• Aucun résultat trouvé

Electrochemical double layer capacitors: What is next beyond the corner?

N/A
N/A
Protected

Academic year: 2021

Partager "Electrochemical double layer capacitors: What is next beyond the corner?"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02020588

https://hal.archives-ouvertes.fr/hal-02020588

Submitted on 15 Feb 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Electrochemical double layer capacitors: What is next

beyond the corner?

Zifeng Lin, Pierre-Louis Taberna, Patrice Simon

To cite this version:

Zifeng Lin, Pierre-Louis Taberna, Patrice Simon. Electrochemical double layer capacitors: What is

next beyond the corner?. Current Opinion in Electrochemistry, Elsevier, 2017, 6 (1), pp.115-119.

�10.1016/j.coelec.2017.10.013�. �hal-02020588�

(2)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

http://oatao.univ-toulouse.fr/21768

To cite this version:

Lin, Zifeng

and Taberna, Pierre-Louis

and Simon, Patrice

Electrochemical double layer capacitors: What is next beyond the corner?

(2017) Current Opinion in Electrochemistry, 6 (1). 115-119. ISSN 2451-9103

Official URL:

https://doi.org/10.1016/j.coelec.2017.10.013

(3)

Review

Article

Electrochemical

double

layer

capacitors:

What

is

next

beyond

the

corner?

Zifeng

Lin

1,2

,

Pierre-Louis

Taberna

1,2

and

Patrice

Simon

1,2,3,∗

Thisreviewsummarizessomerecentdevelopmentsachieved inthefundamentalunderstandingofionconfinementin microporouscarbonsupercapacitorelectrodes.Combinedwith computationalsimulations,theseadvancedtechniques providednewinsightsintothechargestoragemechanism, providingguidelinesfordesigningimprovedporouscarbon structureswithhigh-energydensity.Also,innovative

electrolyteshaverecentlybeenproposedbyintroducingsome redox-activemoietiesintoelectrolyteanions/cations,called biredoxelectrolytes,thatcombinesredoxcontributionto doublecapacitance.Thisapproachopensupnew

opportunitiestodevelophigh-energysupercapacitorsanda newfieldofbiredoxelectrolytes.

Addresses

1Université PaulSabatier,CIRIMATUMRCNRS5085,118routede Narbonne,31062ToulouseCedex,France

2RéseausurleStockageElectrochimiquedel’Energie(RS2E),FR CNRS3459,France

3InstitutUniversitairedeFrance,1rueDescartes,75231ParisCedex 05,France

Correspondingauthor:

Simon,Patrice (simon@chimie.ups-tlse.fr)

https://doi.org/10.1016/j.coelec.2017.10.013

Introduction

Inthepasttwodecades,electrochemicalcapacitors,also knownassupercapacitors,havereceivedspecialattention sincetheyareoneofthemostpromisingelectrochemical energystoragedevicesforhighpowerdeliveryorenergy harvesting applications [1]. Originally developed for power electronics applications, they are facing

increas-ing demand mainly driven by automotive and power

electronics applications. Those include regenerative braking,voltagestabilizationboostorstart-stopsystems. NumerouscitiesinEuropeandaroundtheworldare de-velopingtramwaysorbuseswithon-boardsupercapacitor

modulesforbrakingenergyrecoveryand short-distance electric drive (to passcrossings). Besides,they also can sometimesreplacebatteriesinelectric buseswherethe limitedautonomy is balanced by thefast charging that canbeachievedduringthepassengerexchange[2]. Today, most (not to say all) commercialized superca-pacitors use porous carbons as active materials. These devices, called electrochemical double layer capacitors (EDLCs),storethechargeattheelectrolyte/carbon inter-facethroughreversible adsorptionof ionsfroman elec-trolyte onto the carbon surface, by charging the elec-trochemicaldoublelayercapacitance,which canbe de-scribedinacrudeapproachby(1):

C=εrε0

A

d orC/A= εrε0

d , (1)

whereCisthedoublelayercapacitance(inF),εr isthe

electrolytedielectricconstant,ε0 thedielectricconstant

ofthevacuum(inFm−1),dthechargeseparationdistance

(inm),andAtheelectrodesurfacearea(inm2).

Increasingthecapacitanceof porouscarbonsisoneway to improve the energy density of supercapacitors. Be-yondthisbasicconsideration,thereareimportant scien-tificchallengestotackledealingwiththeunderstanding oftheionsfluxesandadsorptionmechanismsinsidethe porouscarbonstructure.

Ion

confinement

in

carbon

nanopores

FollowingpioneerworkfromAurbach[3],thediscovery in2006of adifferent,moreefficientstoragemechanism in nanosized pores (less than one nm) led to a drastic change of view:not only the surface area but also the poresize was importantto increase the chargecapacity

[4],alsoshowingamaximumincapacitancewhentheion sizewassimilartothecarbonmeanporesize[5].Those resultshavealsopointedouttheimportanceofthe mea-surementsofthespecificsurfaceareaandpore size dis-tributionofmicroporouscarbonsfromgassorption tech-nique[6].As a result, the International Union of Pure andAppliedChemistry hasrecently confirmedthatthe Brunauer–Emmett–Teller(BET)analysiswasnot recom-mendedformicroporouscarbons,asitover-estimatesthe surfaceof large micropores(>0.7nm)[6].Similarly,the use of N2 gas for gas sorption measurement has to be

discardedbecauseoftheexistence ofaquadripole mo-ment,whichdoesnotgiveaccurateporosityfor

(4)

ultrami-Figure1

A:specificcapacitance(inFcm−2)ofporouscarbonsnormalizedtotheaccessiblesurfaceareaforeachioninbothsolvents(acetonitrileANand propylenecarbonatePC).Theregularpatternaverageof0.095Fm−2adaptedfromRef.[7].B:changeofthespecificcapacitancenormalizedtothe DFT-specificsurfaceareaversustheporesizeofcarbide-derivedcarbons(adaptedfromRef.[4]).ThetrendissimilartothatofFigure1A.

cropores<0.7nm.Thedeterminationofthespecific sur-faceareaformicroporouscarbonsshouldthenbedone us-ingArgasat87Kanddensityfunctionaltheory(DFT)or

non-linearDFT(NLDFT)mathematicalmodelsshould

be used to calculate the pore size distribution and the meanpore sizediameter.Also,thesurfacearea accessi-bletotheionsoftheelectrolyte(definedbyconsidering theporesizelargerthantheneationsize[7])shouldbe consideredto calculatethe specificcapacity (in Fm−2) of the porous carbons. The specific surface area and poressizedistributionsofaseriesofporouscarbonshave beenmeasuredfollowingtheaboverecommendation[7].

Figure1Ashowstheplotofthespecificcapacitance ver-sus the carbon pore size measured in 1M (C2H5)4N+,

BF4−inacetonitrileorpropylenecarbonateelectrolytes.

The specific capacitance was obtained by dividing the gravimetric capacitance by the DFT accessible surface area measured using Ar gas that is the total surface of thepores larger thanthe neation size.Theplot shows anincreaseof thecapacitanceinthesmallpore size re-gion(lessthan1nm),suchasoriginallyproposedin2006 (Figure1B).Forlargerporesizes(mesopores),the capaci-tanceconvergestowardanaveragevaluebelow0.1Fm−2,

which aligns well with the “regular pattern” value re-portedbyCentenoetal.[8]andwiththecalculatedvalue

limitingthedouble-layercapacitanceattheplanarcarbon interface(orlargerthanthefew-nmpores[9]).

However, the “real” structure of porous carbons being difficultto obtainfromgassorption measurementsonly, advanced experimental techniques have been recently proposedas toolstohelp inunderstanding theion con-finementandenvironmentincarbonnanopores.Ina re-cent paper, Prehal et al. [10] studied theconfinement

anddesolvationinnanometersizedcarbonporesof1M CsClinwaterelectrolyte,bycombininginsitusmall

an-gle X-ray scattering experiments (SAXS) together with MonteCarlosimulations.Bymodellingbackthe experi-mentalSAXSdata,theyfoundthattheaveragenumberof stripped-offwatermoleculesincreasedfordecreasing av-erageporesize.Interestingly,thepartialdesolvationalso occurredincarbonlargermesopores,althoughlimitedto about1% water molecules removedfrom the solvation shell.Thesedatathus showthat iondesolvation seems tobeauniversalphenomenonforvirtuallyallnanoporous carbons,becauseoftheporesizedispersionandpresence ofultranarrow(subnanometre)pores[10•].

Other insitutechniques have beenrecently developed thepastyearssuchaselectrochemicalquartzcrystal

mi-crobalance (EQCM).EQCM in gravimetric mode, that

trackstheweightchangeofanelectrodeduring electro-chemicalpolarization,hasbeensuccessfullyusedto ex-perimentallymeasuretheextentofdesolvationincarbon nanoporesinnon-aqueouselectrolytes[11•

–13].EQCM resultsshowed thatEMI+

cationslosehalfof their sol-vationshellinacetonitrile-basedelectrolytewhile enter-ing 1nm pores in carbon electrodes [12]. Additionally, twodifferentiontransfermechanismscouldbeidentified: counterion(cation)adsorptionatnegativeelectrodeand ionexchangemechanismatpositiveelectrode.Recently, Levietal.proposedtheuseoftheEQCM-Dtechnique

(electrochemicalQCM with dissipation monitoring), to performamultiharmonicfrequencyanalysistoassessthe viscoelasticandhydrodynamicpropertiesinporousactive films[14].FittingtheEQCM-Ddatawithsuitable hydro-dynamicmodelsallowstracking thechangeof the geo-metricparametersofporouselectrodesincontactwithan electrolyte.Suchtechniqueoffersinteresting opportuni-tiestoidentifytheimpactof severalparameters(nature oftheelectrolytes,ions,binder...)onthestructurechange oftheelectrodes.

(5)

Alternatively,notonlythegravimetricordissipationmode ofEQCMoffersopportunitiestostudyingtheionfluxes in supercapacitor or energy storage electrodes. Perrot’s grouphasdevelopedtheso-calledAC-electrogravimetry technique [15].It consistsin runningEQCM measure-ment in the gravimetric mode at a steady state (for instance constant potential) and, simultaneously, over-imposingasinusoidalperturbationtothesteady-stateand

recordsthe masschange1m or thecharge change1Q

vs. thepotential change1E [15].These plotsgive ac-cess to the type of ions as well as the number of sol-ventmoleculesinvolvedinthechargestorageprocess de-pending on the potential range,as wellas the ion dy-namicsinsidetheelectrodedependingonthefrequency rangeexplored[16•].Thistechniqueseemspromisingfor

trackingtheionfluxesandcouldpotentiallypushfurther our knowledgeof ion transfer/adsorptionin porous car-bonelectrodes,thushelpingtodesigningthebestporous carbonelectrodesforthenextgenerationofhigh-energy densitysupercapacitorelectrodes.

Electrolytes

for

EDLCs

The energy density of supercapacitors changing with thevoltagesquare(1/2.C.V²),thereisagreatinterestin designing new electrolytes with improvedvoltage win-dowstability,togobeyond3V.Today,conventional elec-trolytes for supercapacitors contain asaltdissolvedin a solvent. Acetonitrile (CH3CN, AN) is the solvent that

leadstothehighestconductivitywhenusedin combina-tionwithanammoniumcationmixedwithafluorinated anion(suchas(C2H5)4N+,BF4−).Althoughhighcell

volt-ageof3Vcanbeobtained[17],AN-basedelectrolytes suf-ferfromlowflashpoint(5°C)andhighvolatility. Alter-natively,propylene carbonate-based electrolytes canbe usedbutinthatcase,thepowercapabilityofthedeviceis greatlyaffected(dividedbythree)aswellasthelow tem-peratureapplications.Thereisthenanimportantneedfor alternativehighvoltageelectrolytes[18].

However,itiswellknownthatnotonlythe electrochem-icalvoltagewindowbutalsotheconductivity,the viscos-ity,theboiling/meltingpoints,thedielectricconstantand saltchemistrydeeplyaffectstheelectrochemical proper-ties of the electrolyte [19].As aresult, itis really chal-lengingtofindasolvent/saltmixturethatmatchesallthe criteriaatthesametime.Also,researchworkdeveloped in the Li-ionbatteries fieldhighlighted that the stabil-ityoftheactive materialsatthepositiveelectrodeisan issue when operating at high potential (>4.5V vs. Li, thatis approximately >3.5Vcell voltagefor a symmet-riccarbon/carbondevice)[20,21].However,Balducciand co-workers[22••]haveproposedaninteresting

combina-toryapproachtoselectnewsolvent/saltcouplesandsuch efforts should bedefinitelypursued.Also,ionicliquids, whicharesolventfreeelectrolyte,areofparticular inter-est toincrease thecellvoltageupto 3.5Vbutthehigh viscosity and limited conductivityat room temperature

limitstheirinterest.Theuseofeutecticionicliquid mix-turescanexpandthetemperaturerange,butthecarbon structuremustbespecificallydesignedtoensureeasyion accessibilitytothecarbonsurface[12,23].

Anotheralternativeapproachhasbeenrecentlyproposed, which consists in using redox-active electrolyte [24•].

Theideaistomodifyionicliquidselectrolytesby graft-ingaredox-activegroupsontotheanionsand/orcations, intheaim ofplayingwith boththedoublelayer charg-ingprocessthroughbasicionadsorptionand,atthesame time,achievinganelectrontransferthrougharedox reac-tionoftheredoxgroupattheoperatingpotentialofthe carbonelectrode.

Thisinnovativeconcepthasbeenreportedinrecent pa-persfromtwo groups in France [24•

] and Canada [25]. Fontaineandco-workers[24•],for instance,useda

per-fluorosulfonateanion(PFS−

)andamethylimidazolium cation (MIm+

) ionic liquid, where anion and cation arefunctionalizedwithanthraquinone(AQ)and 2,2,6,6-tetramethylpiperidinyl-1-oxyl(TEMPO) moieties, lead-ing to the (AQ–PFS−

) (MIm+

–TEMPO) biredox

elec-trolyte.These biredox were used as saltand dissolved at 0.5M in BMIm+

, TFSI−

neat ionic liquid. The re-sultingsolution(ionicliquidplusthebiredoxsalts)was used as electrolyte in supercapacitor cells in combina-tionwithactivatedporouscarbonelectrodes.Asexpected, theseionicliquidswereabletoincreasethechargestorage viabothelectrostatic—inthedoublelayer—andredox re-actionmechanisms.Theobtainedcapacitancewastwice largerinthebiredoxelectrolytecomparedtobiredox-free solution(Figure2a).

Figure 2b shows theschematic representation of a gal-vanostaticchargedischargecycle,withtherespective po-tential stability domains of the reduced and oxidized forms of the biredox species. The figure shows that a Faradiccontributionisaddedtothedoublelayer contri-butionduringchargebyoxidationoftheTEMPO moi-etiesbeyond1Vvs.ref.Inthesametime,thereductionof theAQgroupsontheanionatthenegativeelectrode be-low−0.5Vvs.Ref.reductionreactionaddstothedouble layercontributiontoincreasethetotalcapacitance.This exampleshows thatthecareful selection of thegrafted moietieshasthepotentialtogreatlyimprovethe capaci-tiveperformanceofporouscarbonelectrodes.Moreover, theworkingvoltageofthecellwaskeptashighas2.7V, whichistypicallythevoltageAN-basedelectrolytescan achieve.

Capacitancesupto 370 F g−1 weremeasured,

depend-ingonbiredoxionicliquidconcentrationsand tempera-tures,stableforatleast2000cycleswithlimited—ifany— degradation.Anotherstrikingresultwastheevidenceof theretentionof theredoxspeciesintotheporous elec-trode,as canbe seen from both the low self-discharge

(6)

Figure2

A:cyclicvoltammetryat5mVs−1with0.5MbiredoxILinBMImTFSI(solidline)andpureBMImTFSI(dashedline),respectively.B:schematic representationofthegalvanostaticvoltageresponseoftheelectrostaticandFaradaicprocesseswiththebiredoxILandthestabilityregionsforits oxidized/reducedspecies.Thedashedlinesillustratethebehaviorifonlyelectrostaticprocessesweretoprevail.AdaptedfromRef.[24•].

andleakagecurrentsmeasured.Althoughsurprising,this stillneedstobeunderstood,butspecificelectrostatic in-teractionsbetweenionsandcarbonpores(bycreationof imagechargesforinstance)couldbepossible[26].This newelectrolyte conceptopensupnewopportunities to develophigh-energysupercapacitorsandawidenewfield inredoxmaterials.

In this review, we summarized 1) recent development of fundamental understanding of porous carbon super-capacitors by using advanced experimental techniques and 2) electrolyte design strategy toward high-energy

performance. Although the capacitance increase in

sub-nanometer pores (less than 1nm)in porous carbon

electrode has been evidenced for a decade, the ion

confinement effect in nanopores is still notcompletely understood.Theoreticallyandexperimentallystudiesare neededtofurtherunveilthechargestoragemechanism.

In that aim, advanced experimental techniques such

as in situ NMR, in situ small angle X-Ray or neutrons

scatteringexperiments(SAXS,SANS),insituEQCM(in gravimetric or dissipation modes) techniquescombined withcomputermodelinghavebeendevelopedtoprobe deeplyintotheionconfinementinnanopores,thus guid-ing the designof better porous carbon electrodes with high-energy density. These efforts should be pursued duringthenextyearsand othertoolssuchas electronic microscopy(insitutransmissionelectronicmicroscopy)or

scanningelectrochemicalmicroscopy (SECM) couldbe of greathelp.Besidesthestrategyofelectrode material design,developingadvancedelectrolyteswithimproved voltagewindowisaswellimportanttoenhancetheenergy density.Althoughinterestingprogresseshavebeenmade usingacombinatoryapproach,thefindingofhighvoltage electrolyte remains challenging. Alternatively, a recent approachhasbeendevelopedbyusingactiveelectrolyte ionsfunctionalizedtogetherwithredoxmoieties,offering realopportunitiestoincreasethecapacitanceandvoltage

window by introducing redox reaction in double layer capacitors. The abounding research works highlights the real interest for developing supercapacitor devices

with improved performance for complementing—and

sometimes replacing—conventional batteries in appli-cations where high power, high cyclability and high charge/dischargeratesareneeded.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview,have beenhighlightedas:

•Paperofspecialinterest. ••Paperofoutstandinginterest.

1. SimonP,GogotsiY:Materialsforelectrochemicalcapacitors. NatMater2008,7:845–854.

2. M.Howe,World’sfastestchargingelectricbusdebutsinChina,

http://gas2.org/2015/2008/2005/

worlds-fastest-charging-electric-bus-debuts-china/,2015 (accessed17.06.14).

3. EliadL,SalitraG,SofferA,AurbachD:Onthemechanismof selectiveelectroadsorptionofprotonsintheporesofcarbon molecularsieves.Langmuir2005,21:3198–3202.

4. ChmiolaJ,YushinG,GogotsiY,PortetC,SimonP,TabernaPL: Anomalousincreaseincarboncapacitanceatporesizesless than1nanometer.Science2006,313:1760–1763.

5. LargeotC,PortetC,ChmiolaJ,TabernaP-L,GogotsiY,SimonP: Relationbetweentheionsizeandporesizeforanelectric double-layercapacitor.JAmChemSoc2008,130:2730–2731.

6. SalanneM,RotenbergB,NaoiK,KanekoK,TabernaPL,GreyCP, DunnB,SimonP:Efficientstoragemechanismsforbuilding bettersupercapacitors.NatEnergy,vol12016Articlenumber: 16070.

7. JäckelN,SimonP,GogotsiY,PresserV:Increaseincapacitance bysubnanometerporesincarbon.ACSEnergyLett2016, 1:1262–1265.

8. CentenoTA,SeredaO,StoeckliF:Capacitanceincarbonpores of0.7to15nm:aregularpattern.PhysChemChemPhys2011, 13:12403–12406.

9. HuangJ,SumpterBG,MeunierV,YushinG,PortetC,GogotsiY: Curvatureeffectsincarbonnanomaterials:Exohedralversus endohedralsupercapacitors.JMaterRes2010,25:1525–1531.

(7)

10. •

PrehalC,KoczwaraC,JäckelN,SchreiberA,BurianM,

AmenitschH,HartmannMA,PresserV,ParisO:Quantificationof ionconfinementanddesolvationinnanoporouscarbon supercapacitorswithmodellingandinsituX-rayscattering. NatEnergy,vol22017Articlenumber:16215.

Inthispaper,authorsshowthatthecombinationofinsitusmall-angle X-rayscatteringtechniquetogetherwithMonteCarlosimulations providescompellingevidenceofpartialdesolvationofCs+andCl− ionsinaqueouselectrolytewhenconfinedinnanosizedcarbonpores. 11.

GriffinJM,ForseAC,TsaiW-Y,TabernaP-L,SimonP,GreyCP:In situNMRandelectrochemicalquartzcrystalmicrobalance techniquesrevealthestructureoftheelectricaldoublelayerin supercapacitors.NatMater2015,14:812–819.

AuthorscombinedinsituNMRandEQCMtechniquestostudycharge storagemechanisminporouscarbonelectrodeinorganicelectroyte. Thereportedmethodologyofferinganewapproachtostudypore size/ionsizerelationshipatamolecularlevel,evidenceddesolvation anddifferentchargestoragemechanismdependingontheelectrode polarity.

12. TsaiWY,TabernaPL,SimonP:Electrochemicalquartzcrystal microbalance(EQCM)studyofiondynamicsinnanoporous carbons.JAmChemSoc2014,136:8722–8728.

13. LeviMD,LevyN,SigalovS,SalitraG,AurbachD,MaierJ: Electrochemicalquartzcrystalmicrobalance(EQCM)studies ofionsandsolventsinsertionintohighlyporousactivated carbons.JAmChemSoc2010,132:13220–13222.

14. LeviMD,ShpigelN,SigalovS,DargelV,DaikhinL,AurbachD:In situporousstructurecharacterizationofelectrodesforenergy storageandconversionbyEQCM-D:areview.ElectrochimActa 2017,232:271–284.

15. GabrielliC,García-JareñoJJ,KeddamM,PerrotH,VicenteF: Ac-electrogravimetrystudyofelectroactivethinfilms.I. Applicationtoprussianblue.JPhysChemB2002, 106:3182–3191.

16. •

Escobar-TeranF,ArnauA,GarciaJV,JiménezY,PerrotH,SelO: GravimetricanddynamicdeconvolutionofglobalEQCM responseofcarbonnanotubebasedelectrodesby Ac-electrogravimetry.ElectrochemCommun2016,70:73–77.

Inthispaper,authorsdemonstratetheuniquesensitivityofthe ac-electrogravimetrytoprovideafairgravimetricanddynamic deconvolutionoftheglobalEQCMresponses.

17. Maxwell,TheNewK23.0V/3000FCell,

http://www.maxwell.com/products/ultracapacitors/k2-3-series, (accessed17.06.14).

18. BéguinF,PresserV,BalducciA,FrackowiakE:Supercapacitors: carbonsandelectrolytesforadvancedsupercapacitors.Adv Mater,vol2620142283-2283.

19. BalducciA:Electrolytesforhighvoltageelectrochemical doublelayercapacitors:aperspectivearticle.JPowerSources 2016,326:534–540.

20. NaoiK:‘NanohybridCapacitor’:thenextgeneration electrochemicalcapacitors.FuelCells2010,10:825– 833.

21. GrimaudA,HongWT,Shao-HornY,TarasconJM:Anionicredox processesforelectrochemicaldevices.NatMater2016, 15:121–126.

22. ••

SchütterC,HuschT,ViswanathanV,PasseriniS,BalducciA, KorthM:Rationaldesignofnewelectrolytematerialsfor electrochemicaldoublelayercapacitors.JPowerSources 2016,326:541–548.

ByidentifyingCyanoestersaspromisingEDLCsovents,authors demonstrateanewapproachofdesigningnewelectroltematerialsby applyingacomputationalscreening-basedrationalmethod. 23. LinRY,TabernaPL,FantiniS,PresserV,PerezCR,MalboscF,

RupesingheNL,TeoKBK,GogotsiY,SimonP:Capacitiveenergy storagefrom-50to100degreesCusinganionicliquid electrolyte.JPhysChemLett2011,2:2396–2401.

24. •

MouradE,CoustanL,LannelongueP,ZigahD,MehdiA,ViouxA, FreunbergerSA,FavierF,FontaineO:Biredoxionicliquidswith solid-likeredoxdensityintheliquidstateforhigh-energy supercapacitors.NatMater2017,16:446–453.

Authorsreportanapproachbasedonbiredoxionicliquids,wherethe cationandanionofthesebiredoxionicliquidsbearredoxmoieties,to achievebulk-likeredoxdensityatliquid-likefastkinetics.Theseionic liquidsareabletocombinethedoublelayercapacitancecontribution togetherwitharedoxfaradicFaradiccontributionfromtheredox activityofthemodifiedions.Thisinnovativeconceptopensnewroutes todesigninghigh-energydensitysupercapacitors.

25. XieHJ,GélinasB,RochefortD:Electrochemicaland physicochemicalpropertiesofredoxionicliquidsusing electroactiveanions:influenceofalkylimidazoliumchain length.ElectrochimActa2016,200:283–289.

26. HeY,HuangJ,SumpterBG,KornyshevAA,QiaoR:Dynamic chargestorageinionicliquids-fillednanopores:insightfroma computationalcyclicvoltammetrystudy.JPhysChemLett 2015,6:22–30.

Références

Documents relatifs

These Sherpa projeclS resulted from the common interest of local communities, whereby outsiders, such as Newar and even low-caste Sherpa (Yemba), could contribute

Pour répondre à notre question sur l’utilité de la théorie de l’argumentation pour l’acquisition des préférences P QCL, nous pensons qu’il est nécessaire de commencer

The difference of the squared charge radii of the proton and the deuteron, r d 2 − r 2 p = 3.82007(65) fm 2 , is accurately determined from the precise measurement of the isotope

Previous studies had indicated that CopA is responsible for copper uptake under cop- per limiting conditions and CopB for copper export if copper reaches toxic levels (Odermatt et

Instead of showing a neural correlate of the strength of the illusions themselves 7 , our experiments demonstrate that a purely morphological feature of cortical

essential cause of the winter anomaly is the sporadic intrusions of nitric oxide from the thermosphere due to enhanced vertical transport activity and to a

Quantum electrodynamics tells us, though, that the energy of the passing photons is not well defined and that from time to time, one of these photons creates an electron-hole

Next, we present the implementation of this theoretical model on a robotic head (fig. 1), with the constraints of on line learning, that will allow us to underline three