0.6-kb PII-HIII,0.7-kbPs-Ps,1.1-kbPs-HII,and 1.0- and 1.3-kbHIII-HIII DNAfragments were cloned into M13mpl8 ormpl9 phages and sequencedonboth strands(inmostcases) by usingM13 universalor

syntheticprimers. The Ps-Pssegmentwassequenced bythe double-strandmethodwithaspecificsyntheticoligonucleotide.

ThePBP3T gene translatedinto a 678-amino-acid-residue protein

(Fig. 3).

The theoretical 4.73 pl value

(Genetics

Computer

Group program)

wasveryclosetothe

experimen-tal 4.5 pI value measured for the 63-kDa t-PBP3r tryptic

peptide

isolated

previously (23).

Hydrophobic cluster analysis of PBP3r. The amino acid sequenceof the E. hirae PBP3rwascomparedwith those of the low-affinityPBP5 of E. hirae and the low-affinity

PBP2'

of Staphylococcus aureus, using the E. coli PBP2 as the standard of reference. The staphylococcal PBP2',which is responsible for acquiredresistance to methicillin, is struc-turallyrelatedtothe enterococcal PBP5(7). The 633-amino-acid-residue PBP2 of E. coli is involved, together with the intrinsic membrane protein RodA(3, 15, 21), in the forma-tion of the rod shape of the cell. Of the

high-M,

PBPs of knownprimarystructure,the E.coliPBP2shows thehighest similaritywiththe

low-affinity

PBPs.

The

high-Mr

PBPs are three module proteins (13). A membraneanchor, usually30to60aminoacidresidues long,

(4)

VOL. 175, 1993 E. HIRAE LOW-AFFINITY PENICILLIN-BINDING PROTEIN 3r 2847

AAA.GATCGATACATTATCCGTAACCAGTAGACGGCAGTT GGACTT CAACGACAATACGCCTTCCGGAAGTGTTCTGGAATTAGATTTGACCAAAAACCAAGAAGCAATCAAAAAATTTCT

1 121 SD M K R S D K H G K N R T G A Y I A G A V I L I V T A S G G Y F Y Y 33 AGCAAAAGAAGGAGGAAAAAATGAAAAGAAGTGACAAGCACGGCAAAAATCGAACAGGCGCTTATATTGCCGGCGCAGTGATTTTAATAGTAACTGCAAGTGGCGGTTATTTTTACTACC 241 R H Y Q E T Q A V E A G E K T V E Q F V Q A L N K G D Y N K A A G M A S K K A A 73 GGCACTACCAAGAAACCCAAGCAGTAGAAGCTGGAGAAAAGACGGTTGAGCAATTTGTCCAAGCTTTAAACAAAGGAGATTATAACAAAGCTGCAGGAATGGCATCGAAAAAGGCAGCAA 361 HindIII PatI N K S A L S E K E I L E K Y Q N I Y G A A D V K G L E I S N L K V D K K D D S T 133 ATAAAAGTGCATTATCTGAAAAAGAGATCTTAGAAAAATACCAAAATATATACGGTGCTGCCGATGTCAAAGGACTTGAGATATCAAATCTAAAAGTAGATMMAAGATGATTCTACTT 481 Y S F S Y K A K M N T S L G E L K D L S Y K G T L D R N D G K T T I N W Q P N L 153 ATAGCTTTTCATATAAAGCAAAGATGAATACCTCATTAGGTGAATTGAAAGATCTTTCTTATAAAGGAACATTAGACAGAAATGATGGMAAAACCACGATCAACTGGCAGCCTAACTTGG 601 V F P E M E G N D K V S L T T Q E A T R G N I L D R N G E P L A T T G K L K Q L 193 TTTTTCCAGAAATGGAAGGAAATGACAAAGTAAGTCTGACCACGCAAGAAGCAACAAGAGGGAACATTTTAGATCGAAATGGGGAACCATTAGCAACAACCGGCAAACTAAAACAATTAG 721 G V V P S K L G D G D E K T A N I K A I A S A F D L T E D A I N Q A I S Q S W V 233 GAGTCGTTCCAAGCAAACTTGGGGATGGGGACGAAAAAACAGCCAATATCAAAGCCATTGCTTCTGCATTCGACTTAACAGAAGATGCTATCAATCAGGCTATTTCACAAAGCTGGGTAC 841 Q P D Y F V P L K I I D G A T P E L P A G A T I Q E V D G R Y Y P L G E A A A Q 273 AACCCGATTACTTTGTCCCATTGAAAATCATTGATGGAGCAACGCCAGAACTTCCAGCTGGAGCTACCATCCAAGAAGTAGACGGCAGATATTATCCTTTGGGTGAAGCAGCTGCTCAAC

96i PvuII PvuII

L I G Y V G D I T A E D I D K N P E L S S N G K I G R S G L E M A F D K D L R G 313 TGATTGGTTACGTGGGAGATATCACAGCAGAAGATATTGATAAAAATCCAGAATTAAGQAGTAATGGAAAAATCGGACGATCTGGTTTGGAAATGGCTTTTGATAAGGATCTTCGTGGGA 1081 T T G G K L S I T D T D G V E K K V L I E H E V Q N G K D I K L T I D A K A Q K 353 CTACAGGTGGAAAATTAAGCATCACAGATACAGACGGTGTCGAGAAAAAGGTTCTGATCGAGCATGAAGTCCAAAACGGAAAAGATATCAAATTGACAATCGATGCAAAGGCACAAAAAA 1201 ClaI T A F D S L G G K A G S T V A T T P K T G D L L A L A S S P S Y D P N K M T N G 393 CAGCTTTCGACAGTCTAGGAGGAAAAGCTGGATCGACTGTTGCGACAACGCCAAAAACCGGTGATCTTCTTGCGCTTGCTAGCTCTCCAAGCTATGATCCAAACAAAATGACAAACGGGA 1321 Probe I S Q E D Y K A Y E E N P E Q P F I S R F A T G Y A P G S T F K M I T A A I G L 433 TCTCACAAGAAGACTACAAAGCTTATGAAGAAAATCCTGAACAACCATTCATCAGCCGATTTGCGACAGGTTATGCTCCTGGCTCTACGTTTAAAATGATCACAGCAGCAATCGGTCTCG 1441 HindIII D N G T I D P N E V L T I N G L K W Q K D S S W G S Y Q V T R V S D V S Q V D L 473 ACAACGGCACTATCGATCCAAATGAAGTGTTGACGATCAACGGGCTTAAATGGCAAAAAGATAGTTCTTGGGGATCGTATCAAGTAACTCGTGTTAGTGATGTGTQACAAGTAGACTTAA 1561 HindII K T A L I Y S D N I Y M A Q E T L K M G E K N F R A G L D K F I F G E D L D L P 513

AAACTGCTTTGATTTATTCCGATAATATATATAT GGQACAAGAAACGT TGAAAATGGGGGAGAAGAATTTCCGTGCAGGTTTGGATAAATTCATTTTTGGTGAAGACCTTGATTTGCCAA

1681

I S M N P A Q I S N E E S F N S D I L L A D T G Y G Q G E L L I N P I Q Q A A M 553

TCAGTATGAATCCAGCACAAATTTCTAATGAAGAGAGCTTTAATTCAGATATCTTGCTAGCTGATACTGGATATGGACAAGGCGAACTTCTAATTAATCCTATCCAGCAAGCAGCAATGT 1801

Y S V F A N N G T L V Y P K L I A D K E T K D K K N V I G E T A V Q T I V P D L 593

ATTCTGTTTTTGCCAACAATGGCACACTTGTCTAT CCTAAATTGATTGCAGATAAAGAGACAAAAGATAAGAAGAATGT CATCGGCGAAACAGCAGTACAAACGATCGTGCCAGATCTGA

1921 R E V V Q D V N G T A H S L S A L G I P L A A K T G T A E I K E K Q D E K G K E 633 GAGAAGTTGTGCAAGATGTAAATGGTACAGCACATTCTCTTTCTGCTTTAGGGATTCCATTGGCAGCGAAAACTGGTACAGCGGAAATCAAAGAAAAMCAGGATGAAGGGAAAGAGA 2041 N S F L F A F N P D N Q G Y M M V S M L E N K E D D D S A T K R A P E L L Q Y L 673 ACAGTTTCTTGTTTGCTTTCAACCCTGATAACCAAGGATATATGATGGTTAGCATGTTGGAAAATAAAGAAGATGATGATTCAGCAACTAAACGAGCACCCGAACTATTACAATACCTCA 2161 N Q N Y Q * _ _ _ _ 678 ACCAAAATTATCAATAAAGAACGACTTCATAACTATAGTAAAAGGACTGTGACGGTATCGTCACAGTCTTTTTTCGAATAAACGACAGGTTCACGACCACTTTCTGGGTCACTCACACTT 2281 CATAACTTTTTTTGTAAAATATTTCAGAACAAGTGGAGAAATAAGTGTACTTAATAAAATCACGATTACTAAAGGTGAATAGTACTGTGGTTCGATCAATTGACTTTGCTGTCCAATTT 2401 GCAAAATGATCAAAGCCATTTCTCCACGCGAAATCATACCAGCACCGACCATCAATGAACTATGTTGAAAACCGGCAATCTGAGCACCAAAATACCCTCCAAGCAATTTGGTCAAAA 2521 TTGCTACAAGCGTCAATATAGAAATAAAGAGAAGCTGCTCAGATCCAAAGTCAAAATCAACTTCTAATCCTACACTGACAAATACTGGTATAAATACTGCATATCCTAAAGCTT 2641 HindIII CAACATTG 2761

FIG. 3. Nucleotidesequence of thePBP3' gene and aminoacid sequence of PBP3' of E. hirae S185'. SD, Shine-Dalgarno sequence. Arrowsindicate invertedrepeatsforming theputative terminator. Restrictionsites and thepositionof thecloning probe areunderlined.*, active-site-definingmotifsofthepenicilloylserinetransferasefamily. PBP3' has acalculated molecularmass of 73,822 kDa.

(5)

2848 PIRAS ET AL.

is linked to a several hundred-amino-acid-residue N-terminal domain which is linked to a several hundred-amino-acid-residue penicillin-binding C-terminal domain. The

high-M,

PBPs fall into two classes, A and

B,

whose members differ in theirN-terminal domains(8). Those of class B possess nine conserved motifs orboxes along the amino acid sequences (8, 13).Box1and box 4 are-atthe aminoend and the carboxy end of theN-terminal domain, respectively.Box5 and box 9 are at the amino end and the carboxy end of the C-terminal domain, respectively. Boxes 6, 7, and 8 of the C-terminal domain are the active-site-defining motifs characteristic of thepenicilloyl serinetransferasefamily, i.e., in the indicated order,the tetradS*XXK (where S* is the active-site serine), the triad SDN(oranalog), and thetriad KT(S)G (or analog). Consistent with the modular design of the proteins, the patterns ofhydrophobicandnonhydrophobicclusters of the membrane anchorsandN-terminal domainsof thefourPBPs under comparison are shown in Fig. 4. The corresponding C-terminal domains are shown in Fig. 5. In this representa-tion, each hydrophobic amino acid residue

(F,

I, L, M, V, W,and Y) and eachhydrophobiccluster aredelineated; the hydrophobic residues and clusters occurring at equivalent placesalong the sequences of thelow-affinityPBPs3r, 5, and 2' are in boldface; and thenonhydrophobic residues occur-ringas-strict identitiesare marked by scattered points. The residues and clusters marked in boldface or by scattered points alongthe amino acid sequence of the E. coli PBP2 occur atplacesequivalent tothosefound in thelow-affinity PBPs. Figure 6 is the linear amino acid alignment derived fromthe dataofFig. 4and5.

DISCUSSION

Thelow-affinityPBPs3'and5 of E. hirae S185 and PBP2' ofS. aureus areproteins ofverysimilarsize, containing 678, 678, and 667 aminoacid residues, respectively (7, 26). The pair PBP3r-PBP5 has532 identities (identity index: 78.5%), thepairPBP3T-PBP2' has216identities(33%), and thetriad PBP3r-PBP5-PBP2' has 195 identities(29%) (Fig. 6).Inspite of this divergence, the hydrophobic and nonhydrophobic cluster patterns of the three low-affinity PBPs are almost superimposable (Fig. 4 and 5). Few deletions or insertions have to be made between the conserved clusters toobtainan optimal match.

The clusterpattern of the low-affinity PBPs is similar to thatof the E. coli PBP2 except that the low-affinity PBPs have an additional -110-amino-acid-residue stretch that extendsfrom thecarboxyend of the membrane anchor to the amino end oftheN-terminaldomain. When thisN-terminal extension is excluded from theanalysis,the fourPBPsunder comparisonhave82identities (identityindex: 13%)(Fig.6). This low index is not due to the random distribution of a limitednumber of conserved amino acid residues but results from the occurrence of 10definite amino acid groupings of high homology or identity along the amino acid sequences (Fig.4and5). When the comparison is restricted to the nine boxes conservedin the

high-M,

PBPs of classB,the identity scores are 85% for the pair E. hirae PBP3r-E. hiraePBP5, 70% for thepair E. hirae PBP3r-S. aureus PBP2', and 64% for thepairE.hirae

PBP3r-E.

coliPBP2. The 10th conserved grouping, which is located immediately downstream from D-535 or D-518 in the low-affinity PBPs, aligns with the groupinglocatedimmediately downstream from D-447 in the E. coli PBP2. Site-directed mutagenesis experiments (1) suggest that D-447 is an important component ofthe cata-lytic machineryof the E. coliPBP2. It may beequivalent to

theactive-site E-166 of the1-lactamaseof class A (17).Note also that the SDN motif (box 7) of the low-affinity PBPs aligns with the SAD motif of the E. coli PBP2.

From the above analysis, one can safely conclude that the enterococcal and staphylococcal low-affinity PBPs(i) have very similar polypeptide scaffoldings and thereby perform similar functions and (ii) have a basic multimodule design and structural organization comparable to those of the E. coli PBP2 but (iii) differ from the E. coli PBP2 by the presence of an =110-amino-acid residue polypeptide in-serted immediately downstream from the membrane anchor. This polypeptide is large enough to provide the low-affinity PBPs with an additional domain having a particular folding and performing a separate function. Its possible role in the low-affinity PBP-mediated penicillin resistance remains to be established.

PBP3r and PBP5 of E. hirae S185 are extremely similar with respect to structure and lowsusceptibility to acylation by penicillin. Yet expression of PBP3r is selectively en-hanced when strainS185 is submitted topenicillin pressure (strain S185r), expression ofPBP3ris selectively annihilated when strain S185 is submitted to chemical mutagenesis (strain SS22), andexposure of this latter strain topenicillin pressure causes overexpression of PBP5 (strain SS22'). These differences inregulation and chemical susceptibility as well asthe linkageof theerythromycin resistance-encod-ing ern gene to the PBP3r gene, but not to the PBP5 gene, indicate that the PBP3r and PBP5 genes are borne by differentDNAsegments. Recent results from this lab show that both the PBP3' and erm genes are present on a large plasmid (24). Note thatern is plasmid borne in almost all streptococci examinedexcept S.pneumoniae (14, 18). Sim-ilarly, the S. aureus mec region, which contains the low-affinity PBP2'-encodingmecA gene,ispresent in a transpo-sonthatcarriesotherantibiotic resistance determinants(i.e., aadD,tet, anderm) (16,20,28).TheenterococcalPBP3r and staphylococcal mec genes code for similar PBPs; theymay also beintegrated into similar DNAstructures.

Theaccumulationof antibiotic resistancedeterminants in autotransmissible plasmids facilitatesthelateralor horizon-tal mobility of the corresponding genes between bacterial species (2).Itisaseriousthreat forantibacterial chemother-apy. By actingas collectors oftransposonsinwhich genes move asintegroncassettes, theseplasmids increasethe gene pool and thereby increase the gene flux between bacterial species. Intraspecies transfer of low-affinity PBP-encoding genes may be accompanied by the immediate acquisition of penicillin resistance. Given thestructural variations of the wall peptidoglycans and the variations in the specificity profiles of thePBP-catalyzed reactions, acquired resistance to penicillin by interspecies transfer of low-affinity PBP-encoding genes mayrequire remodeling of the PBP active sites. The relatively low index ofidentity (28%) between the enterococcal and staphylococcal low-affinity PBPs may be the expression of a species-specific adjustment of the en-zyme active-site configuration.

ACKNOWLEDGMENTS

This work was supported in part by the Belgian Programme on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister'sOffice, Science Policy Programming (PAI 19); the Fonds de laRecherche Scientifique Medicale (contract 3.4531.92); and a Conventiontripartite between the Regionwallonne, Smith-Kline Beecham, Brockham Park, Betchworth, U.K., and the Uni-versity of Liege.G.P. was a fellow of the Institut pour

l'Encourage-mentdela RechercheScientifique dans l'Industrie etl'Agriculture, Brussels, Belgium.

(6)

E. HIRAE LOW-AFFINITY PENICILLIN-BINDING PROTEIN 3r 2849 ,,~~~~~~~~*~~~~~~~.

a~M

K KM *~@;~~~~~~~~~ @~13 ~ ~ ~ ~ ~ * ~~ ~ ~ ~ ~ ~IKc a~~~~~~~~ ~ ~ ~

*u

~ z __ 0~~~~~~~~~~~~~~~~~~~~~~~~0 ~ ~ ~ ~ ~~ k * : 4~~~~~ % K a c LEnK D ~~~ ~ ~ ~ ~ ~ ~ ~ CDV LO~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 Cj7 o~~~~~~~-3~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ va~~~~~~~c 0~~~~~~~~~~~~~~~ .r. CD 36 Z XX2 r-~~~~~~~~~~) w~~~~~~~~C

_

-o VOL. 175, 1993

(7)

2850 PIRAS ET AL. J.BACTERIOL. W W ) Z Z a Or 0 0 0 to MtMOo X

ag~

W O ~ LI)~rO99*U~~ oj~~~ ~ ~ ~ ~ ~ ~ ~ ~~c 2~~~0~~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~L 0 M Mii:DM0

Z-

M *w*~~~~~~~* *~~~~~~M ~ ~ wr w ? n 0

-M

~ r 0 le-M~ ~ ~ ~ ~ ~ ~ 0 0 Qj (ID a 0CI.LA ~ ~ LLJ LLJ M~~UI LU 40*0~~~~~~V ~~~, 40 4~~~~~~~~~~~ C)w0. Lr) Lr)~ ~ ~ o _ M 4-M Lr)

~

~

~

FBJ)J(rLU-

~

~

-m-n-____ a~~~~~~~~~~~13C 4~ ~~~WO~ 0 0-.0.0~~~~~~~~~~~~~~~~~~~~~~~~~~~L.0 0

(8)

N-terminal

domain

llKRSOKHGKN

RTGRYIRGRU ILIUTRSOGY FYYRHYQETQ AUERGEKTUE 50 QFUQRLNKGD YNKRGOnRSK KAR.NKSALS EKEILEKYQN IYGRRDUKGL 99

S...S .* . . . . SOS... Se S S .555 so S @5 S OS S S @50 S..SOS Sees S.S

M1KRSDMHRRN KTGUYLTSAL ULULRRGGGY FYYQKTQEEQ UUSRGEKKIQ 50 QFRERLSTGD YKKRASYTQI HSQ.TKKTIS EKERLEKYQN IYGRURIKGL 99 MKKIKIUPLI LIUUUU...GFGIY FYRS...KDKEIN 31 NTIDRIEDKN FKQUYKDSSY ISKSDNGEUE MTERPIKIYN SLGUKDINIIQ 81

*0

M1KLQNSFRDY

TRESRLFURR RLURFLGILL LTGULIRNLY NLQIURFTDY 50 QTRS.4 EISNLKUDKK DDSTYSFSYK RKM1NTSLGEL KDLSYKGTLD RNDGKTTINU 149 QPNLUFPEM1E GNDKUSLTTQ ERTRGNILDR NGEPLATTGK LKQLGUUPSK 199

*@SSSSS -5 S 56-0555 *@-@SSSSSS *SSSSSSSS S-S *--5 GO SO *@5555 *S So -@55 @5 555005 55506 55 S

EISNLKUTKK

DSETYSFSYK

RKllHTSLGEL

KDLSYKGTLT

NKNDQIKINU

149 QPNLIFPQME DTDKUSLTSE ERKRGDILDR NGKKLRTTGK LKQLGIUPRK 199

DRKIKKUSKN KK ..RUDRQ YKIKTNYGNI

.DRNUQFNFU KEDGlIUKLDU

127OHSUIIIPGllQ KDQSIHIENL KSERGKILDR NNUELANTGT HRLG I UPKN 177

... Si ... NENRIKLUPI RPSRGIIYDR NGIPLALNRT IYQIEIIPEK 9

-2

2-LGDGDEKTRN IKRIRSRFDL TEDRINQRAIS QSUUQPDYFU PLKIIDOR.. 247. TPE LPRGRTIQEU DGRYYPLGER RAQLIGYUGD ITREDIDKNP 290

LGEKEEKTRN IKRIRRRFDL SEDEINQRAIS QSUUQPDYFU PLKIIDGQ.. 27. TPE LPSGRRIQEU DGRTYPLGER RRQLIGYUGD ISREDIKKNR 290 0055 S*- 0 0 . **---* --55 * * 5

USKKD... YKRIRKELSI

ESRNYPLGOKA

SEDYIHNK.. UIKIGYKM IPSFHFKTUK 218 K"lDEYLSDFR KKFHLTTNET TSHLLGYUGP INSEELKQKE 268

UDNUQQTLDR

LRSUUDLTDD DIRRFRKERR RSHRFTSIPU KTNLTEUQUR 144RFRUNQYRF. ..PGUEUKGY

KRVYPY;SR

LTHUIGYJSK INDKDUERLN 191

1

3

4

1

...LSS NGKIGRSGLE fAFDKDLRGT TGGKLSITDT DO... UEKKU 330 LIEHEUQNGK DIKLTIDRKR QKTRFDSLOG KRE... 363

SOS *SOSOSSSSO S OS*550 *5550555 55 0*S @o @* 0 505*0es 0 e0 @505005 S--...LSS NGKIGRSOLE lTYDKELRGT NGGKLSITDR DO...TEKEU 330LIDQEUKNGQ DIKLTLDRDR QKIRFDSLGG KRE... 363

YKG...YKD DA

OGGKL

KLYDKLQHE DOYRUT1URUJ DDNSNTIAHT 314 LIEKKKKDGK

DIQLT;IDAKI

QKSIYNNflKN DY.... ...346

NDGKLRNYRR

THDIGKLGIE

RYYEDULHGQ TGYEEUEUNNR ...ORUIRQ 238 LKEUPPQRGH DIYLTLDLKL QQYIETLLRG SR. 270 L- I -J C-terminaldomain E.h.3Y GSTURTTPKT GDLLRLRSSP SYDPNKfTIG ISQEDYKRYE EIPEQPFISR 413 FRTGYR.PGS TFKlITARIG LDNOTIDP"E E.h.5 OSTUATSPKT OELLULASSP

SYDPNK7TNO

ISQEDYQRYT ENKDQPFISR 413FATGYAPOS

TFK*1TRAIO

LDOQTLNPDE 0* * * --0 -K0--S- - e 0 0 0 a K S.a.2' GSGTRIHPQT GELLRLUSTP SYDUYPFMYGnSNEEYNKLT EDKKEPLLNK E.c.2 RRUUUTDPRT OGULRLUSTP SYDPMLFUDG ISSKDYSRLL NDPNTPLUNR

r7-E.hY3r TRUSDUSQ.U DLKTRLIYSD NIYMRQETLK nGEKNFRRGL DKFIFGEDLD 0000 5505055 SO.SSOS@0Y55550050;;;G 5055;000 E.h.5 TRUSDUPQ.U NLRNRA1YSD NI~fRQETLKnGEKKFREGL NKFIFGEDLD OS 0 0 5 5 5555 5 5 TRYEUUNGNI DLKQRIESSD NIFFRRURLE UKKUGH.GRL NUTRSLEESR DTFFYQURYD YSUFRNNGTL UYPKLIRDKE ... SO0eOSSO S 00000 555 YSUFRNNGNL UYPKLEIMDKE... YSRLEMNGNI NRPHLLKDTK ...

LMILIND;IU

KUPHLLISTR EDGKQUPUUQ O 0 S0 LGSKKFEKGfl KKLGUGEDIP nO DRLSEUn GOKFGYHYTG TKDKKNUIGE TKUKQNU IRS NKUUKKNI IS PHEPPUGOD H TRUQT UPDL 000000 TRUQT LPDL KENIIILLND. SGYUELRKD. 396 FQITTS.PGS TQKILTRIMIG 320RTQGUYPPRS TUKPYUI USR 511 LPISSnNPRQI SIEES... 5i1 LPISMNPRQI SNKDS... 495 SDYPFYNAQI SNKN... 418 IDLREERSGI NPTREUKQKR * * -LHNKTLDDKT LSRGU TRNT FHSDILLRDT * S 505050 FKSE LLRDT LDNEILLADS FKKPUYQGDT ULTINGLKUQ KDSSUGSYQU 462 ,ee0e0eeeS SO 55550--ULTINGLKUQ KDQSUGSYQU 462 S S SO SO @50*- S SYKIDOKGUO KDKSUGGYNU 445 TLFDPO.UUQ LPGSEKRYRD 369 ...GYGQGEL LIINPIQQRRn 553 *O---SS 55555555 -...GYGQGEL LINPIQQRTI 553 000000 5555 5 ...GYGQGEI LINPUQILSI 536 * 5--* -IPUGIGQGYU TRTPIQnSKAR 468

r8e-593 REUUQDUNGT R....HSLSR LGIPLRRKTG TREIKE.KQD EKG... 631

593 KDUUQDTNGT ....HSLAT LGIPIAAKTG TREIKE.KQD EKG... 631

575.GMQQUUNKT H...KEDIYR SYRNLIGKSG TELK1.KQG

ET;

... 613

517.GNYGURARP NGTRHKYFRS RPYKIARRASTRQUFGLKRN ETYNRHKIRE 566 E.h.3r E.h. 5

S.a.2'

E c2 ..KENSFLFR QEMSFLFR ..RQIGUFIIS RLRDHKLMTR

r-9

-FNPDNQGYI1 UNPDTHGYLM YDKD.MPNMl1 FRPYNMNPQUR

LW7

USMLENKE.0 ISNLEDKR.E MR NUKDUQD URM LEMOGR DDSRTKRRPE GDSRTKRRPE KONASYNAK GPRUGTL LLQYLNQNYQ LLQYLNQNYQ SGKUYDELYE MRQILDHIM1L 678... ... 678... ... 660NGNKKYD... 613GDHHTDLPRE NPRURRREDH ... ...678 ...678 ...667 ...633

FIG. 6. Aminoacidalignmentof E. hirae PBP3' (E.h.3r), E.hiraePBP5(E.h.5)S.aureusPBP2' (S.a.2'), andE. coli PBP2(E.c.2). Black

dots, strictidentities in the pairPBP3'andPBP5; the triad PBPs3T, 5,and 2'; and the tetrad PBPs3r,5, 2', and 2. *, conserved

aspartic

residue. The alignments derive fromthe dataof Fig. 4 and 5. Thenine conserved boxesare numbered.

2851 E.h.3r E. h Y E.h.5 S.c.2 E.c.2 E.h.

3Y

E.h.5 S.a.2' E.c.2 E.h.3r E.h.5

S.a.2'

E.c.2 E.h.3r E.h.5

S.a.2

E.c.2

S.c.2

E.ch.2r E.h.5 Sa.

2'

E c 2 so 0

(9)

2852 PIRAS ET AL.

REFERENCES

1. Adachi, H., M. Ishiguro,S. Imajoh, T. Ohta, and H. Matsuzawa. 1992. Active-site residues of the transpeptidase domain of penicillin-binding protein2fromEscherichia coli: similarity in thecatalytic mechanismtoclassAP-lactamases.Biochemistry 31:430-437.

2. Amabile-Cuevas, C. F., and M. E. Chicurel. 1992. Bacterial plasmidsand geneflux. Cell70:189-199.

3. Asoh, S., H. Matsuzawa, F. Ishino, J. L. Strominger, M. Matsuhashi, and T. Ohta. 1986. Nucleotide sequence of the pbpA gene and characteristics of the deduced amino acid sequence ofpenicillin-binding protein2of EscherichiacoliK12. Eur.J. Biochem. 160:231-238.

4. Carlton, B. C., and B. J. Brown. 1981. Gene mutation, p. 222-242. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips (ed.), Manual of methods for general bacteriology. American Society forMicrobiology, Washington, D.C.

5. Coyette, J., R. Fontana, and J. M.Ghuysen. 1978.Solubilization and isolation of themembrane-bound DD-carboxypeptidase of Streptococcusfaecalis ATCC9790. Eur. J. Biochem. 88:297-305.

6. Coyette, J., R. Fontana, andJ. M.Ghuysen. 1980. The penicil-lin-bindingproteinsinStreptococcusfaecalis ATCC9790. Eur. J.Biochem. 110:445-456.

7. El Kharroubi, A., P. Jacques, G. Piras, J. Van Beeumen, J. Coyette,andJ.M.Ghuysen.1991.The Enterococcus hiraeR40 penicillin-binding protein 5 and themethicillin-resistant Staph-ylococcusaureuspenicillin-binding protein2' aresimilar.

Bio-chem. J.280:463-469.

8. Englebert, S., G.Piras,A. ElKharroubi,B.Joris, J. Coyette,M. Nguyen-Disteche,andJ. M.Ghuysen. 1993.Moleculardesign of thebi(multi?)functionalpenicillin-binding proteins,p.319-333. In M. A. de Pedro, J. V. Holtje, and W. Lbffelhardt (ed.), Bacterial growth and lysis: metabolism and structure of the bacterial sacculus. FEMS symposium proceedings. Plenum Publishing Corp.,NewYork.

9. Ferretti, J. J., and R. Curtiss III (ed.). 1987. Streptococcal genetics. American Society for Microbiology, Washington, D.C.

10. Fontana, R., P. Canepari, M. M. Lleo, and G. Satta. 1990. Mechanisms of resistance of enterococcito

R-lactam

antibiot-ics. Eur.J. Clin. Microbiol. Infect. Dis.9:103-105.

11. Fontana,R., R.Cerini,P.Longoni,A. Grossato,and P. Cane-pari. 1983. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J. Bacteriol. 155:1343-1350.

12. Gaboriaud, C.,V. Bessery,T. Benchetrit, andJ. P. Mornon. 1987. Hydrophobic cluster analysis: an efficient new way to

compareandanalyse aminoacid sequences. FEBS Lett. 1:149-155.

13. Ghuysen, J. M.1991. Serine1-lactamasesandpenicillin-binding proteins.Ann. Rev.Microbiol. 45:37-67.

14. Horaud, T., C. Le Bouguenec, and K. Pepper. 1985. Molecular geneticsofresistancetomacrolides, lincosamides,and

strepto-gramin B (MLS) in streptococci. J. Antimicrob. Chemother. 16:111-135.

15. Ikeda, M., T. Sato, M. Wachi, K. H. Jung, F. Ishino, Y. Kobayashi, and M. Matsuhashi. 1989. Structural similarity amongEscherichia coli FtsW and RodA proteins andBacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol. 171:6375-6378.

16. Inglis, B., P. R. Matthews, and P. R. Stewart. 1990. Induced deletions withinacluster of resistancegenesinthemecregion of thechromosome ofStaphylococcus aureus. J. Gen. Micro-biol.136:2231-2239.

17. Lamotte-Brasseur, J., G. Dive,0.Dideberg, P. Charlier, J. M. Frere, andJ. M. Ghuysen. 1991.Mechanismofacyl transfer by theclass Aserine 1-lactamase ofStreptomyces albus G. Bio-chem. J. 279:213-221.

18. Leclercq, R., and P. Courvalin. 1991. Bacterial resistance to macrolide,lincosamide,andstreptogramin antibioticsby target modification. Antimicrob. AgentsChemother. 35:1267-1272. 19. Lewin,B. 1990.Genes IV.Oxford UniversityPress, Oxford. 20. Lyon, B. R., and R.Skurray. 1987.Antimicrobial resistance of

Staphylococcus aureus: genetic basis. Microbiol. Rev. 51:88-134.

21. Matsuzawa, H., S. Asoh, K. Kunai, K. Muraiso, A. Takasuga, and T. Ohta. 1989. Nucleotide sequence of the rodA gene, responsibleforthe rod shape ofEscherichia coli:rodA and the pbpAgene,encodingpenicillin-binding protein 2, constitute the

rodA4

operon.J.Bacteriol. 171:558-560.

22. Moellering, R. C., Jr. 1990. Theenterococci: anenigma and a

continuing therapeutic challenge. Eur.J. Clin. Microbiol. In-fect. Dis. 9:73-74.

23. Piras, G., A. El Kharroubi, J. Van Beeumen, E. Coeme, J. Coyette,andJ.-M. Ghuysen. 1990. Characterization ofan En-terococcushiraepenicillin-binding protein3with low penicillin affinity.J.Bacteriol. 172:6856-6862.

24. Raze, D., and J.Coyette.Unpublished data.

25. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989.Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory,Cold Spring Harbor, N.Y.

26. Song,M.D., M.Wachi,M.Doi, F. Ishino, and M. Matsuhashi. 1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 221:167-171.

27. Stormo, G. D., T. D.Schneider,and L.M. Gold. 1982. Charac-terization of translational initiation sites in Escherichia coli. Nucleic AcidsRes.10:2971-2995.

28. Ubukata, K., R.Nonoguchi,M.Matsuhashi, M. D. Song, and M. Konno. 1989. Restrictionmapof theregions codingfor methi-cillin and tobramycin resistances on chromosomal DNA in methicillin-resistant staphylococci. Antimicrob. Agents Chemother. 33:1624-1626.

29. Zhang, H., R. Scholl, J. Browse, and C. Sommerville. 1988. Doublestrand DNA sequencing as a choice for DNA sequenc-ing. Nucleic AcidsRes. 16:1220.

Figure

FIG. 1. Membrane-bound PBP3Y and PBP5 of E. hirae ATCC 9790, S185, S185 , SS22, and SS22F
TABLE 1. Susceptibility to three antimicrobial agents and content of membrane-bound low-affinity PBPs

Références

Documents relatifs

The proposed algorithms are efficient to correct the image background in order to eliminate the heterogeneity due to humidity, shade, … On the treated images, they are able to

Le taux d’hospitalisation de l’ensemble des patients codés suspects de Covid-19 pris en charge par SOS Médecins Caen était de 3,6% avec un âge moyen des cas de 52 ans

While several animal studies on the effects of ETS in the perinatal period have also used 74.. automatic smoking machines (ASM), few bear significant relevance to sudden infant

Cette encéphalopathie est aussi décrite chez les patients dialysés chroniques en rapport avec une diminution de l’apport en vitamine B1, mais aussi avec sa perte dans

Correlation between the left (left column) and right (right column) thalami and the time series from all other brain voxels: not contrasted functional

Comparing symptoms between bees from CCD apiaries and non-CCD apiaries revealed that CCD apiaries tended to have partially filled rectums, soft fecal matter, rectal enteroliths

In the U.S., a portion of the dead and dying colonies were characterized post hoc by a common set of specific symptoms: (1) the rapid loss of adult worker bees from affected colonies