• Aucun résultat trouvé

Extraction de cellulose nanofibrillée à partir de biomasse agricole et étude des applications potentielles

N/A
N/A
Protected

Academic year: 2021

Partager "Extraction de cellulose nanofibrillée à partir de biomasse agricole et étude des applications potentielles"

Copied!
153
0
0

Texte intégral

(1)

(2) UNIVERSITÉ DE SHERBROOKE Faculté de génie Département de génie Civil. EXTRACTION DE CELLULOSE NANOFIBRILLÉE À PARTIR DE BIOMASSE AGRICOLE ET ÉTUDE DES APPLICATIONS POTENTIELLES. Thèse de doctorat Rajinipriya MALLADI Members of the Jury Pr. Benmokrane (Jury President) Pr. Jeremie Soulestin (External Jury member) Pr. Debra Hausladen (Rapporteur) Dr. Patrice Cousin (Examiner) Pr. Said Elkoun (Co-director) Pr. Mathieu Robert (Director). Sherbrooke (Québec) Canada. January 2020.

(3) And once the storm is over, you don’t remember how you made it through, how you managed to survive. You won’t even be sure, whether the storm is really over. But one thing is certain. When you come out of the storm, you won’t be the same person who walked in. That’s what this storm’s all about.. Haruki Murakami. i.

(4) DEDICATED TO My parents and family, husband Dr. Nagalakshmaiah for believing in me even before I did. Your motivation and constant help made all this possible. Thanks for being there for me always.. ii.

(5) RÉSUMÉ La production de matériaux cellulosiques est en forte augmentation et doit évoluer vers des matières premières renouvelables, durables et respectueuses de l'environnement. La cellulose est souvent considérée comme l'une des ressources naturelles les plus importantes. Avec l'avènement de la nanotechnologie, les chercheurs et les industries se concentrent dans la production de nanocellulose en très grandes quantités. L‘intérêt des recherches sur la nanocellulose repose sur ses propriétés prometteuses telles que sa faible densité et sa grande résistance mécanique. Les nanofibrilles de cellulose (FNC), également connues sous le nom de cellulose nanofibrillée (NFC), de cellulose microfibrillée (MFC) ou nanofibres de cellulose et la cellulose nanocristalline (NCC) sont des matériaux aux propriétés barrières, mécaniques et colloïdales importantes. De telles propriétés rendent la nanocellulose prometteuse pour des applications telles que la fabrication du papier, les composites, les emballages, les revêtements et la biomédecine. La cellulose se trouve dans différentes sources telles que le bois, les fibres naturelles (biomasse agricole), les animaux marins (tuniciers), les algues et les champignons. La composition de cette biomasse lignocellulosique est différente pour chaque source. Avec la demande croissante en ressources renouvelables, la récupération des déchets de récoltes est appropriée en permettant de protéger l'environnement et de bénéficier d’une matière à faible coût. La biomasse des déchets agricoles est une ressource importante car elle est respectueuse de l’environnement, ne coûte presque rien, est très résistante, facilement disponible et renouvelable. Ces déchets, de sources variables (ex. tiges de coton, feuilles d’ananas, paille de riz, de lin, de chanvre, d’asclépiade, de carottes, de soja, de balles de riz) contiennent une quantité abondante de fibres naturelles. L'accent est actuellement mis sur le marché des NFC en raison de l'attention accrue portée par les gouvernements, les industries, les agences de financement et les universités. La bioéconomie croît rapidement, ce qui entraîne des investissements plus importants. Les industries qui produisent les NFC sont Paperlogic, l’Université du Maine, Borregaard Norvège, American Process, Nippon Paper Japon, Innventia Suède, CTP / FCBA France, Oji Paper, Japon. Cette étude est dédiée à l'extraction de la nanocellulose à partir de fibres naturelles telles que celles de carotte, de lin, de chanvre et d'asclépiade. La biomasse a été purifiée à l'aide d'un procédé à. iii.

(6) étape unique qui comprend par ailleurs divers traitements avec de nombreux produits chimiques, ce qui est discuté dans la revue bibliographique. La toute première étape de l'extraction de la nanocellulose est la purification de la biomasse afin d'éliminer toute trace de contaminants comme la lignine et les cires. Dans une étude typique, cela inclurait de nombreuses étapes telles que les traitements à l'acide et aux alcalis et le blanchiment. Dans l’étude présentée, la biomasse (lin, chanvre et asclépiade) purifiée a été obtenue en une seule étape à l’aide du peroxyde d’hydrogène. La longueur des fibres est restée inchangée pendant le processus. Les résultats de DRX ont montré que la cristallinité des fibres n'était pas affectée lors de la purification. Les NFC et les NCC ont été extraits des déchets de carottes par un broyage à billes suivi d’une hydrolyse acide. L'effet du temps de broyage à billes sur la fibrillation et la morphologie des NFC a été étudié. Les propriétés mécaniques des NFC issus de la carotte ont également été étudiées. Les films de nanocellulose (NF) ont également été préparés en coulant les suspensions extraites (NFC et NCC). Les propriétés mécaniques, fonctionnelles et thermiques, ainsi que la cristallinité des NFC et des NCC obtenus ont été caractérisées. Les résultats ont montré que la longueur et le diamètre des NCC préparés à partir de la carotte étaient compris entre 54 et 610 nm. Une amélioration significative de la cristallinité a été observée pour NFC (69 %) et NCC (78 %) par rapport à celle des fibres brutes (36 %). Par ailleurs, les propriétés optiques et la morphologie des films nanocellulosiques préparés en utilisant les NFC et les NCC ont été analysées. Les films ont montré une amélioration significative en termes de transparence et d’homogénéité avec une augmentation du temps de broyage. En général, les films de nanocellulose ont une faible perméabilité à l'oxygène et une grande résistance à l'huile en raison de leur structure en toile dense ressemblant à un réseau. Cependant, ces films ne sont pas stables dans des milieux à humidité élevée. Afin d'améliorer leur caractère hydrophobe, les films ont été recouverts d'un revêtement TiO2 par technique sol-gel avec et sans oxydation TEMPO. Les NCF purs et oxydés ont été revêtus de dioxyde de titane (TiO2) via approche sol-gel par revêtement par immersion. Les NCF revêtus de TiO2 ont été séchés à 65 °C pendant deux heures, puis traités à 95 °C pendant une heure pour former du TiO2 à la surface des films. L'effet du revêtement de TiO2 sur les NCF purs et oxydés a été caractérisé afin de comprendre les propriétés morphologiques, optiques, fonctionnelles et barrière. La mesure de iv.

(7) l'angle de contact a montré que la nature hydrophobe des films revêtus de TiO2 non oxydé et ceux revêtus de TiO2 oxydé augmente considérablement, avec un angle de contact passant de 89 ° à respectivement 41 ° et 29 °. En particulier, l’hydrophobicité et les propriétés optiques des films revêtus ont été considérablement améliorées par rapport à celles des films de NCF purs.. ABSTRACT The production of cellulosic materials is increasing tremendously in need to change towards the renewable raw materials and eco-friendly sustainable material. Cellulose is often considered one of the most important natural resource. With the advent of nanotechnology, the researchers and industries focus in the production of nanocellulose in huge quantities. The trailing purpose behind the growth of research in nanocellulose lies in their promising properties such as low density and high mechanical strength. Cellulose nanofibrils (CNF), otherwise known as nanofibrillated cellulose (NFC), micro fibrillated cellulose (MFC) or cellulose nanofibers and Nanocrystalline cellulose (NCC) are the materials with significant barrier, mechanical and colloidal properties. The above properties make nanocellulose promising for applications in such fields as papermaking, composites, packaging, coatings and biomedicine. Cellulose can be found in different sources like wood, natural fibers (agriculture biomass), marine animal (tunicate), algae and fungi. The composition of this lignocellulosic biomass is different for each source. With the ever-increasing demand in renewable resource, the crop waste is meant to be an appropriate material. The recovery of waste makes it possible to protect the environment and to benefit from low cost reinforcements. Agriculture waste biomass is significant resource for the reason it is environmentally friendly, cost next to nothing, high in strength, readily available and renewable. The crop waste constitutes abundant natural fiber. The agriculture waste can be obtained from cotton stalk, pineapple leaf, rice straw, flax, hemp, milkweed, carrot, soy pods, rice husk etc. These materials can be used in multitude applications like paper and textile industry, composites, building, furniture and medical fields. The NFC market is currently emphasized because of the augmented focus of the governments, industries, funding agencies and Universities. The bio-based economy is rapidly increasing resulting in the higher investments. The industries producing NFC are Paperlogic, University of. v.

(8) Maine, Borregaard Norway, American Process, Nippon Paper Japan, Innventia Sweden, CTP/FCBA France, Oji Paper, Japan. This study is dedicated to the extraction of nanocellulose from nat6ural fibers viz carrot, flax, hemp and milkweed. The biomass was purified using single step process which otherwise includes various treatments with many chemicals which is discussed under literature review. The very first step in the extraction of nanocellulose is the purification of biomass to remove any traces of lignin, waxes etc. In a usual study, this includes many stages like acid and alkali treatments, bleaching etc. In this research work, the purification of biomass (flax, hemp and milkweed) was achieved in single step using Hydrogen peroxide. The fiber length remained unaffected during the process. The XRD results showed that the crystallinity of the fibers was not affected when purified. NFC and NCC was extracted from carrot waste by ball milling and acid hydrolysis respectively. The effect of ball grinding time on the fibrillation and morphology of the NFC was studied. The mechanical properties of carrot NFC was also studied. The nanocellulose films (NFs) were also prepared by casting the extracted NFC and NCC suspensions. The structural, functional, crystalline and thermal properties of resulted NFC and NCC was characterized. The results exhibited that length and the diameter of the NCC prepared from carrot was in the range of 54 - 610 nm. Significant improvement in crystallinity was observed for NFC (69 %) and NCC (78 %) compared to that of raw fibers (36 %). The nanocellulosic films prepared by using NFC and NCC, optical and morphological properties were analyzed. The films exhibited the significant improvement in the transparency and homogeneity with increase in the grinding time. Generally, the nanocellulose films has low oxygen permeability and high oil resistant due to their dense web like network. However, these films are not stable at high moisture medium. In order to improve the hydrophobic nature of the films, coated with TiO2 sol-gel coating with and without oxidation of TEMPO. The neat and oxidized NCF were coated with Titanium dioxide sol-gel (TiO2) by dip coating. The TiO2 coated NCF was dried at 65 ºC for two hours and then treated at 95 ºC for one hour to form the TiO2 on the surface of the films. The effect of TiO2 coating on neat and oxidized NCF was characterized to understand the morphological, optical, functional, and barrier properties. The contact angle measurement showed that the hydrophobic nature of the nonoxidized TiO2 coated and oxidized TiO2 coated films were increased drastically from 89° to 41° and 29° respectively. Notably, the barrier and optical properties of the coated films were vi.

(9) significantly improved compared to that of the neat NCF films. Importantly, the tensile strength and elasticity of the TiO2 coated NCF films were improved considerably compared to neat NCF.. vii.

(10) ACKNOWLEDGMENTS I would like to express my sincere gratitude to my supervisors Professor Mathieu Robert and Professor Saïd Elkoun for accepting me for this PhD position. I appreciate their guidance, supervision and persistent support throughout my PhD. I also extend my thanks to Pr. Saïd Elkoun for his constant care and help. I would like to thank the Jury members for their valuable time in evaluating my thesis and for their suggestions. My sincere thanks to the technical staffs at Center for characterization of Materials (CCM) of the Université de Sherbrooke, Mme. Sonia Blais, M. Charles Bertrand, M. Carl St. Louis, and M. Stephane Gutierrez for helping me in the characterizations. Also, I would like to appreciate all of my colleagues in Carrefour of Innovative Technologies and Eco-design (CITÉ) for helping in settling down both at home and lab. Finally, yet ultimately, my gratitude to my parents Mr. Chakravarthy and Mrs. Vasantha Chakravarthy who always wants to see me in the happy place. I can never thank enough my darling son Ram Suhaas who understands and stands by me forever and my little angel daughter Amrutha who kept quiet and let me sit and write this thesis. I also thank my entire family for their support. I am forever grateful for the almighty for showering me with the blessings.. viii.

(11) . 7$%/(2)&217(176 &KDSWHU*HQHUDO,QWURGXFWLRQ . ,QWURGXFWLRQ. . 3UREOHPDWLFDQGSURMHFWSODQ. . 3URMHFWPRWLYDWLRQDQGREMHFWLYHV.  6LQJOHVWDJHSXULILFDWLRQRIIOD[KHPSDQGPLONZHHGVWHPDQGWKHLUSK\VLFDODQG PRUSKRORJLFDOSURSHUWLHV . +RPRJHQRXVDQGWUDQVSDUHQWQDQRFHOOXORVLFILOPVIURPFDUURW. . (QKDQFHPHQWRIVXUIDFHSURSHUWLHVRIWKHQDQRFHOOXORVLFILOPVE\7LRVROJHOFRDWLQJ .  . . 7KHOD\RXWRIGLVVHUWDWLRQ. &+$37(5/LWHUDWXUHUHYLHZ . 5pVXPp. . $EVWUDFW. . ,QWURGXFWLRQ. . 6RXUFHRIFHOOXORVH. . &HOOXORVH. . +HPLFHOOXORVH. . /LJQLQ. . 1DQRFHOOXORVH. . . 1DQRILEULOODWHGFHOOXORVH. . &HOOXORVHQDQRFU\VWDOV. . %DFWHULDOFHOOXORVH. . (OHFWURVSXQFHOOXORVHQDQRILEHUV. ,PSRUWDQFHRIDJULFXOWXUHELRPDVV  ,VRODWLRQRIQDQRFHOOXORVHIURPDJULFXOWXUHELRPDVV  3XULILFDWLRQRIELRPDVV  ([WUDFWLRQRI&1&  ([WUDFWLRQRI1)& ix.

(12)  3UHWUHDWPHQWV  0HFKDQLFDOWUHDWPHQW  &KDUDFWHULVDWLRQRIQDQRFHOOXORVH  0RUSKRORJ\  &U\VWDOOLQLW\  7KHUPDOSURSHUWLHV  $SSOLFDWLRQV  &RPSRVLWHV  3DFNDJLQJ  3DLQWVDQGFRDWLQJV  2SWLFDOPDWHULDOV  %LRPHGLFLQH  1DQRFHOOXORVHWRZDUGVLQGXVWULDOL]DWLRQ  ,QGXVWULDOWXUQRYHUDQGPHWKRGV.  &+$37(5+RPRJHQRXVDQGWUDQVSDUHQWQDQRFHOOXORVLFILOPV IURPFDUURW««««««««««««««««««««««««««««««« . 5pVXPp. . $EVWUDFW. . ,QWURGXFWLRQ. . ([SHULPHQWDOVHFWLRQ. . . . . 0DWHULDOV. . 0HWKRGV. 5HVXOWVDQGGLVFXVVLRQ . ,VRODWLRQDQGFKDUDFWHUL]DWLRQRIILEHUVIURPFDUURWSXOS. . 6WUXFWXUDOPRUSKRORJ\2)1)&DQG1&&. . &U\VWDOOLQHIXQFWLRQDODQGWKHUPDOSURSHUWLHV. 3UHSDUDWLRQRIQDQRFHOOXORVLFILOPV . 2SWLFDOSURSHUWLHVRIQDQRFHOOXORVLFILOPV. . 0RUSKRORJ\RIQDQRFHOOXORVLFILOPV. . 7HQVLOHSURSHUWLHVRIQDQRFHOOXORVLFILOPV. &RQFOXVLRQ. x.

(13)  &+$37(5  (QKDQFHPHQW RI VXUIDFH SURSHUWLHV RI WKH QDQRFHOOXORVLF ILOPV E\ 7L2 VROJHO FRDWLQJ «««««««««««««««««««««««««««««««« . 5pVXPp. . $EVWUDFW. . *UDSKLFDODEVWUDFW. . ,QWURGXFWLRQ. . 0DWHULDOVDQGPHWKRGV. . . . 0DWHULDOV. . 0HWKRGV. 5HVXOWVDQGGLVFXVVLRQV . 6XUIDFHSURSHUWLHVRIQDQRFHOOXORVHILOPV. . 2SWLFDOSURSHUWLHVRIWKHILOPV. . 0HFKDQLFDOSURSHUWLHV. &RQFOXVLRQ.  &KDSWHUVLQJOHVWDJHSXULILFDWLRQRIIOD[KHPSDQGPLONZHHG VWHP ILEHUV DQG WKHLU SK\VLFDO DQG PRUSKRORJLFDO SURSHUWLHV««««««««««««««««««««««««««««««« . 5pVXPp. . $EVWUDFW. . ,QWURGXFWLRQ. . ([SHULPHQWDO. . . . . 0DWHULDOV. . 0HWKRGV. 5HVXOWVDQGGLVFXVVLRQ . 0RUSKRORJLFDOSURSHUWLHVRIWKHILEHUV. . )7,5FKDUDFWHUL]DWLRQ. . 7KHUPRJUDYLPHWULFDQDO\VLV. . ;UD\GLIIUDFWLRQ. &RQFOXVLRQ. &KDSWHU. . &RQFOXVLRQ. DQG. IXWXUH. SHUVSHFWLYHV««««««««««««««««««««««««««««« xi.

(14) . . &RQFOXVLRQJpQpUDOH. . *HQHUDOFRQFOXVLRQ. . 3HUVSHFWLYHV. 5HIHUHQFHV.    .              xii.

(15) LIST OF FIGURES Figure 1.1 Hierarchical structure of materials from macro to atomic scale (courtesy of European chemical agency) ............................................................................................................................ 2 Figure 1.2 Structural organization of the reported thesis work ...................................................... 6 Figure 2.1 Hierarchical representation various sources of cellulose……………………………..12 Figure 2.2 a) 3D structure of cellulose.b) structure formula of cellulose.....................................15 Figure 2.3 Crystalline and amorphous regions of cellulose. ......................................................... 16 Figure 2.4 Cellulose bundles embedded by hemicelluloses and lignin. ....................................... 16 Figure 2.5 Structural backbone of hemicellulose a) β 1,4-glucan b) β 1,4-glucan c) β 1,4-Mannan. ....................................................................................................................................................... 17 Figure 2.6 Structural units of lignin……………………………………………………………..18 Figure 2.7 Hierarchical structure of cellulose and its derivatives in nanoscale. ........................... 18 Figure 2.8 Micrographs of NC a) NFC from corn husk b) CNC from tunicate c) Bacterial cellulose d) electro spun cellulose nanofibers.. ............................................................................................ 19 Figure 2.9 Isolation of CNC from cellulose by sulphuric acid hydrolysis.. ................................. 21 Figure 2.10 Factors that affect the quality of the fiber at various stages of production.. ............. 24 Figure 2.11 Different methods of nanocellulose production. ....................................................... 25 Figure 2.12 Diagram for working principle of a) homogenizer adopted from b) microfluidizer c) grinding d) Cryocrushing ............................................................................................................. 34 Figure 2.13 Micrographs of nanocellulose produced from different agriculture biomass ........... 37 Figure 2.14 TEM images of cellulose microfibrils after a) PA b) PA–HCl c) 5 wt.% KOH and d) 18 wt.% (KOH-18) treatments…………………………………………………………………...39 xiii.

(16) Figure 2.15 Multitude applications of nanocellulose a) Extruded PP/CNC and M-CNC nanocomposite film b) Bio based pouches from VTT technical research c) Nanocellulose filter. d) Cellulose nanofibril aerogels from rice straw absorbing dyed chloroform from water e) Alginateoxidized nanocellulose sponge f) Fabricated transparent and flexible Nano paper transistor g) 3D printed small grids and human ear from NFC and alginate. ......................................................... 42 Figure 2.16 Road map of nanocellulose towards 2022 ................................................................. 46 Figure 3.1 Detailed schematic diagram for the preparation of NFC and NCC………………….59 Figure 3.2 a), b) and c SEM images of carrot fibers: raw, d), e) and f) H.W treated; g), h) and i) bleached spring fibers; j), k) and l) bleached classical fibers and m), n) and o) cross section of the spring fibers .................................................................................................................................. 62 Figure 3.3 SEM images of NFC at low and high magnification: a) and d) 1.5 NFC, b) and e) 3 NFC, c) and f) 5NFC. ................................................................................................................... 63 Figure 3.4 TEM images for a) and b) 5 NFC; c) and d) NCC at low and high magnification. .... 64 Figure 3.5 AFM images for a) & b) 5 NFC, c) & d) NCC at low and high magnification. ......... 65 Figure 3.6 XRD patterns for raw, bleached, 5NFC and acid hydrolysed cellulose from carrot pulp. .............................................................................................................................................. 66 Figure 3.7 FTIR peaks for raw, H.W treated, purified, NFC and NCC from Carrot. ................... 68 Figure 3.8 a) TGA curves b) dTG curves for raw, H.W treated, purified, NFC and NCC from Carrot. ........................................................................................................................................... 70 Figure 3.9 Visual aspect of the films prepared with raw, H.W, bleached, 1.5NFC, 3NFC, 5NFC and NCC (from left to right). ........................................................................................................ 71 Figure 3.10 UV transmittance spectra for Nano films of NFC and NCC from Carrot. ................ 72 Figure 3.11 SEM images of surface and cross section of a) and e) 1.5 NFC b) and f) 3NFC c) and g) 5NFC d) and h) NCC Nano films respectively......................................................................... 73 xiv.

(17) Figure 4.1 Mechanism of TiO2 Sol-gel………………………………………………………….81 Figure 4.2 Machine dip coating mechanism of nanocellulose films ............................................ 82 Figure 4.3 a) The physical appearance of non-oxidized and oxidized TiO2 coated films (from left to right respectively) b) flexibility of the film after coating ......................................................... 84 Figure 4.4 FTIR spectra for neat (NCF-OH) and oxidized Nanocellulose films (NCF-COOH) . 85 Figure 4.5 SEM images of the a) and b) Neat nanocellulose film, c) and d) Non-oxidised TiO2 coated film e) and f) Oxidised and TiO2 coated nanocellulose film. ............................................ 86 Figure 4.6 SEM images for the cross-section of the a) Neat, b) Non-oxidized TiO2 coated film and c) Oxidized TiO2 coated nanocellulose film. ......................................................................... 87 Figure 4.7 Water absorption of Neat, non-oxidized and oxidized TiO2 coated nanocellulose films time (hr) with respect to the weight increase (%). ............................................................... 88 Figure 4.8 Ttransmittance of the nanocellulose films in the UV-Visible region .......................... 90 Figure 5.1 Visual impression of flax, hemp and milkweed fibers respectively a) before b) after treatment…………………………………………………………………………………………99 Figure 5.2 Reaction mechanism between hydrogen peroxide and lignin ..................................... 99 Figure 5.3 SEM images of flax fibers a) Bundles of untreated fibers b) surface of untreated fibers c) Individual untreated fibers d) Bundles of the fiber after treatment e) surface of treated fibers f) individual fibers after treatment. ................................................................................................. 102 Figure 5.4 SEM images of hemp fibers a) Bundles of untreated fibers b) surface of untreated fibers c) Individual untreated fibers d) Bundles of the fiber after treatment e) surface of treated fibers f) individual fibers after treatment .................................................................................................. 103 Figure 5.5 SEM images of milkweed fibers a) piece of untreated stem b) surface of untreated stem piece c) Individual untreated fibers d) piece of stem after treatment e) surface of treated stem f) individual fibers after treatment. ................................................................................................. 103 Figure 5.6 FT-IR spectra of a) Flax b) Hemp c) Milkweed fibers before (solid line) and after treatment (dotted lines). .............................................................................................................. 104. xv.

(18) Figure 5.7 TGA and Dtg curves of a) Flax b) Hemp c) Milkweed fibers before treatment (solid line) and after treatment (dotted lines). ....................................................................................... 106 Figure 5.8 X-ray diffraction patterns for a) Flax b) Hemp c) Milkweed fibers before treatment (solid line) and after treatment (dotted lines). ............................................................................. 107. xvi.

(19) LIST OF TABLES Table 2.1 Chemical composition of different sources on dry basis. ............................................. 13 Table 2.2 Production of major agricultural crops (in million tons). ............................................. 23 Table 2.3 Agriculture biomass source, purification method, Pre-treatments, mechanical treatments, type of nanocellulose and references. ........................................................................................... 26 Table 2.4 Source, diameter and reference of NC obtained from different crop waste. ................ 37 Table 2.5 Crystallinity of raw, NFC and CNC obtained from various biomass. .......................... 40 Table 2.6 Company producing nanocellulose, product type and the production capacity/day in kilograms....................................................................................................................................... 46 Table 2.7 Industries producing nanocellulose, product type, their production capacity and method of production across the world. ..................................................................................................... 47 Table 3.1 Dimensions, surface properties and crystallinity of carrot NCC……………………....67 Table 3.2 Mechanical properties of various nanocellulosic films and comparison with carrot nano film ................................................................................................................................................ 74 Table 4.1 The average contact angle (θa and θr) measurements of the films…………………….89 Table 4.2 Mechanical properties of the nanocellulose films before and after TiO2 coating ......... 91 Table 5.1 Initial and final weight of the flax, hemp and milkweed fibers……………………….98 Table 5.2 The relative weight loss at Different Temperatures for BT and AT flax, hemp and milkweed ..................................................................................................................................... 106. xvii.

(20) ABBREVIATIONS AFM. Atomic Force Microscopy. BC. Bacterial cellulose. CNC. Cellulose nanocrystals. CNF. Cellulose nanofibres. FE-SEM Field Emission Gun Scanning Electron Microscopy FTIR. Fourier Transform Infrared Spectroscopy. TGA. Thermogravimetric analysis. X-RD. X-ray diffraction. LCA. Life Cycle Assessment. MFC. Microfibrillated cellulose. NCC. Nanocrystals of Cellulose. NFC. Nanofibrillated cellulose. OTR. Oxygen Transmission Rate. PE. PolyEthylene. SEM. Scanning Electron Microscopy. TEM. Transmission electron microscopy. UV. Ultra-Violet. WVTR Water Vapor Transmission Rate WVP. Water Vapor Permeability. OP. Oxygen permeability xviii.

(21) OTR. Oxygen transmission rate. xix.

(22) CHAPTER 1 GENERAL INTRODUCTION. 1.

(23) ,1752'8&7,21 7KHPDWHULDOVZLWKGLPHQVLRQV HLWKHUWKHOHQJWKRUZLGWKRUWKHGLDPHWHU

(24) LQWKHQDQRPHWHU QP

(25) VFDOH PHWHU

(26) DUHFDOOHGDVQDQRPDWHULDOV)URPODVWWZRGHFDGHVQDQRPDWHULDOVHPHUJHG DVKLJKO\DWWUDFWLYHUHVHDUFKDUHDVGXHWRWKHLUUHPDUNDEOHSK\VLFDODQGPHFKDQLFDOSURSHUWLHV7KH QDQRPDWHULDOVFDQEHH[WUDFWHGIURPERWKRUJDQLF QDWXUDO

(27) DQGLQRUJDQLFPDWHULDOV&KLWLQSURWHLQ VWDUFKDQGFHOOXORVLFGHULYDWLYHVDUHGHULYHGIURPQDWXUDOPDWHULDOV LQQDQRPHWULFVFDOH

(28) RIWHQDOVR FDOOHGDVELRPDWHULDOV:KHUHDVQDQRFOD\VFDUERQQDQRWXEHVQDQRJUDSKHQHK\GUR[\DSDWLWHDQG JUDSKHQHR[LGHDUHGHULYHGIURPLQRUJDQLFPDWHULDOV+RZHYHUQDQRPDWHULDOVGHULYHGIURPWKH LQRUJDQLFPDWHULDOVDUHQRWELRGHJUDGDEOH. )LJXUH+LHUDUFKLFDOVWUXFWXUHRIPDWHULDOVIURPPDFURWRDWRPLFVFDOH FRXUWHV\RI (XURSHDQFKHPLFDODJHQF\

(29)  'XHWRWKHYDVWDWWHQWLRQWRZDUGVVXVWDLQDELOLW\DQGJUHHQPDWHULDOVUHVHDUFKLQVWLWXWHVDQGSULYDWH RUJDQLVDWLRQV DUH IRFXVVLQJ RQ ELRPDWHULDOV ,Q WKLV FRQWH[W SODQWEDVHG PDWHULDOV HVSHFLDOO\ FHOOXORVH/LJQLQDQGVWDUFKSOD\LQJYLWDOUROHWRUHSODFHQRQGHJUDGDEOHPDWHULDOVLQWKHPDUNHW 1HYHUWKHOHVV LQ WKH SUHVHQW WKHVLV ZRUN ZH IRFXVVHG PDLQO\ RQ FHOOXORVH DQG LWV DGYDQFHG GHULYDWLYHVVXFKDVQDQRILEULOODWHGDQGQDQRFU\VWDOOLQHFHOOXORVH,WLVZHOONQRZQWKHPRVWFRSLRXV PDWHULDORQWKHHDUWKLVFHOOXORVH1DQRFHOOXORVHLVWKHDGYDQFHGGHULYDWLYHRIFHOOXORVHDQGLWLV ZLGHO\SURGXFHGLQODUJHVFDOHE\LQGXVWULHVWKURXJKPHFKDQLFDOHQ]\PDWLFDQGFKHPLFDOSURFHVV +RZHYHULQGXVWULHVDUHXVLQJRQO\ZRRGILEHUVDQGOHDYLQJWKHUHVWVXFKDVDJULFXOWXUDOELRPDVV. 2.

(30) DQGLQGXVWULDOZDVWH/DUJHO\DJULFXOWXUDOELRPDVVLVVLPSO\EXUQHGLQWKHILHOGGXHWRLQVXIILFLHQW QRYHOSURGXFWV,QWKLVIUDPHZRUNQDQRFHOOXORVHZDVSURGXFHGIURPDJULFXOWXUDOELRPDVVVXFKDV IOD[KHPSPLONZHHGDQGFDUURWZDVWHDVSULPDU\VRXUFHPDWHULDO. 352%/(0$7,&$1'352-(&73/$1 $JULFXOWXUHELRPDVVLVULFKLQOLJQRFHOOXORVLFPDWHULDOV7KRXJKLQGXVWULHVDUHQRWLQWHUHVWHGWR XVHWKHPLQDSSOLFDWLRQVVXFKDVSDSHUSDFNDJLQJFRPSRVLWHVGXHWRWKHLUPXOWLSOHSXULILFDWLRQ VWHSV7KHPDLQFRQVWUDLQWVWRSXULI\WKHDJULFXOWXUDOELRPDVVLVWKHLUGLYHUVLW\LQWKHFRPSRVLWLRQ RIWKHSODQWFRQVWLWXHQWVVXFKDVFHOOXORVHSHFWLQKHPLFHOOXORVH +&

(31) DQGOLJQLQ,PSRUWDQWO\WKH PLQHUDOVVXFKDVVLOLFDSRWDVVLXPFDOFLXPDQGPDJQHVLXPSUHVHQWLQWKHELRPDVVLVDKXJHEDUULHU WRVHSDUDWHWKHILEHUV 

(32)  *HQHUDOO\ WKH ZRRGEDVHG ILEHUV DUH SXULILHG E\ DONDOL WUHDWPHQW WR UHPRYH SHFWLQ DQG +& IROORZHG E\ WZR VWDJH EOHDFKLQJ SURFHVV WR HOLPLQDWH OLJQLQ 

(33)  :KHUHDV LQ WKH FDVH RI WKH DJULFXOWXUHELRPDVVLWLVFRPSOHWHO\GLIIHUHQWGXHWRXQOLNHFRPSRVLWLRQ3UHYLRXVO\UHSRUWHGWKDW GLIIHUHQWELRPDVVVXFKDVIOD[KHPSDQGPLONZHHGILEHUVDUHSXULILHGLQPXOWLSOHVWHSV ±

(34)   )LEHUVUHILQLQJ VHSDUDWLQJWKHILEHUVIURPWKHSHDW

(35)   $FLGWUHDWPHQW 6XFKDVK\GURFKORULFDFLGVXOIXULFDFLGQLWULFDFLGDQGFKURPLFDFLG

(36)   6R[KOHWH[WUDFWLRQZLWKGLIIHUHQWFRPELQDWLRQVRIVROYHQWV  $ONDOLWUHDWPHQW 6RGLXPK\GUR[LGHRIWHQFDOOHGDVVRGDFRRNLQJ

(37) WRUHPRYHWKH+&DQGSHFWLQ  %OHDFKLQJWUHDWPHQWWRREWDLQWKHSXULILHGFHOOXORVHILEHUVE\HOLPLQDWLQJWKHOLJQLQ (VVHQWLDOO\EOHDFKLQJWUHDWPHQWFDQEHGRQHE\XVLQJVRGLXPK\SRFKORULWHK\GURJHQSHUR[LGH R[\JHQDQGR]RQHSURFHVV+RZHYHUWRSXULI\WKHELRPDVVE\XVLQJWKHDIRUHPHQWLRQHGPHWKRGV LV YHU\ FKDOOHQJLQJ IRU LQGXVWULHV DV WKHVH SURFHVVHV DUH YHU\ H[SHQVLYH DQG QRW IHDVLEOH ZLWK LQGXVWULHVWRSURGXFHDWEXONVFDOHSURGXFWLRQ,QWKLVFRQWH[WZHSURSRVHGVLQJOHVWHSSXULILFDWLRQ WRREWDLQWKHSXUHILEHUVLQWKLVWKHVLVZRUN%\SXULI\LQJWKHELRPDVVLQVLQJOHVWHSLWZLOOJLYH JUHDWRSSRUWXQLW\IRULQGXVWULHVWRIRFXVDQGXVHWKHDJULFXOWXUDOELRPDVVLQGLIIHUHQWDSSOLFDWLRQV VXFKDVLQVXODWLRQSDFNDJLQJFRPSRVLWHVHWF ,PSRUWDQWO\WKLVZLOOEHVLQJOHJDWHZD\IRUWKHSURGXFWLRQRIDGYDQFHGFHOOXORVHPDWHULDOVVXFKDV 1)&DQG1&&E\PHFKDQLFDODQGDFLGK\GURO\VLVSURFHVV7KH1)&DQG1&&ZHUHFKDUDFWHUL]HG WRXQGHUVWDQGWKHSK\VLFDOWKHUPDODQGPRUSKRORJLFDOSURSHUWLHVE\PHDQRIGLIIHUHQWWHFKQLTXHV. 3.

(38) ,QRUGHUWRXQGHUVWDQGWKHVFRSHRISRWHQWLDODSSOLFDWLRQVWKHH[WUDFWHGQDQRFHOOXORVHZDVXVHGWR SUHSDUHWKHILOPVIRUSDFNDJLQJZLWKKLJKR[\JHQEDUULHUSURSHUWLHV7KHGHWDLOHGGHVFULSWLRQRI HDFKFKDSWHULVGHWDLOHGLQWKHSURMHFWRXWOLQHDQGREMHFWLYHVVHFWLRQ. 352-(&7027,9$7,21$1'2%-(&7,9(6 (YHU\\HDUPHUHO\LQ&DQDGDIDUPHUVDUHKDUYHVWLQJPLOOLRQPHWULFWRQVRIDJULFXOWXUHELRPDVV 

(39) 3UHGRPLQDQWO\WKLVOLJQRFHOOXORVLFELRPDVVLVPRVWO\IURPGLYHUVHFURSVVXFKDVZKHDWIOD[ KHPSFRUQGXUXPRDWVEDUOH\U\HFDQRODVR\EHDQVDQGULFH+RZHYHUDIWHUKDUYHVWLQJWKHIRRG JUDLQVWKHOHIWRYHURIDOOWKHVHFURSVUHPDLQHGDKXJHSUREOHPIRUWKHIDUPHUVEHIRUHPRYLQJWR QH[WFXOWLYDWLRQ,QGHYHORSLQJFRXQWULHVWKLVELRPDVVLVVLPSO\EXUQWLQWKHILHOGV:KLFKFDXVHG ORWVRIFROORLGDOGXVWSROOXWLRQDORQJZLWKFDUERQGLR[LGHDQGFDUERQPRQR[LGH 6RPHRIWKHVH KDUYHVWHGVWHPVOHVVWKDQLVXVHGLQYDULRXVORZYDOXHDSSOLFDWLRQVOLNHIDEULFVURSHVDQG WZLQHV%\YDORUL]LQJKLJKYDOXHDGGHGSURGXFWVIURPWKLVELRPDVVZLOOEHJUHDWDGYDQWDJHIRUWKH IDUPHUV PDQXIDFWXUHUV DQG HQWUHSUHQHXUV DV LW ZLOO EH RSHQ WKH JDWHV IRU QHZ DSSOLFDWLRQV 0RUHRYHUWKLVELRPDVVFDQUHSODFHWKHWUDGLWLRQDOVRXUFHVDVZRRGFRWWRQDQGUHF\FOHGILEHUV ,QWKLVSHUVSHFWLYHGLIIHUHQWDJULFXOWXUDO IOD[KHPSDQGPLONZHHG

(40) DQGYHJHWDEOH FDUURW

(41) ELRPDVV ZDVVHOHFWHGDVSRWHQWLDOVRXUFH,QLWLDOO\ELRPDVVZDVUHILQHGDQGSXULILHGLQRUGHUWRPDNHWKH SURFHVVHDV\DQGILEHUVZHUHGLVLQWHJUDWHGE\LQGXVWULDOPHFKDQLFDOSURFHVV7KHGLVLQWHJUDWLRQRI WKHILEHUVZLOOIDFLOLWDWHWRSHQHWUDWHWKHFKHPLFDOVLQWRWKHILEHUQHWZRUNDQGKHOSWRUHGXFHWKH FRVWDQGWLPH)XUWKHUWKHSXULILHGILEHUVZHUHXVHGWRSUHSDUHWKHQDQRFHOOXORVHE\PHFKDQLFDO DQGFKHPLFDOSURFHVV7KHSUHSDUHGQDQRFHOOXORVHZDVGHGLFDWHGWRXVHLQGLIIHUHQWDSSOLFDWLRQV. 6LQJOHVWDJHSXULILFDWLRQRIIOD[KHPSDQGPLONZHHGVWHPDQG WKHLUSK\VLFDODQGPRUSKRORJLFDOSURSHUWLHV ,QLWLDOO\WKHGHOLJQLILFDWLRQDJHQWVZHUHVFUHHQHGDQGK\GURJHQSHUR[LGHZDVVHOHFWHG)LUVWO\WKH GLVLQWHJUDWHG ILEHUV ZHUH FRRNHG ZLWK K\GURJHQ SHUR[LGH DW  LQ ZDWHU  7KDQNV WR GLVLQWHJUDWLRQVWHSZKLFKKHOSV K\GURJHQSHUR[LGHWR SHQHWUDWHLQWRWKHLQQHU FHOO ZDOO WR UHDFW GLUHFWO\ZLWKOLJQLQ%DVLFDOO\K\GURJHQSHUR[LGHR[LGL]HVWKHOLJQLQDQGWKHQGLVVROYHLQWKHZDWHU 

(42) 7KHYLVXDODSSHDUDQFHRIIOD[KHPSDQGPLONZHHGILEHUVEHIRUHK\GURJHQSHUR[LGHZDVURXJK GXHWRWKHSUHVHQFHRIOLJQLQZD[DQGFRQVWLWXHQWV 

(43) +RZHYHUDIWHUWUHDWPHQWWKHILEHUVZHUH FOHDQDQGZKLWH7KHUHVXOWVZHUHHQVXHGWKURXJKWKHPRUSKRORJLFDOREVHUYDWLRQE\6(0,QRUGHU. 4.

(44) WR XQGHUVWDQG WKH WKHUPDO FKHPLFDO FU\VWDOOLQH DQG PRUSKRORJLFDO SURSHUWLHV WKH ILEHUV ZHUH FKDUDFWHUL]HGEHIRUHDQGDIWHUWUHDWPHQWE\PHDQVRI7*$)7,5;5'DQG6(0. +RPRJHQRXVDQGWUDQVSDUHQWQDQRFHOOXORVLFILOPVIURPFDUURW )LUVWO\WKHFDUURWILEHUVZHUHVHSDUDWHGE\UHPRYDORIMXLFHIURPWKHFDUURWVDQGIXUWKHUGULHGDQGWUHDWHGZLWK SUHYLRXVO\GHYHORSHGK\GURJHQSHUR[LGHVLQJOHVWHSSXULILFDWLRQ7KHVXFFHVVLYHO\H[WUDFWHGFHOOXORVHILEHUV ZDVXVHGWRSUHSDUHWKH1DQRILEULOODWHGFHOOXORVH 1)&

(45) DQGQDQRFU\VWDOOLQHFHOOXORVH 1&&

(46) E\XVLQJQRQ FRQYHQWLRQDOEDOOPLOOLQJDQGDFLGK\GURO\VLVSURFHVVUHVSHFWLYHO\,QLWLDOO\KRWZDWHUZDVKHGFDUURWUDZILEHUV WUHDWHGZLWKK\GURJHQSHUR[LGH\LHOGHGWKHFHOOXORVHULFKILEHUVLQWKHDEVHQFHRIȕFDURWHQHDQGOLJQLQ7KH VFDQQLQJ HOHFWURQ PLFURVFRS\ 6(0

(47)  RI UDZ DQG EOHDFKHG ILEHUV VKRZHG WKDW FDUURW FRQVLVWLQJ RI ERWK FODVVLFDODQGXQXVXDOVSULQJVKDSHGILEHUV 

(48)  7KHSXULILHGFHOOXORVHSXOSZDVILEULOODWHGE\EDOOPLOOLQJSURFHVVDWWKUHHGLIIHUHQWJULQGLQJWLPHWRREWDLQ 1)&7KHFRQVHTXHQFHRIJULQGLQJWLPHRQILEULOODWLRQDQGPRUSKRORJ\RIWKHUHVXOWHG1)&ZDVLQYHVWLJDWHG E\6(0,QSDUDOOHODONDOLWUHDWHGSXUHFDUURWILEHUVZHUHXVHGWRH[WUDFWWKH1&&E\DFLGK\GURO\VLVSURFHVV 7KHVWUXFWXUDOIXQFWLRQDOFU\VWDOOLQHDQGWKHUPDOSURSHUWLHVRIUHVXOWHG1)&DQG1&&ZDVFKDUDFWHUL]HGE\. . PHDQVRI WUDQVPLVVLRQHOHFWURQPLFURVFRS\ 7(0

(49) DWRPLFIRUFHPLFURVFRS\ $)0

(50) )RXULHUWUDQVIRUP LQIUDUHGVSHFWURVFRS\ )7,5

(51) ;UD\GLIIUDFWLRQ ;5'

(52) DQGWKHUPRJUDYLPHWULFDQDO\VLV 7*$

(53) . ,QWKHILQDOVWHSWKH1)&DQG1&&VXVSHQVLRQVZHUHVHSDUDWHO\FDVWLQWRQDQRFHOOXORVLFILOPV 1&)

(54) 7KH ILQDORSWLFDODQGPRUSKRORJLFDOSURSHUWLHVRIWKHUHVXOWHGILOPVZHUHDQDO\]HGV\VWHPDWLFDOO\E\XOWUDYLROHW YLVLEOHVSHFWURSKRWRPHWU\ 89YLV

(55) DQG6(0UHVSHFWLYHO\. (QKDQFHPHQWRIVXUIDFHSURSHUWLHVRIWKHQDQRFHOOXORVLFILOPV E\7LRVROJHOFRDWLQJ 7KH PDLQ DLP RI WKLV ZRUN LV WR GHGLFDWH WKH QDQRILEULOODWHG FHOOXORVH ILOPV IRU WKH SDFNDJLQJ DSSOLFDWLRQV 7KH JOREDO UHVHDUFK LQWHUHVW WRZDUGV 1)& LV JURZLQJ GXH WR WKHLU PHFKDQLFDO SK\VLFDO EDUULHU DQG ELRGHJUDGDEOH SURSHUWLHV ,Q WKLV FRQWH[W KLJKO\ SHUFRODWHG QDQRFHOOXORVH ILOPV 1&)

(56) ZHUHSUHSDUHGE\ILOWUDWLRQDQGKRWSUHVVLQJSURFHVV)XUWKHUWKHSUHSDUHGQHDW1&) VXUIDFHZHUHR[LGL]HGXVLQJWHWUDPHWK\OSLSHULGLQH1R[\O 7(032

(57)  7KHQHDWDQGR[LGL]HG1&)ZHUHFRDWHGZLWK7LWDQLXPGLR[LGHVROJHO 7L2

(58) E\GLSFRDWLQJ7KH 7L2 FRDWHG1&)ZDVGULHGDWž&IRUWZRKRXUVDQGWKHQWUHDWHGDWž&IRURQHKRXUWRIRUP WKH7L2RQWKHVXUIDFHRIWKHILOPV7KHHIIHFWRI7L2FRDWLQJRQQHDWDQGR[LGL]HG1&)ZDV. 5.

(59) FKDUDFWHUL]HG E\ PHDQV RI VFDQQLQJ HOHFWURQ PLFURVFRS\ 6(0

(60)  XOWUD YLROHW 89

(61)  )RXULHU WUDQVIRUP LQIUDUHG VSHFWURVFRS\ )7,5

(62)  2[\JHQ WUDQVPLVVLRQ UDWH 275

(63)  WR XQGHUVWDQG WKH PRUSKRORJLFDORSWLFDOIXQFWLRQDODQGEDUULHUSURSHUWLHV. 7+(/$<2872)',66(57$7,21 7KLVGLVVHUWDWLRQLVEDVHGRQDUWLFOHV SXEOLVKHGVXEPLWWHG

(64) ZKLFKLVFRQVLVWVRIILYHFKDSWHUVDV VKRZQLQWKHILJXUH&KDSWHULVDEULHILQWURGXFWLRQWRWKHSURMHFWGHVFULELQJWKHIUDPHZRUN PRWLYDWLRQDQGREMHFWLYHV         )LJXUH6WUXFWXUDORUJDQL]DWLRQRIWKHUHSRUWHGWKHVLVZRUN &KDSWHULVFRPSOHWHO\GHGLFDWHGWRWKHH[WHQVLYHOLWHUDWXUHUHYLHZRIGLIIHUHQWDJULFXOWXUDODQG YHJHWDOELRPDVVFRPSRVLWLRQSXULILFDWLRQWHFKQLTXHVUHSRUWHGLQWKHOLWHUDWXUHZDVUHSRUWHGDORQJ ZLWK WKH QDQRFHOOXORVH SURGXFWLRQ PHWKRGV DQG WKHLU ILQDO SURSHUWLHV EDVHG RQ WKH SURFHVV ZDV GHWDLOHG)LQDOO\WKHSURGXFWLRQFLWHVSUHVHQWLQWKHZRUOGDOVROLVWHGWRXQGHUVWDQGWKHLPSRUWDQFH RIQDQRFHOOXORVHLQWKHKLJKYDOXHDGGHGDSSOLFDWLRQVLQWKHPRGHUQZRUOG 

(65)  &KDSWHULVGHYRWHGIRUWKHH[WUDFWLRQRIFHOOXORVHDQGQDQRFHOOXORVHIURPFDUURWZDVWH$GGLWLRQDO WRWKLVWKHHQVXHGQDQRFHOOXORVHZDVXVHGWRSUHSDUHWKHILOPVWRFRPSDUHWKHPHFKDQLFDOSURSHUWLHV ZLWKZRRGEDVHGQDQRFHOOXORVHILOPV &KDSWHUZDVGHWDLOHGWKHLPSDFWRI7L2VROJHOFRDWLQJ RQQDQRFHOOXORVHILOPVIRUSDFNDJLQJDSSOLFDWLRQVZHUHUHSRUWHG,QWKLVFKDSWHUWKHLQIOXHQFHRI 7L2FRDWLQJRQVXUIDFHSURSHUWLHVRIWKHK\GURSKLOLFQDQRFHOOXORVHILOPVZHUHFKDUDFWHUL]HG,Q. 6.

(66) order to understand the mechanical and barrier properties of the coated films were analysed by tensile test and oxygen transmission rate tester. Chapter 5 the single stage purification of different agricultural biomass (flax, hemp and milkweed) procured from Canada was reported. Finally, the thesis work was concluded with future perspectives.. 7.

(67) CHAPTER 2 LITERATURE REVIEW 2. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review Authors and affiliations: Malladi Rajinipriya, PhD student, Center for Innovation in Technological Eco-design (CITE), University of Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 Malladi Nagalakshmaiah, PhD, Center for Innovation in Technological Eco-design (CITE), University of Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 Mathieu Robert, Professor, Center for Innovation in Technological Eco-design (CITE), University of Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 Saïd Elkoun, Professor, Center for Innovation in Technological Eco-design (CITE), University of Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1. Published date: February 3, 2018 Current status: Published Journal: ACS sustainable chemistry and engineering Citation: (10) DOI : https://doi.org/10.1021/acssuschemeng.7b03437. 8.

(68) 5e680e /HVQDQRPDWpULDX[GHFHOOXORVHVRQWUpFHPPHQWGHYHQXVG DFWXDOLWpGDQVOHGRPDLQHGHVPDWpULDX[ GXUDEOHV/HVGHX[SULQFLSDX[JURXSHVGHQDQRFHOOXORVHV 1&V

(69) VRQWOHV 

(70) QDQRILEUHVILEULOOpHV 1)&

(71) HWOD 

(72) FHOOXORVHQDQRFULVWDOOLQH &1&

(73) &HVJURXSHVVRQWVRXYHQWFRQVLGpUpVFRPPHGHV UHVVRXUFHVUHQRXYHODEOHVGHGHX[LqPHJpQpUDWLRQTXLVHUYHQWDXVVLG¶DOWHUQDWLYHVDX[SURGXLWVj EDVHGHSpWUROH8QHJUDQGHDWWHQWLRQDpWpDFFRUGpHjFHVPDWpULDX[HQUDLVRQGHOHXUIDLEOHGHQVLWp GHOHXUVSURSULpWpVPpFDQLTXHVpOHYpHVHWGHOHXUFDUDFWqUHUHQRXYHODEOHHWELRGpJUDGDEOH,OH[LVWH EHDXFRXS GH WUDYDX[ GDQV OD OLWWpUDWXUH SRUWDQW VXU O¶H[WUDFWLRQ GHV 1)& HW &1& j SDUWLU GH GLIIpUHQWHVVRXUFHVFRPPHOHERLVGXUPRXHWODELRPDVVHDJULFROH3DUDOOqOHPHQWOHWUDYDLODFWXHO UHSUpVHQWH XHQ UHYXH ELELOLRJUDSKLTXH FRQVDFUpH DX[ SURSULpWpV  GHV 1)& HW &1& H[WUDLWHV XQLTXHPHQW GH O DJULFXOWXUH HW GHV GpFKHWV LQGXVWULHOV HQ XWLOLVDQW GHV PpWKRGHV PpFDQLTXHV FKLPLTXHVHWHQ]\PDWLTXHV &HWDUWLFOHH[SORUHHQGpWDLOO¶LPSRUWDQFHGHVGpFKHWVGHO¶DJULFXOWXUH HWGHVSUpWUDLWHPHQWVHWPpWKRGHVXWLOLVpHVGDQVSURGXFWLRQGH1&DLQVLTXHOHVSURSULpWpVGHOD 1&SUpSDUpHjSDUWLUGHGpFKHWVGHUpFROWHHWLQGXVWULHOV/HVDSSOLFDWLRQVSRWHQWLHOOHVGHOD1& SURYHQDQW GHV GLIIpUHQWHV VRXUFHV VRQW GLVFXWpHV /HV SOXV LPSRUWDQWHV LQLWLDWLYHV LQGXVWULHOOHV DFWXHOOHV GDQV OD SURGXFWLRQ GH 1& VRQW DXVVL SUpVHQWpHV &HWWH UHYXH GH OLWWpUDWXUH DWWLUHUD SUREDEOHPHQW O DWWHQWLRQ GHV FKHUFKHXUV YHUV GHV FXOWXUHV HW GHV GpFKHWV LQGXVWULHOV MXVTX¶DORUV FRQVLGpUpVGDQVYDOHXUFRPPHGHQRXYHOOHVVRXUFHVGDQVOHGRPDLQHGHOD1&. $%675$&7 1DQRVL]HGFHOOXORVHPDWHULDOVKDYHUHFHQWO\EHFRPHWRSLFDOLQWKHVSKHUHRIVXVWDLQDEOHPDWHULDOV 7KH WZR NH\ JURXSV RI QDQRFHOOXORVHV 1&V

(74)  DUH 

(75)  QDQRILEULOODWHG FHOOXORVH 1)&

(76)  DQG 

(77)  FHOOXORVH QDQRFU\VWDOV &1&

(78)  7KH\ DUH RIWHQ FRQVLGHUHG DV VHFRQGJHQHUDWLRQ UHQHZDEOH UHVRXUFHVZKLFKDOVRVHUYHDVEHWWHUUHSODFHPHQWVIRUSHWUROHXPEDVHGSURGXFWV0RUHDWWHQWLRQ KDVEHHQJLYHQWRWKHVHPDWHULDOVEHFDXVHRIWKHLUORZGHQVLW\DQGKLJKPHFKDQLFDOUHQHZDEOH DQGELRGHJUDGDEOHSURSHUWLHV7KHUHDUHPDQ\ZRUNVLQWKHOLWHUDWXUHRQWKHLVRODWLRQRI1)&DQG &1& IURP GLIIHUHQW VRXUFHV OLNH KDUGVRIW ZRRG DQG DJULFXOWXUH ELRPDVV +RZHYHU WKLV LV D FRPSUHKHQVLYHOLWHUDWXUHUHYLHZGHGLFDWHGWRWKHSURSHUWLHVRI1)&DQG&1&H[WUDFWHGRQO\IURP DJULFXOWXUHDQGLQGXVWULDOZDVWHXVLQJPHFKDQLFDOFKHPLFDODQGHQ]\PDWLFPHWKRGV7KLVDUWLFOH H[SORUHVLQGHWDLOWKHLPSRUWDQFHRIDJULFXOWXUHZDVWHDQGSUHWUHDWPHQWVPHWKRGVLQYROYHGLQWKH. 9.

(79) SURGXFWLRQRIQDQRFHOOXORVHDQGWKHSURSHUWLHVRI1&SUHSDUHGIURPFURSDQGLQGXVWULDOZDVWHV 7KH SRWHQWLDO DSSOLFDWLRQV RI QDQRFHOOXORVH IURP GLIIHUHQW VRXUFHV DUH GLVFXVVHG 7KH FXUUHQW H[WHQVLYHLQGXVWULDODFWLYLWLHVLQWKHSURGXFWLRQRIQDQRFHOOXORVHDUHSUHVHQWHG7KLVUHYLHZZLOO OLNHO\GUDZWKHDWWHQWLRQRIUHVHDUFKHUVWRZDUGFURSDQGLQGXVWULDOZDVWHVDVDQHZVRXUFHLQWKH UHDOPRIQDQRFHOOXORVH. ,1752'8&7,21 7KHSURGXFWLRQRIFHOOXORVLFPDWHULDOLQFUHDVHVWUHPHQGRXVO\WRIXOILOWKHQHHGIRUUHQHZDEOHDQG HFRIULHQGO\VXVWDLQDEOHPDWHULDOV 

(80) &HOOXORVHLVRIWHQFRQVLGHUHGDVRQHRIWKHPRVWLPSRUWDQW QDWXUDO UHVRXUFH :LWK WKH DGYHQW RI QDQRVFLHQFH WKH UHVHDUFKHUV DQG LQGXVWULHV IRFXV LQ WKH SURGXFWLRQRI1&LQKXJHTXDQWLWLHV7KHWUDLOLQJSXUSRVHEHKLQGWKHJURZWKRIUHVHDUFKLQ1&OLHV LQWKHLUSURPLVLQJSURSHUWLHVVXFKDVORZGHQVLW\DQGKLJKPHFKDQLFDOVWUHQJWK 

(81) &HOOXORVHFDQ EH IRXQG LQ GLIIHUHQW VRXUFHV OLNH ZRRG QDWXUDO ILEHUV DJULFXOWXUH ELRPDVV

(82)  PDULQH DQLPDO WXQLFDWH

(83)  DOJDH DQG IXQJL 

(84)  7KH FRPSRVLWLRQ RI WKLV OLJQRFHOOXORVLF ELRPDVV LV KLJKO\ GHSHQGDQW RQ WKH VRXUFH 

(85)  7KLV UHYLHZ GHDOV ZLWK WKH FURS ZDVWH DV D FRUH VRXUFH IRU WKH H[WUDFWLRQRI1& :LWK WKH HYHULQFUHDVLQJ GHPDQG IRU UHQHZDEOH UHVRXUFH WKH FURS ZDVWH LV PHDQW WR EH DQ DSSURSULDWHPDWHULDO7KHUHFRYHU\RIZDVWHPDNHVLWSRVVLEOHWRSURWHFWWKHHQYLURQPHQWDQGWR EHQHILWIURPORZFRVWUHLQIRUFHPHQWV$JULFXOWXUHZDVWHELRPDVVLVVLJQLILFDQWUHVRXUFH IRUWKH UHDVRQLWLVHQYLURQPHQWDOIULHQGO\ORZFRVWUHDGLO\DYDLODEOHUHQHZDEOHDQGH[KLELWVRPHKRZ DFFHSWDEOHPHFKDQLFDOSURSHUWLHV 

(86) 7KHFURSZDVWHFRQVWLWXWHVDEXQGDQWQDWXUDOILEHUV 

(87) 7KH DJULFXOWXUHZDVWHILEHUVFDQEHREWDLQHGIURPFRWWRQVWDONSLQHDSSOHOHDIULFHVWUDZIOD[KHPS VR\SRGVULFHKXVNJDUOLFVWUDZSRWDWRSHHOJUDSHVNLQHWF$JULELRPDVVFDQEHXVHGLQPXOWLWXGH DSSOLFDWLRQVOLNHSDSHUWH[WLOHLQGXVWU\FRPSRVLWHVEXLOGLQJIXUQLWXUHDQGPHGLFDOILHOGV 7KH 1& PDUNHW LV FXUUHQWO\ HPSKDVL]HG EHFDXVH RI WKH DXJPHQWHG IRFXV RI WKH JRYHUQPHQWV LQGXVWULHV IXQGLQJ DJHQFLHV DQG 8QLYHUVLWLHV 7KH ELREDVHG HFRQRP\ LV UDSLGO\ LQFUHDVLQJ UHVXOWLQJLQWKHKLJKHULQYHVWPHQWV7KH1&SURGXFWLRQLQFOXGHVKLJKYDOXHDGGHGDSSOLFDWLRQVOLNH FRPSRVLWHVSDSHULQGXVWU\SDFNDJLQJSDLQWVRLO JDVSHUVRQDOFDUHPHGLFDOFDUHHWF 

(88) 7KH 1&LVILUVWFRPPHUFLDOLVHGE\FHOOXIRUFH,QFLQ4XHEHFDMRLQWYHQWXUHEHWZHHQ)3LQQRYDWLRQV DQG'RPWDU 

(89) 7KH1&LQGXVWULHVDUHSURPLQHQWLQWKHDUHDVRI $VLD3DFLILF1RUWK$PHULFD (XURSH /DWLQ $PHULFD DQG 0LGGOH (DVW DQG $IULFD LQFOXGLQJ OHDGLQJ QDPHV OLNH 3DSHUORJLF. 10.

(90) 8QLYHUVLW\ RI 0DLQH %RUUHJDDUG 1RUZD\ $PHULFDQ 3URFHVV 1LSSRQ 3DSHU -DSDQ ,QQYHQWLD 6ZHGHQ&73)&%$)UDQFH2ML3DSHU-DSDQ. 7KLVOLWHUDWXUHUHYLHZDLPVWRGHOLYHUWKHFRQVROLGDWHGHWDLOVRQVWUXFWXUHDQGPXOWLSOHVRXUFHVRI FHOOXORVH1&WKHLUH[WUDFWLRQIURPDJULEDVHGVRXUFHVDQGWKHFXUUHQWLQGXVWULDOGHYHORSPHQWVRQ 1&SURGXFWLRQDQGDSSOLFDWLRQV7KHUHDUHQXPHURXVOLWHUDWXUHZKLFKGHDOZLWKYDULRXVDVSHFWVRI 1&OLNHVRXUFHSURGXFWLRQRIQDQRILEULOODWHGFHOOXORVH 

(91) SURGXFWLRQRIQDQRFU\VWDOV ± 

(92)   H[WUDFWLRQ PHWKRGV 

(93)  SUHWUHDWPHQWV 

(94)  DQG DSSOLFDWLRQV 

(95)  +RZHYHU WKHUH LV RQO\ OLPLWHG UHYLHZ RQ WKH DJULFXOWXUH ELRPDVV IRU WKH H[WUDFWLRQ RI 1& 

(96)  6LQFH WKH XUJH RI FRQYHUWLQJ DJULFXOWXUH ZDVWH LQWR ZHDOWK LV LQFUHDVLQJ IRU WKH UHDVRQV RI ZDVWH PDQDJHPHQW LPSURYHHFRIULHQGO\UHVRXUFHDQGFUHDWLQJQHZVRXUFHRIHFRQRP\LWLVQHFHVVDU\WRFRQFHQWUDWH RQ WKH LQVLGH VWRU\ RI WKH DJULFXOWXUH ELRPDVV H[WUDFWLRQ RI 1& IURP FURS ZDVWH GLIIHUHQW WUHDWPHQWVSUHWUHDWPHQWVLQYROYHG,WDOVRGHDOVZLWKWKHSURSHUWLHVDQGPXOWLSOHDSSOLFDWLRQVRI LVRODWHG1&7RFRQFOXGHWKHLQGXVWULDOHYROXWLRQLQWKHSURGXFWLRQRI1&LVDOVRDGGUHVVHG. 6285&(2)&(//8/26( &HOOXORVHLVWKHDPSOHVWUHVRXUFHRIQDWXUDOILEHUV$QQXDOO\WKHH[WUDFWLRQRIFHOOXORVHLVDVVHVVHG WREHRYHU[WRQV 

(97) &HOOXORVHLVH[WUDFWHGIURPYDULRXVVRXUFHVLQFOXGLQJZRRG +DUG RUVRIWZRRG

(98) VHHG FRWWRQ

(99) EDVW )OD[KHPS

(100) FDQH EDPERREDJDVVH

(101) OHDI 6LVDO

(102) VWUDZ ULFH ZKHDW

(103)  IUXLW &RLU

(104)  WXQLFDWH DOJDH IXQJL EDFWHULD DQG PLQHUDOV 

(105)  )LJXUH  VKRZV WKH KLHUDUFKLFDOUHSUHVHQWDWLRQRIWKHFKLHIVRXUFHVIURPZKLFKFHOOXORVHFDQEHH[WUDFWHG. 11.

(106)           . )LJXUH+LHUDUFKLFDOUHSUHVHQWDWLRQYDULRXVVRXUFHVRIFHOOXORVH 7KHVRXUFHLVSODFHGLQWKHRUGHURIFRQYHQWLRQDOVRXUFHOLNHZRRGDQGFRWWRQZKLFKLVFRQVLGHUHG DV WKH SULPDU\ RULJLQ :RRG FDQ EH FODVVLILHG DV VRIWKDUG ZRRG EDVHG RQ WKHLU VWUXFWXUDO DVSHFW 

(107) 7KHQFRPHVWKHDJULFXOWXUHZDVWHOLNHULFHVWUDZEDQDQDUDFKLVFRUQFRERQLRQVNLQ HWF7KHFURSZDVWHLVEHFRPLQJWKHVHFRQGKLJKHVWVRXUFHRIFHOOXORVH$OVRWKHLQGXVWULDOZDVWHV OLNHVXJDUFDQHEDJDVVHWRPDWRDQGJDUOLFSHHOVHWFLVDQRWKHUVRXUFHHPHUJLQJODWHO\&HOOXORVH FDQEHREWDLQHGIURPVRPHRWKHUVPDOOFODVVRIVRXUFHVOLNHPDULQHDQLPDO WXQLFDWH

(108) DOJDHIXQJL DQG EDFWHULD 7KH LQWHUHVW RI WKLV UHYLHZ OLHV RQ WKH VHFRQG DQG WKLUG JULG RI WKH S\UDPLG UHSUHVHQWDWLRQLH&URSDQGLQGXVWULDOZDVWHIRUWKHIDFWWKDWWKLVVRXUFHQHHGVWREHH[SORUHGPRUH 7KHEDVLFFRQVWLWXWLRQRIWKHIRUHWROGILEHUVLVFHOOXORVHOLJQLQDQGKHPLFHOOXORVHV+RZHYHUWKH FKHPLFDO FRPSRVLWLRQ GLIIHUV IRU HDFK VRPH RI ZKLFK DUH WDEXODWHG LQ WDEOH  RQ GU\ EDVLV %HVLGHVFHOOXORVHOLJQLQDQGKHPLFHOOXORVHVVRPHVRXUFHVFRQWDLQSHFWLQZD[HVDQGRWKHUZDWHU VROXEOHFRPSRQHQWV   . 12.

(109) Table 2. 1 Chemical composition of different sources on dry basis. Source. Cellulose. Hemicellulose. Lignin. (wt.%). (wt.%). (wt.%). Pine (softwood). 44.0. 27.0. 28.0. Yellow birch. 47.0. 31.0. 21.0. Jute. 73.2. 13.6. 13.4. Wheat straw. 48.8. 35.4. 17.1. Rice husk. 45.0. 19.0. 19.5. Bagasse. 55.2. 16.8. 25.3. Reference. (hardwood) (29). (30). 13.

(110) %DQDQD. ±. . . . . . . . . “. “. “. 

(111) . *DUOLFVWUDZ. . . . 

(112) . &DUURWUHVLGXH. . . . 

(113) . . . . 

(114) . “. “. “. 

(115) . )OD[ +HPS 0XOEHUU\EDUNV. *URXQGQXWVKHOOV 2QLRQVNLQ.  

(116) .  &(//8/26( &HOOXORVHLVWKHQDWXUDOSRO\VDFFKDULGHILUVWLVRODWHGE\$QVHOPH3D\HQLQIURPZRRGZKHQ WUHDWHGZLWKQLWULFDFLG 

(117) 7KH\H[LVWDVPLFURILEULOVLQWKHSODQWFHOOZDOORIPXOWLSOHVRXUFHV 7KHGLDPHWHURIWKHILEULOVYDULHVIURPQPGHSHQGLQJRQWKHVRXUFH 

(118) &HOOXORVHFRQWDLQV OLQHDUSRO\PHUFKDLQFRPSULVHGRIJOXFRVHPRQRPHUQDPHGȕOLQNHGDQK\GUR'JOXFRVHXQLWV DVVKRZQLQILJXUH7KHGHJUHHRISRO\PHUL]DWLRQRIFHOOXORVHLVXSWRXQLWV)RUZRRG DQGFRWWRQLWLVDSSUR[LPDWHO\DQGJOXFRVHXQLWVUHVSHFWLYHO\ 

(119)  $QK\GURJOXFRVHLVWKHPRQRPHUDQGFHOORELDVHLVWKHGLPHURIFHOOXORVH(DFKJOXFRS\UDQRVHXQLW FRQWDLQVKLJKO\UHDFWLYHK\GUR[\OJURXSVZKLFKDUHUHVSRQVLEOHIRUWKHK\GURSKLOLFLW\FKLUDOLW\ ELRGHJUDGDELOLW\HWFRIFHOOXORVH7KHLQGLYLGXDOFHOOXORVHFKDLQFRQWDLQVUHGXFLQJHQGEHFDXVHRI WKHKHPLDFHWDOXQLWZLWKERWKDOLSKDWLFDQGFDUERQ\OJURXSDQGWKHQRQUHGXFLQJHQGZLWKFORVHG HQG JURXS 

(120)   7KH KLJKHU PHFKDQLFDO SURSHUWLHV RI HDFK PLFURILEULOV UHVXOW IURP WKH VWURQJ K\GURJHQERQGV . 14.

(121) )LJXUHD

(122) 'VWUXFWXUHRIFHOOXORVHE

(123) VWUXFWXUHIRUPXODRIFHOOXORVH $GRSWHGIURP&DYHDQG:DONHU 

(124)  

(125)  7KHȕJO\FRVLGLFERQGVEXLOGVDQRUGHUHGFU\VWDOOLQHVWUXFWXUHE\9DQGHU:DDOVIRUFHVDQG LQWHU LQWUDPROHFXODUK\GURJHQERQGLQJ 

(126) ,QWKHVHUHJLRQVWKHFHOOXORVHFKDLQVDUHVWURQJO\ DUUDQJHGLQWRFU\VWDOOLWHV7KHK\GURJHQERQGH[LVWLQJ EHWZHHQFHOOXORVHFKDLQV PDNHLWKLJKO\ VWDEOHEXWSRRUO\VROXEOHLQZDWHUDQGRWKHUVROYHQWV7KHVHK\GURJHQERQGLQJQHWZRUNDQGWKH PROHFXODU DUUDQJHPHQW UHVXOWV LQ SRO\PRUSKV RU DOORPRUSKV RI FHOOXORVH 7KHUH DUH VL[ LQWHUFRQYHUWLEOHSRO\PRUSKVRIFHOOXORVHKDGEHHQLGHQWLILHGLG(VWFHOOXORVH,,,,,,,,,,,,,9,DQG ,9,, 

(127) ,Q$WDOODDQG9DQGHU+DUWSURYHGWKDWWKHQDWLYHFHOOXORVH,FDQEHVXEGLYLGHGLQWR ,Į DQG ,ȕ 

(128)  &HOOXORVH ,, FDQ EH REWDLQHG IURP WKH FKHPLFDO UHJHQHUDWLRQ 

(129)  RU E\ PHUFHUL]DWLRQ 

(130) &HOOXORVH,,,LVIRUPHGZKHQFHOOXORVH,RU,,LVWUHDWHGZLWKDPPRQLDRUYDULRXV DPLQHV 

(131)  DQG WKH SRO\PRUSKV ,9, DQG ,9,,  DUH SURGXFHG E\ KHDWLQJ FHOOXORVH ,,,, RU ,,,,, UHVSHFWLYHO\DWž&LQJO\FHURO 

(132)  7KHDPRUSKRXVUHJLRQUHVXOWVIURPWKHEUHDNDJHDQGGLVRUGHUHGK\GURJHQERQGV 

(133) )LJXUH VKRZVWKHFU\VWDOOLQHDQGDPRUSKRXVUHJLRQVRIFHOOXORVH7KHK\GURJHQERQGLQJDQGRULHQWDWLRQ RIFHOOXORVHGLIIHUVH[WHQVLYHO\IRUWKHGLIIHUHQWVRXUFH. 15.

(134) . )LJXUH&U\VWDOOLQHDQGDPRUSKRXVUHJLRQVRIFHOOXORVH.  +(0,&(//8/26( 3ODQW FHOO ZDOO LV PDLQO\ PDGH XS RI FHOOXORVH KHPLFHOOXORVH DQG OLJQLQ DV VWDWHG EHIRUH +HPLFHOOXORVHLVWKHVHFRQGPDMRUFRPSRQHQWDFFRXQWLQJRIWKHFHOOZDOO 

(135) 7KH\DUH HQWUHQFKHGDURXQGWKHPLFURILEULOVEXQGOHVDVVKRZQLQILJXUH.  )LJXUH&HOOXORVHEXQGOHVHPEHGGHGE\KHPLFHOOXORVHVDQGOLJQLQ +HPLFHOOXORVHFDQEHGLYLGHGLQWRIRXUGLIIHUHQWFODVVHVEDVHGRQWKHLUVWUXFWXUHDV

(136) ;\ODQV

(137)  0DQQDQV 

(138)  ȕJOXFDQV DQG 

(139)  ;\ORJOXFDQV +HPLFHOOXORVHV DUH EUDQFKHG SRO\VDFFKDULGHV FRQWDLQLQJȕĺOLQNHGEDFNERQHVRIJOXFRVHPDQQRVHRU[\ORVHLQHTXDWRULDOFRQILJXUDWLRQDW &DQG&DQGWKHVWUXFWXUHYDULHVZLWKWKHVLGHFKDLQW\SHDQGWKHGLVWULEXWLRQRIWKHVHEDFNERQHV 

(140) 7KHILJXUHVKRZVWKHVWUXFWXUHRIVRPHEDFNERQHVRIKHPLFHOOXORVH 

(141) . 16.

(142) . )LJXUH6WUXFWXUDOEDFNERQHRIKHPLFHOOXORVHD

(143) ȕJOXFDQE

(144) ȕJOXFDQ F

(145) ȕ0DQQDQ$GRSWHGIURP 

(146)  )HZH[DPSOHVRI[\ODQVDUHJOXFRURQR[\ODQVDQGDUDELQR[\ODQVDQGWKH\FDQEHIRXQGLQVWUDZ VWDONVKXVNHWF0DQQDQVFDQEHFODVVLILHGDVJOXFRDQGJDODFWRPDQQDQVZKLFKFDQEHH[WUDFWHG IRUPJDXUORFXVWEHDQHWF;\ORJOXFDQVDUHXVHGDVWKLFNHQLQJDQGJHOOLQJDJHQWLQIRRGVDQGFDQ EHLVRODWHGIURPWDPDULQGVHHGV 

(147) $VUHSRUWHGLQWKHOLWHUDWXUHLWLVNQRZQWKDWKHPLFHOOXORVHV SOD\DNH\UROHLQIDFLOLWDWLQJWKHILEULOODWLRQSURFHVV 

(148) 7KHUHDVRQLVPRVWOLNHO\EHFDXVHRI WKH K\GURJHQ ERQGLQJ DQG QHJDWLYH FKDUJHV RQ KHPLFHOOXORVHV $V UHDOLVHG IURP ILJXUH  KHPLFHOOXORVHVXUURXQGVFHOOXORVHPLFURILEULOVWKURXJKQXPHURXVK\GURJHQERQGLQJZKLFKLQWXUQ VHDOV WKH JDS EHWZHHQ WKH PLFURILEULOV DQG KLQGHUV WKH ILEULOV IURP DJJUHJDWLRQ $OVR KHPLFHOOXORVHVFRQWDLQJOXFXURQLFDFLGZLWKFDUER[\OJURXSVZKLFKHQDEOHVWKHGHODPLQDWLRQRI ILEHUVE\PHDQVRIHOHFWURVWDWLFUHSXOVLRQIRUFHV 

(149) .  /,*1,1 /LJQLQLVDKHWHURJHQHRXVDQGLUUHJXODUFURVVOLQNHGSRO\PHURISKHQ\OSURSDQH,WLVDPRUSKRXV DQGRSWLFDOO\LQDFWLYHPDWHULDOZLWKWKUHHGLIIHUHQWPRQRPHUVQDPHO\&RXPDU\ODOFRKRO&RQLIHU\O DOFRKRODQG6LQDS\ODOFRKROZKRVHVWUXFWXUHLVVKRZQLQILJXUH 

(150) /LJQLQLVGHULYHGE\WKH HQ]\PHPHGLDWHGSRO\PHUL]DWLRQ7KHPROHFXODUZHLJKWRILVRODWHGOLJQLQLVW\SLFDOO\LQWKHUDQJH RIJPROWKRXJKWKHGHJUHHRISRO\PHULVDWLRQLQQDWXUHLVGLIILFXOWWRDUULYHRQWKH DFFRXQW WKDW OLJQLQ LV KLJKO\ IUDJPHQWHG GXULQJ LVRODWLRQ DQG LW DOVR FRQWDLQV PDQ\ UHSHDWLQJ VXEVWUXFWXUHVLQDVHHPLQJO\KDSKD]DUGPDQQHU 

(151) . 17.

(152) . )LJXUH6WUXFWXUDOXQLWVRIOLJQLQ5HSULQWHGZLWKSHUPLVVLRQ 

(153) &RS\ULJKW $PHULFDQ&KHPLFDO6RFLHW\ /LJQLQLVXVHGLQPXOWLSOHDSSOLFDWLRQVDVHPXOVLILHUVG\HVV\QWKHWLFIORRULQJELQGLQJWKHUPRVHWV SDLQWV HWF 7KH VXOIXUIUHH DQG ZDWHU VROXEOH OLJQLQ LV XVHG IRU DXWRPRWLYH EUDNHV ZRRG SDQHO SURGXFWVELRGLVSHUVDQWVSRO\XUHWKDQHIRDPVDQGHSR[\UHVLQVIRUSULQWHGFLUFXLWERDUGV 

(154) .  1$12&(//8/26( 7KHSODQWFHOOZDOOFDQEHFODVVLILHGLQWRWZRQDPHO\SULPDU\DQGVHFRQGDU\7KHSULPDU\FHOOZDOO LVWKHH[WHUQDOWKLQOD\HU OHVVWKDQ—P

(155) DQGWKHVHFRQGDU\FHOOZDOOFKLHIO\FRQWDLQVFHOOXORVH PLFURILEULOV 

(156) 7KH+LHUDUFKLFDOFRQ¿JXUDWLRQRIZRRGWRFHOOXORVHQDQRFU\VWDOVDUHVKRZQLQ ILJXUH*HQHUDOO\HLWKHUOHQJWKRUGLDPHWHURIWKHFHOOXORVHSDUWLFOHVDUHLQWKHQDQRVL]H  QP

(157) DUHFDOOHGDV1&7KHSODQWFHOOZDOOFRQVLVWLQJEXQGOHVRIWKHFHOOXORVHILEULOVDQGWKHLU GLDPHWHULV LQ IHZPLFURQV(DFKFHOOXORVHEXQGOHLV FRQVLVWLQJPLOOLRQV RIPLFUR ILEULOVWKHVH PLFURILEULOVDUHFRPSRVHGZLWKHOHPHQWDU\ILEULOVRUQDQRILEULOV7KHGLDPHWHURIWKHQDQRILEULOV LVDERXWQPZKHUHDVLQWKHFDVHRIWKHPLFURILEULOVWKHGLDPHWHUZLOOYDU\IURPQP(YHU\ QDQRILEHUVDUHFRPSRVHGRIIOH[LEOHDPRUSKRXVDQGVWURQJFU\VWDOOLQHSDUWV . )LJXUH+LHUDUFKLFDOVWUXFWXUHRIFHOOXORVHDQGLWVGHULYDWLYHVLQQDQRVFDOH 6HYHUDOFHOOXORVLFGHULYDWLYHVDUHLVRODWHGIURPWKHVHPLFURILEULOVDQGGHSHQGLQJRQWKHLULVRODWLRQ PHWKRGVVRXUFHGLPHQVLRQVWKH\DUHFDOOHGFU\VWDOOLWHV1&ZKLVNHUVQDQRILEULOV 

(158) 'HSHQGLQJ. 18.

(159) RQWKHLUPHWKRGRISUHSDUDWLRQ1&LVFODVVLILHGLQWR

(160) FHOOXORVHQDQRFU\VWDOV &1&

(161) DQG

(162) QDQR ILEULOODWHGFHOOXORVH 1)&

(163) 7KHRWKHUW\SHRI1&FDOOHGEDFWHULDOFHOOXORVH %&

(164) DQGHOHFWURVSXQ FHOOXORVHQDQRILEHUV (&1)

(165) FDQDOVREHLVRODWHG1HYHUWKHOHVV&1&DQG1)&DUHFRQVLGHUHGDV WKHPRUHFRPPRQDQGWKH\DUHSURGXFHGE\WRSGRZQSURFHVVLHE\GLVLQWHJUDWLRQRIFHOOXORVH ILEHUVWRQDQRVFDOHSDUWLFOHVZKHUHDV%&DQG(&1)DUHSURGXFHGE\ERWWRPXSSURFHVVLQZKLFK QDQRILEHUVDUHIRUPHGIURPORZPROHFXODUZHLJKWVXJDUVE\EDFWHULDRUIURPGLVVROYHGFHOOXORVH E\HOHFWURVSLQQLQJUHVSHFWLYHO\ 

(166) 7KHPRUSKRORJLFDOLPDJHVRIIRXUGLIIHUHQW1&LVVKRZQLQ ILJXUH ±

(167) .  )LJXUH0LFURJUDSKVRI1&D

(168) 1)&IURPFRUQKXVN5HSULQWHGZLWKSHUPLVVLRQ 

(169)  &RS\ULJKW(OVHYLHUE

(170) &1&IURPWXQLFDWH5HSULQWHGZLWKSHUPLVVLRQ 

(171)  &RS\ULJKW$PHULFDQ&KHPLFDO6RFLHW\F

(172) %DFWHULDOFHOOXORVH5HSULQWHGZLWK SHUPLVVLRQ 

(173) &RS\ULJKW$PHULFDQ&KHPLFDO6RFLHW\DQGG

(174) HOHFWURVSXQ FHOOXORVHQDQRILEHUV5HSULQWHGZLWKSHUPLVVLRQ 

(175) &RS\ULJKW,QWHFK'2, . 1$12),%5,//$7('&(//8/26( 7KH FHOOXORVH ILEHUV DUH ILEULOODWHG XVXDOO\ E\ PHFKDQLFDO EUHDNGRZQ WR DFKLHYH FOXVWHUV RI FHOOXORVHPLFURILEULOVGXHWRVKHDUIRUFHVFDOOHGQDQRILEULOODWHGFHOOXORVH7KHQRPHQFODWXUHFDQ. 19.

(176) EHGLIIHUHQWIRUWKHVHQDQRILEULOVDVD

(177) QDQRILEULOODWHGFHOOXORVH 1)&

(178) E

(179) PLFURILEULOODWHGFHOOXORVH 0)&

(180)  F

(181)  FHOOXORVH QDQRILEULOV &1)

(182)  G

(183)  FHOOXORVH ILODPHQWV &)

Références

Documents relatifs

Methods In this study, 50 patients, referred for evaluation of known or suspected coronary artery disease by SPECT MPI using 99mTc-Tetrofosmin, underwent 1-day adenosine stress

C’est pourquoi, après avoir brièvement exposé, à partir d’une revue de la littérature médicale, juridique et de sciences humaines et sociales menées en

c) Combien de meubles Amandine, Cédric et Hichem doivent-ils fabriquer pour avoir le même salaire ? Quel est alors leur salaire ? comment le repère-t-on sur le graphique ?.

La première hypothèse considère que parmi les déterminants les plus influents dans la décision d’exportation des petites moyennes entreprises algériennes sont les

institutionnelle a ainsi connu des cycles ininterrompus de hauts et de bas, du sommet de Nice (décembre 2000) à l’entrée en vigueur du traité de Lisbonne (décembre 2009). Qui

Brenner proliférante, ont réalisé une hystérectomie totale avec annexectomie bilatérale chez 4 patientes, une annexectomie unilatérale a été réalisée chez 3 patientes,

We see that these young people began their work histories with a signifi cant social, family and educational capital: (a) they were high school graduates, (b) they had good

Conditions of diapir ascent and emplacement in this case are studied with a numerical model for deformation and heat transport allowing for ductile, elastic and brittle behavior..