• Aucun résultat trouvé

On the behavior of EMD and MEMD in presence of symmetric alpha-stable noise

N/A
N/A
Protected

Academic year: 2021

Partager "On the behavior of EMD and MEMD in presence of symmetric alpha-stable noise"

Copied!
6
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/9046

To cite this version :

Ali KOMATY, Abdel-Ouahab BOUDRAA, John NOLAN, Delphine DARE - On the behavior of EMD and MEMD in presence of symmetric alphastable noise IEEE Signal Processing Letters -Vol. 22, n°7, p.818-822 - 2015

Any correspondence concerning this service should be sent to the repository Administrator : archiveouverte@ensam.eu

(2)

On the behavior of EMD and MEMD in presence

of symmetric

α

-stable noise

A. Komaty, A.O. Boudraa, Senior Member IEEE, J.P. Nolan and D. Dare

Abstract—Empirical Mode Decomposition (EMD) and its ex-tended versions such as Multivariate EMD (MEMD) are data-driven techniques that represent nonlinear and non-stationary data as a sum of a f nite zero-mean AM-FM components referred to as Intrinsic Mode Functions (IMFs). The aim of this work is to analyze the behavior of EMD and MEMD in stochastic situations involving non-Gaussian noise, more precisely, we examine the case of Symmetric α-Stable (SαS) noise. We report numerical experiments supporting the claim that both EMD and MEMD act, essentially, as f lter banks on each channel of the input signal in the case of SαS noise. Reported results show that, unlike EMD, MEMD has the ability to align common frequency modes across multiple channels in same index IMFs. Further, simulations show that, contrary to EMD, for MEMD the stability property is well satisf ed for the modes of lower indices and this result is exploited for the estimation of the stability index of the SαS input signal.

Index Terms—EMD, MEMD, f lter banks, symmetric α-stable noise.

I. INTRODUCTION

E

MPIRICAL mode decomposition (EMD) is a fully adap-tive data-driven approach for the decomposition of non-stationary signals [1]. This technique decomposes any signal into a linear combination of a f nite number of basis functions called intrinsic mode functions (IMFs). Being proven eff cient when dealing with deterministic signals of oscillatory nature, EMD also reveals interesting properties when dealing with random signals. Dealing with such signals, their properties, their transformations, and their characterization in time and frequency domains has gained enormous attention in the last decade. Since a random signal is not repeatable in a predictable manner, it may only be described probabilistically or in terms of its average behavior. To be able to devise mathematical tools for this purpose, one needs to assume a statistical model which best describes the data. Evaluation of the performances of such methods depends upon the ability to determine the probability density function (pdf) of a function of the data samples, either analytically or numerically. When this is not possible, one must resort to Monte Carlo computer simula-tions. Among various probability distributions, the Gaussian distribution plays a predominant role in signal processing [2]. Many of the theorems of communications, estimation and detection theory have been formulated based on the Gaussian assumption thanks to the Central Limit Theorem (CLT), which Ali Komaty, Abdel Boudraa and Delphine Dare are with IRENav, Ecole Navale, BCRM Brest, CC 600, 29240 BREST Cedex 9, France and John P. Nolan is with American University, Washington DC, USA. The work of John P. Nolan was supported by an agreement with Cornell University, Operations Research & Information Engineering under contract W911NF-12-1-0385 from the Army Research Development and Engineering Command.

holds for a large variety of distributions. Unfortunately, a broad class of phenomena encountered in practice are undeniably non-Gaussian and can be characterized by their impulsive nature [3]. Random f uctuations of gravitational f elds, un-derwater acoustic noise of snapping shrimp, radar clutter, economic market indexes, Internet traff c or man-made noise have been found to belong to this class. Signals of this class are more likely to exhibit sharp spikes or bursts of outlying measurements than one would expect from normally distributed signals [4]-[6]. Impulsive perturbations of these signals are commonly modeled by symmetric α-stable (SαS) distributions. More precisely SαS distribution describes a large class of impulsive random variables with heavy-tailed distri-butions. This family possesses strong theoretical justif cations according to the Generalized CLT (GCLT) which extends the CLT to the case when the summands are heavy-tailed [7]. Up to now the behavior of EMD has been analyzed in presence of fractional Gaussian noise (fGn) [8] and its extended version, Multivariate EMD (MEMD) [9], in white Gaussian noise case [10]. But much less attention has been paid to situations involving processes that generate impulsive signals or noise bursts using such decompositions. Thus, for more real world applications, it is important to investigate how such signal decompositions behave in the presence of SαS noise. Because Gaussian and stable non-Gaussian distributions are invariant under linear operations, they are very important in signal processing. Hence the importance of studying their characteristics when decomposed using EMD and MEMD.

II. BASICS OFEMDANDMEMD

EMD: Standard EMD breaks down any real-valued

sig-nal x(t) into a reduced number of oscillating modes (AM-FM) called Intrinsic Mode Functions (IMFs) and a residual r(t) consisting of all local trends [1]. By construction, each IMF is a zero-mean waveform whose number of zero-crossings (ZCs) differs at most by one from the number of its extrema. More precisely, EMD ends up with an expansion of the form:

x(t) =

M

X

m=1

cm(t) + r(t) (1)

where cm(t)is the mthIMF and M is the number of extracted

modes. The number of extrema of x(t) is decreased when going from one residual to the next.

MEMD: Standard EMD considers only 1D signals and

the local mean is calculated by averaging the upper and lower envelopes obtained by interpolating between the local maxima and minima respectively. MEMD has been developed

(3)

WR SURFHVV D JHQHUDO FODVV RI PXOWLYDULDWH VLJQDOV KDYLQJ DQ DUELWUDU\ QXPEHU RI FKDQQHOV >@ )RU DQ nGLPHQVLRQDO VLJQDO WKH ORFDO PHDQ FDQQRW EH GHI QHG GLUHFWO\ DQG WKXV WKH PXOWLSOH nGLPHQVLRQDO HQYHORSHV DUH JHQHUDWHG E\ SURMHFWLQJ WKH VLJQDO DORQJ GLIIHUHQW GLUHFWLRQV LQ nYDULDWH VSDFHV 7KH FDOFXODWLRQ RI WKH ORFDO PHDQ FDQ EH FRQVLGHUHG DV DQ DSSUR[LPDWLRQ RI WKH LQWHJUDO RI DOO WKH HQYHORSHV DORQJ PXOWLSOH GLUHFWLRQV LQ DQ nGLPHQVLRQ VSDFH 0(0' XVHV D YHFWRUYDOXHG IRUP RI  WR GHFRPSRVH D nYDULDWH VLJQDO [(t) DV IROORZV

[(t) =

M 

m=1

Fm(t) +U(t) 

ZKHUH M LV WKH QXPEHU RI H[WUDFWHG nYDULDWH PRGHV {Fm}Mm=1 FRQWDLQV VFDOHDOLJQHG LQWULQVLF MRLQW URWDWLRQDO PRGHV DQG U W LV WKH nYDULDWH UHVLGXH

,,, 6α6',675,%87,216

7KHUH LV QR FORVHGIRUP IRU WKH SGI RI WKH 6α6 GLVWULEXWLRQ EXW LW LV UHSUHVHQWHG E\ LWV FKDUDFWHULVWLF IXQFWLRQ φ(θ) = exp(jδθ − γ|θ|α) ZKHUH δ LV WKH ORFDWLRQ SDUDPHWHU DQG α ∈ (0, 2] LV FDOOHG WKH VWDELOLW\ LQGH[ α LV WKH PRVW LPSRUWDQW SDUDPHWHU RI WKH 6α6 GLVWULEXWLRQ EHFDXVH LW FRQWUROV WKH GHQVLW\¶V WDLO KHDYLQHVV DQG γ LV WKH GLVSHUVLRQ SDUDPHWHU WKDW FRQWUROV WKH ZLGWK RI WKH EHOO FXUYH >@ 7KLV VFDOH SDUDPHWHU VLPLODU WR YDULDQFH RI WKH *DXVVLDQ GLVWULEXWLRQ GHWHUPLQHV WKH VSUHDG RI WKH GLVWULEXWLRQ DURXQG δ 7KH EHOO FXUYH¶V WDLOV JHW WKLFNHU DV α IDOOV IURP  WR QHDU  )RU α ∈ (1, 2] δ FRUUHVSRQGV WR WKH PHDQ RI WKH 6α6 GLVWULEXWLRQ ZKLOH IRU 0 < α ≤ 1 δ FRUUHVSRQGV WR LWV PHGLDQ 7KH RQO\ NQRZQ FORVHGIRUP 6α6 SGIV DUH WKH WKLQWDLOHG *DXVVLDQ ZLWK α = 2 OHVV LPSXOVLYH DQG WKH WKLFNWDLOHG &DXFK\ ZLWK α = 1 PRUH LPSXOVLYH  7KH 6α6 GLVWULEXWLRQ LV WKH RQO\ GLVWULEXWLRQ WKDW YHULI HV WKH *&/7

*&/7 X LV αVWDEOH LI DQG RQO\ LI X LV WKH OLPLW LQ

GLVWULEXWLRQ RI WKH VXP Sn = X1+X2a+...+Xn

n − bn ZKHUH

X1, X2, . . . Xn DUH LQGHSHQGHQW DQG LGHQWLFDOO\ GLVWULEXWHG LLG UY¶V n−→ ∞ bn ∈ R DQG an ∈ N

7KHUHIRUH WKH αVWDEOH GLVWULEXWLRQ LV PRUH JHQHUDO WKDQ WKH *DXVVLDQ GLVWULEXWLRQ DQG KDV D VWURQJHU MXVWLI FDWLRQ VLQFH LW FRYHUV WKH FODVV RI VLJQDOV WKDW GRHV QRW VDWLVI\ WKH FODVVLFDO &/7

,9 3523(57,(6 ,1 35(6(1&( 2)6α612,6(

$ )LOWHU EDQN VWUXFWXUH

$ TXDQWLWDWLYH DSSUHFLDWLRQ RI WKH I OWHU EDQN VWUXFWXUH RI (0' DQG 0(0' LQ SUHVHQFH RI 6α6 QRLVH FDQ EH GRQH E\ PHDVXULQJ WKH PHDQ IUHTXHQF\ FRQWHQW RI HDFK ,0) 0HDVXULQJ WKH DYHUDJH QXPEHU RI =&V LV D PHDQLQJIXO ZD\ RI FKDUDFWHUL]LQJ LWV PHDQ IUHTXHQF\ DQG WKH ZD\ WKLV YDULHV IURP PRGH WR PRGH LV DQ LQGLFDWLRQ RI WKH KLHUDUFKLFDO VWUXFWXUH RI WKH I OWHU EDQN >@ 7KXV LW KDV EHHQ VKRZQ E\ DQDO\]LQJ WKH JUDSKLFDO UHSUHVHQWDWLRQ RI WKH DYHUDJH QXPEHU RI =&V DV IXQFWLRQ RI WKH ,0) LQGH[ WKDW RXWSXW RI (0' H[KLELWV D G\DGLF I OWHUEDQN VWUXFWXUH IRU I*Q >@ DQG WKDW 0(0' DFWV DV D G\DGLF I OWHUEDQN IRU PXOWLYDULDWH ZKLWH QRLVH LQSXW >@ )LJXUH  VKRZV WKDW WKLV SURSHUW\ DOVR KROGV IRU D 6α6 LLG

SURFHVV GHFRPSRVHG LQWR ,0)V E\ 0(0' DQG (0' )RU ERWK (0' DQG 0(0' WKH VWDQGDUG VWRSSLQJ FULWHULRQ GHVFULEHG LQ >@ LV XVHG 7KH 6α6 QRLVH LV JHQHUDWHG XVLQJ WKH 0DW/DE 67$%/( WRROER[ >@ 7KH QXPEHU RI FKDQQHOV RI 0(0' LV VHW WR  DQG WKH QXPEHU RI UHDOL]DWLRQV LV VHW WR  (0' LV DSSOLHG WR HDFK FKDQQHO VHSDUDWHO\ )RU VDNH RI UHDGDELOLW\ RQO\ WKH FXUYHV FRUUHVSRQGLQJ WR  YDOXHV RI α DUH SORWWHG $V HYLGHQFHG LQ WKLV I JXUH WKH ORJDULWKP EDVH  RI WKH DYHUDJH QXPEHU RI =&V LV D GHFUHDVLQJ IXQFWLRQ RI WKH PRGH LQGH[ m IRU ERWK GHFRPSRVLWLRQV )RU 0(0' WKLV I JXUH VXJJHVWV D IXQFWLRQDO UHODWLRQ RI WKH IRUP Zα[m]∝ ρ−m ZLWK ρ FORVH WR 1.8 :KLOH IRU (0' WKH FRUUHVSRQGLQJ UHODWLRQ GHSHQGV RQ WKH VWDELOLW\ LQGH[ α DV IROORZV

Zα[m]∝ ρ−mα 

ZKHUH ρα= β2Cα β = 21−2C DQG C LV D FRQVWDQW VWHS HTXDO WR 0.2 )LJXUH  UHYHDOV VLPLODU UHVXOWV WR WKRVH REWDLQHG LQ SUHVHQFH RI I*Q >@ ZKHUH D VORSH RI −1 PHDQV DQ LGHDO G\DGLF I OWHUEDQN VWUXFWXUH LQGLFDWLQJ D TXDVLG\DGLF I OWHU EDQN VWUXFWXUH IRU (0' DQG 0(0' ZKHQ IDFLQJ D 6α6 LLG SURFHVV $OWKRXJK (0' SURGXFHV D PRUH SURQRXQFHG G\DGLF I OWHU WKDQ 0(0' IRU α∈]1.2; 2] WKH\ KDYH DOPRVW WKH VDPH VORSH IRU α ≈ 1.2 DQG 0(0' EHFRPHV PRUH G\DGLF IRU α ∈ [1; 1.2[ ,W LV DOVR ZRUWK QRWLFLQJ WKDW WKH VORSH RI WKH OLQH LQ WKH 0(0' FDVH LV ≈ −0.84 DQG LV WKH VDPH UHJDUGOHVV RI WKH FRHII FLHQW α ZKLOH LQ WKH (0' FDVH WKH VORSH YDULHV IURP−1 LQ WKH *DXVVLDQ FDVH α = 2 WR −0.80 α = 1  −0.8 −1 −0.84 1 2 3 4 5 6 7 8 2 4 6 8

m

log

2

=&

α = 1 α = 1.4 α = 1.8 α = 2

)LJ  /RJDULWKP RI DYHUDJH QXPEHU RI =&V DV D IXQFWLRQ RIm 6ORSHV RI WKH I WWHG OLQHV DUH DSSUR[LPDWHO\ HTXDO WR−0.84 ZKHQ XVLQJ 0(0' GDVKHG OLQHV  DQG YDU\LQJ IURP−1 α = 2 WR −0.8 α = 1 ZKHQ XVLQJ (0' VROLG OLQHV  )RU VDNH RI UHDGDELOLW\ 0(0' FXUYHV DUH VKLIWHG XSZDUGV E\ RQH XQLW

% 0RGH DOLJQPHQW SURSHUW\

7KH +LOEHUW WUDQVIRUP SURGXFHV PHDQLQJIXO LQVWDQWDQHRXV IUHTXHQF\ ,) RQO\ IRU PRQRFRPSRQHQW GDWD 7KXV DFFXUDWH ,) HVWLPDWLRQ UHTXLUHV WKDW H[WUDFWHG PRGHV E\ (0' RU LWV H[WHQGHG YHUVLRQV EH PRQRFRPSRQHQW DQG ORFDOO\ RUWKRJRQDO $ FXH WR LGHQWLI\ VXFK PRGHV LV WR ORRN DW WKH FURVVFRUUHODWLRQ && FRHII FLHQWV EHWZHHQ PRGHV >@ 7KH VFKHPDWLF UHSUH VHQWDWLRQ RI && YDOXHV FRUUHORJUDPV DOORZV XV WR FKHFN LI ,0)V H[WUDFWHG IURP WKH LQSXW VLJQDO DUH DOLJQHG DQG KDYH WKH VDPH LQIRUPDWLRQ DW WKH VDPH OHYHO RI GHFRPSRVLWLRQ ,W VKRXOG EH QRWHG WKDW PRGH DOLJQPHQW FRUUHVSRQGV WR I QGLQJ D VHW RI FRPPRQ VFDOHV,0)V DFURVV GLIIHUHQW FRPSRQHQWV YDULDWHV RI D PXOWLYDULDWH VLJQDO WKXV HQVXULQJ WKDW WKH PRGHV DUH PDWFKHG

(4)

both in the number and in scale properties [17]. The higher the CC, the less signif cant the splitting in separate IMFs. Thus, CC between normalized IMFs (leakage between sub-bands) may cause blurred time-frequency estimates such as IF. Using this quantitative evaluation, it has been shown that EMD and MEMD generate approximately mono-component and locally orthogonal data-driven basis functions in presence of white Gaussian noise (α = 2) [12]. Figure 2 shows CC of IMFs averaged over J=1000 realizations of SαS 2-channel process of length L=1000 samples using EMD (channel-wise) and MEMD. The CC estimates Θ[m, m′] are calculated for

IMFs obtained from MEMD and EMD as follows: Θ[m, m′] := 1 J J X j=1 Θj[m, m] pΘj[m, m]Θj[m, m] Θj[m, m′] := 1 L L X k=1 cjm(k)c j m′(k) (4)

By def nition, we have 0 ≤ Θ[m, m′]≤ 1.

(a) EMD α = 1.2 (b) EMD α = 1.4 (c) EMD α = 1.8

(d) MEMD α = 1.2 (e) MEMD α = 1.4 (f) MEMD α = 1.8

Fig. 2. CCs of IMFs for a bivariate SαS distribution using (a-c) EMD (channel-wise) and (d-f) MEMD.

We report in Fig. 2 alignment results of three typical values of α. Figures 2(d)-2(f) show that, on average, MEMD has almost the same behavior for all α ∈ [1, 2]. Larger values along the diagonal (m = m′) suggest that the IMFs in MEMD are

well aligned. For α = 1.8 and α = 1.4, both decompositions produce correlograms with diagonal-dominant elements while being more pronounced in the case of MEMD. For α = 1, unlike MEMD, EMD does not exhibit a pronounced diagonal dominance, concluding that EMD does not produce same index IMFs with the same scale when α deviates from 2. As shown in Fig. 2(c), for more impulsive cases, signif cant values of CC estimates are observed off-diagonal (m 6= m′)

indicating missaligned IMFs. This suggests that standard EMD is not well suited for decomposing signals of high impulsive nature.

C. Stability test

EMD or MEMD are data-driven projections of a signal on some space, thus it is important to check if the stability property is preserved or not using these decompositions. As with any other family of distributions, it is not possible to prove that a given set is or is not stable, even for normal-ity this is still an active research f eld [11]. A solution to

this problem is to check whether or not data are consistent with stability hypothesis. More precisely, for plausibly stable smoothed density of data (Fig. 3(a),3(c)) the f tted distribution is compared to data using Quantile-Quantile (Q-Q) plot as shown in Figs. 3(b) and 3(d). Q-Q plot is designed to show the closeness of two distributions [11]. If the f tting is consistent, stability parameters (α, β, γ, δ) are estimated. Four methods are used: Maximum Likelihood (ML) [19], Quantile, Empiri-cal Characteristic Function (ECF) and Fractional Lower Order Moments (FLOM). Developing these estimation methods goes beyond the scope of this paper, and the reader is referred to [4],[13]-[15] and [19] for more details. If the estimates (ˆα, ˆβ,γ, ˆˆ δ) differ signif cantly, the data are considered not stably distributed. While non-Gaussian stable distributions are heavy-tailed, most heavy-tailed distributions are not stable. In many cases, it is not appropriate to f t heavy-tailed data with a stable distribution. As shown in Fig. 3, the pdf of the f rst extracted IMF (averaged over 150 realizations) by EMD is bimodal, while the corresponding one of MEMD is unimodal. However, in both cases, an α-stable f tting is used to approximate the f rst mode even though, for the EMD case, this f tting is not accurate (one cannot f t a bimodal distribution using a unimodal stable one). Nevertheless, this test was made to prove that, even if the f rst IMF is not stable, when f tted using a stable distribution, its estimate ˆα is approximately equal to the original index α. The Q-Q plot of Fig. 3 shows that this f tting is more consistent in MEMD than in EMD. However, estimates (ˆα, ˆβ, ˆγ, ˆδ), averaged over 150 realizations, reported in Table 1 for the f rst IMF results in a signif cantly different results using the four methods in the case of EMD, but the parameters retrieved in MEDM are on the average the same and close to the true parameters (α = 1.5, β = 0, γ = 1, δ = 0). Therefore, these results support the claim that, in f rst approximation, stability is more preserved by MEMD than by EMD and more particularly the stability index α. −10 −5 5 10 pdf smoothed data SαSf t −30 −20 −10 10 20 30 −100 −50 50 SαS data

(a) EMD:Density plot of stable distribution vs Data. (b) EMD: Q-Q plot of stable distribution vs Data.

−10 −5 5 10 pdf smoothed data SαSf t −30 −20 −10 10 20 30 −60 −40 −20 20 40 60 SαS data

(c) MEMD:Density plot of stable distribution vs Data. (d) MEMD: Q-Q plot of stable distribution vs Data.

Fig. 3. Density plot and Q-Q plot of the f rst IMF for a SαS i.i.d. signal with α = 1.5 and a data length of 10000 samples.

(5)

7$%/( , (67,0$7(' 3$5$0(7(56(ˆα, ˆβ, ˆγ, ˆδ)2) 7+( ),567,0))25(0'$1' 0(0'86,1*0/ 48$17,/( (&)$1')/02 (0' 0(0' 0/         4XDQWLOH         (&)         )/20         2 4 6 8 10 1 1.5 2 m ˆ α α = 2 α = 1.8 α = 1.5 α = 1.2 α = 1

)LJ  ˆα YDOXHV IRU LQSXW VLJQDO ZLWK GLIIHUHQW α (0' GDVKHG OLQHV 0(0' VROLG OLQHV 

' (VWLPDWLRQ RI WKH VWDELOLW\ LQGH[

7KH PRVW LPSRUWDQW SDUDPHWHU IRU WKH VWDEOH IDPLO\ LV WKH VWDELOLW\ LQGH[ α WKDW FDQ EH HVWLPDWHG IURP REVHUYDWLRQV >@ :H GHFRPSRVH DQ LQSXW 6α6 QRLVH ZLWK α YDOXHV UDQJLQJ IURP  WR  LQWR ,0)V E\ (0' DQG 0(0' )RU VDNH RI FODULW\ RQO\ I YH W\SLFDO YDOXHV RI α DUH SUHVHQWHG (VWLPDWHV

ˆ

α XVLQJ WKH PHWKRG GHYHORSHG E\ 0F&XOORFK >@ DUH SORWWHG DV IXQFWLRQ RI m LQ )LJ  $V HYLGHQFHG LQ )LJ  WKH VWDELOLW\ SURSHUW\ LV PRVWO\ VDWLVI HG IRU PRGHV RI ORZHU LQGLFHV m ≤ 5 LQ 0(0' ZKLFK FDSWXUH WKH VKDUS VSLNHV DQG WDLO KHDYLQHVV RI WKH RULJLQDO GDWD 7KHVH PRGHV ZKHQ I WWHG

             [         í 6DPSOHV

)LJ  8QGHUZDWHU DFRXVWLF VLJQDO EODFN ZLWKα HVWLPDWLRQ SHU EORFN XVLQJ 0/ GDVKHG UHG DQG (0'0/ VROLG EOXH 

WR D VWDEOH GLVWULEXWLRQ KDYH WKH VDPH α SDUDPHWHU DV WKH LQSXW 6α6 VLJQDO 7KXV VDWLVIDFWLRQ RI WKLV SURSHUW\ IRU VXFK PRGHV DOORZV XV WR HVWLPDWH WKH α SDUDPHWHU RI WKH LQSXW 6α6 VLJQDO 1RWH WKDW IRU KLJKHU LQGLFHV m ≥ 5  EXW ZLWK α < 1.6 WKH VWDELOLW\ LV PRGHUDWHO\ VDWLVI HG :KHQ JRLQJ IURP WKH ODVW ,0)V WR WKH UHVLGXH WKH GLVWULEXWLRQ RI WKHVH PRGHV DSSURDFKHV D *DXVVLDQ GLVWULEXWLRQ )RU (0' WKH VWDELOLW\ SURSHUW\ RQO\ KROGV IRU α = 2 ZKLWH QRLVH  :H LOOXVWUDWH WKH UHOHYDQFH DQG WKH LPSRUWDQFH RI RXU VWXG\ RQ D UHDO XQGHUZDWHU DFRXVWLF VLJQDO FRQWDLQLQJ EDFNJURXQG XQGHUZDWHU QRLVH SURSHOOHU QRLVH 'ROSKLQ¶V VRXQGV DQG VRQDU SLQJV )LJ   2Q FDQ QRWLFH WKDW RXWOLHUV RFFXUUHG PRUH WKDQ IUHTXHQWO\ LQ WKLV VLJQDO 7KXV DGRSWLQJ WKH *DXVVLDQ PRGHO LV QRW UHOHYDQW LQ VXFK FDVH 2QH ZD\ WR VWXG\ WKH VWDWLVWLFDO PRGHO RI WKH VLJQDO LV WR GHFRPSRVH WKH VLJQDO LQWR EORFNV DQG HVWLPDWH D VWDWLVWLFDO PRGHO IRU HDFK EORFN ,W VKRXOG EH QRWHG WKDW WKLV VLJQDO LV 6 PLOOLRQ VDPSOHV ORQJ :H GHFRPSRVH LW LQWR EORFNV RI OHQJWK 10000 VDPSOHV HDFK LI ZH WDNH IHZHU VDPSOHV SHU EORFN WKH HVWLPDWLRQ RI WKH SGI ZLOO QRW EH DFFXUDWH DQG D ODUJHU EORFN VL]H ZLOO PLWLJDWH WKH HIIHFWV RI ODUJH VSLNHV  7KHQ α LV HVWLPDWHG RQ HDFK EORFN DQG LI WKH EORFN FRXOG EH PRGHOHG DV *DXVVLDQ WKHQ α VKRXOG EH FORVH WR 2 RWKHUZLVH α ZLOO GHYLDWH IURP 2 7KH 0/ HVWLPDWLRQ LV SORWWHG LQ I JXUH  GDVKHG UHG  +RZHYHU ZKHQ (0' LV DSSOLHG WR HDFK EORFN EHIRUH WKH HVWLPDWLRQ WKHQ 0/ HVWLPDWLRQ LV SHUIRUPHG XVLQJ RQO\ WKH I UVW 4 PRGHV WKH UHVXOW LV SORWWHG LQ VROLG EOXH ,W FDQ EH VHHQ WKDW XVLQJ (0' WKH HVWLPDWRU FDSWXUHV DOPRVW DOO WKH UHJLRQV ZKHUH WKH VLJQDO H[SHULHQFH QRQ*DXVVLDQ SKHQRPHQRQ 7KXV (0' FDQ EH YHU\ XVHIXO IRU VXFK VLWXDWLRQV ZKHUH WKH GDWD FRQWDLQV αVWDEOH GLVWULEXWLRQ DORQJ ZLWK RWKHU W\SHV RI GLVWULEXWLRQV *DXVVLDQ RU VLPSO\ GHWHUPLQLVWLF  ,Q VXFK FDVHV DSSO\LQJ FODVVLFDO HVWLPDWLRQ WHFKQLTXHV VXFK DV WKH 0/ RQ WKH ZKROH GDWD LV QRW HII FLHQW EHFDXVH WKH αVWDEOH GLVWULEXWLRQ SUHVHQFH ZLOO EH DWWHQXDWHG E\ WKH SUHVHQFH RI RWKHU VLJQDOV RU GLVWULEXWLRQV

9 &21&/86,216

,Q WKLV ZRUN ZH UHSRUW RQ QXPHULFDO H[SHULPHQWV DLPHG DW VXSSRUWLQJ WKH FODLP WKDW LQ SUHVHQFH RI 6α6 QRLVH ERWK (0' DQG 0(0' FDQ EH LQWHUSUHWHG DV I OWHU EDQN RQ HDFK FKDQQHO RI WKLV SURFHVV 0RUHRYHU WKH I UVW PRGHV H[WUDFWHG E\ 0(0' FRXOG EH DFFXUDWHO\ I WWHG XVLQJ DQ αVWDEOH GLVWULEXWLRQ XQOLNH RULJLQDO (0' ZKLFK SURGXFHV ELPRGDO PRGHV WKDW FRXOG QRW EH I WWHG XVLQJ D VWDEOH GLVWULEXWLRQ 8QOLNH (0' IRU 0(0' WKH VWDELOLW\ SURSHUW\ LV ZHOO VDWLVI HG IRU WKH PRGHV RI ORZHU LQGLFHV DQG WKLV UHVXOW LV D QHZ 0(0'EDVHG HVWLPDWRU RI WKH VWDELOLW\ LQGH[ α RI WKH 6α6 LQSXW VLJQDO 7KH UHSRUWHG UHVXOWV DOVR VKRZ WKDW 0(0' DOLJQV VLPLODU PRGHV SUHVHQW DFURVV PXOWLSOH FKDQQHOV LQ VDPHLQGH[ ,0)V IRU YDU\LQJ YDOXHV RI WKH VWDELOLW\ LQGH[ α 7KLV SURSHUW\ LV FUXFLDO IRU UHDO ZRUOG DSSOLFDWLRQV VXFK DV ,QVWDQWDQHRXV )UHTXHQF\ HVWLPDWLRQ VLJ QDOV GHQRLVLQJ RU GDWD IXVLRQ +RZHYHU PRGH DOLJQPHQW LV QRW DFKLHYHG E\ VWDQGDUG (0' DSSOLHG FKDQQHOZLVH DQG WKXV LV QRW ZHOO VXLWHG IRU GHFRPSRVLQJ VLJQDOV RI KLJK LPSXOVLYH QDWXUH VPDOO α YDOXHV  $V IXWXUH ZRUN ZH SODQ WR VWXG\ WKH EHKDYLRU RI 0(0' DQG (0' ZLWK LVRWURSLF HOOLSWLFDO DQG RWKHU PXOWLYDULDWH VWDEOH SURFHVVHV

(6)

REFERENCES

[1] N.E. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and H. Liu, “The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. Roy. Soc. A, vol. 454, pp. 903-995, 1998.

[2] M. Vetterli, J. Kovacevic and V.K. Goyal, Foundations of signal process-ing. Cambridge University Press, 2014.

[3] M. Shao and C.L. Nikias, “Signal processing with fractional lower order moments: Stable processes and their applications,” Proc. IEEE, vol. 81, no. 7, pp. 986-1010, 1993.

[4] C.L. Nikias and M. Shao, Signal Processing with α-Stable Distributions and Applications. New York: Wiley, 1995.

[5] M. Sahmoudi, K.Abed-Meraim and M. Benidir “Blind separation of impulsive alpha-stable sources using minimum dispersion criterion,” IEEE Sig. Proc. Lett., vol. 12, no. 4, pp. 281-284, 2005.

[6] F.X. Socheleau and D. Pastor, “On symmetric alpha-stable noise after short-time Fourier transformation,” IEEE Sig. Proc. Lett., vol. 20, no. 5, pp. 455-458, 2013.

[7] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random pro-cesses: stochastic models with inf nite variance. Chapman & Hall, New York, 1994.

[8] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a f lter bank,” IEEE Signal Process. Lett., vol. 11, no. 2, pp. 112-114, 2004.

[9] N. Rehman and D.P. Mandic, “Multivariate empirical mode decomposi-tion,” Proc. Roy. Soc. A, vol. 466, no. 2117, pp. 1291-1302, 2010. [10] N. Rehman and D.P. Mandic, “Filter bank property of multivariate

empirical mode decomposition,” IEEE Trans. Sig. Proc., vol. 59, no. 5, pp. 2441-2426, 2011.

[11] J.P. Nolan “Fitting data and assessing goodness of f t with stable distributions,” in Proc. Heavy Tails, Appliat. Heavy-Tailed Distributions Economics, Eng., Statist., Washington, DC, Jun. 1999, p. TAILS-42. [12] D.P. Mandic, N. Rehman, Z. Wu and N.E. Huang, “Empirical mode

decomposition-based time-frequency analysis of multivariate signals,” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 741786, 2013.

[13] J.H. McCulloch, “Maximum likelihood estimation of symmetric stable parameters,” Technical Report, Department of Economics, 145 pages, Ohio State University, 1998.

[14] J.H. McCulloch, “Simple consistent estimators of stable distribution parameters,” Cummun. Stat. Simul. Comput., vol. 15, no. 5, pp. 1109-1136, 1986.

[15] S.M. Kogon and D.B. Williams, Characteristic function based estima-tion of stable parameters. in A Practical Guide to Heavy Tailed Data, R. Adler, R. Feldman, and M. Taqqu Eds., pp. 311-338 Boston, MA: Birkhauser, 1998.

[16] P. Flandrin, P. Goncalves and G. Rilling, EMD Equivalent Filter Banks, from Interpretation to Applications in Hilbert-Huang Transform and Its Applications (N.E. Huang and S.S.P. Shen, eds.), World Scientif c, pp. 57-74, 2005.

[17] N. Rehman, Ch. Park, N.E. Huang and D.P. Mandic, “EMD via MEMD: Multivariate noise-aided computation of standard EMD,” Advances in Adaptive Data Analysis, vol. 5, no. 2, pp. 1-25, 2013.

[18] R.F. Brcich, D.R. Iskander and A.M. Zoubir, “The stability test for symmetric alpha-stable distributions,” IEEE Trans. Sig. Proc., vol. 53, no. 3, pp. 977-986, 2005.

[19] J.P. Nolan, ”Maximum-Likelihood estimation of stable parameters”. In O.E. Barndordd-Nielsen, T. Mikosch and S.I. Resnick, editors, L´evy Processes: Theory and Applications, pages 397-400. Birkh¨auser, Boston, 2001.

[20] G. Rilling and P. Flandrin and P. Gonc¸alv`es, ”On empirical mode decom-position and its algorithms,” IEEE-EURASIP, Workshop on Nonlinear Signal and Image Processing, NSIP, June 2003.

Figure

Fig. 3. Density plot and Q-Q plot of the f rst IMF for a SαS i.i.d. signal with α = 1.5 and a data length of 10000 samples.

Références

Documents relatifs

avec g la tension interfaciale et A l’aire géométrique entre les deux phases. La tension superficielle peut être vue comme une force tangente à l’interface et tendant

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

This paper analyzes the effect of the transfers from central government to municipalities on the revenue mobilization by municipalities in Côte d’Ivoire over the period 2001-2014..

The precompiled code consists of specialized code, which can be generated by a code generator. This code can be more or less specialized for each instruction class. For almost

Considering a large number of received samples, one can easy see that their covariance matrix exhibit a different behaviour depending on the number of the components of the

A tale scopo la DSC pone le priorità in primo luo- go su misure strutturali a lungo termine, come il sostegno dei paesi poveri nel settore della politica agricola e di

Considering a large number of received samples, one can easy see that their covariance matrix exhibit a different behaviour depending on the number of the components of the

In any case, since using the inexact variant always does better in the presence of noise, an effective strategy could be to start with a fixed value for δ (say 0.7, since there