• Aucun résultat trouvé

Solar irradiance modelling over Belgium using WRF-ARW : A sensitivity analysis of Mellor-Yamada-Nakanishi-Niino (BYNN) boundary layer scheme parameters

N/A
N/A
Protected

Academic year: 2021

Partager "Solar irradiance modelling over Belgium using WRF-ARW : A sensitivity analysis of Mellor-Yamada-Nakanishi-Niino (BYNN) boundary layer scheme parameters"

Copied!
15
0
0

Texte intégral

(1)

Sensitivity analysis of Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme parameters

Beaumet J., Fettweis X., Doutreloup S. & Erpicum M.

Solar irradiance modelling over

Belgium using WRF-ARW :

(2)

Solar irradiance modelling over Belgium

using WRF-ARW :

Overview  Context  Simulation set-up  Results

 Focus : modelling of different weather/clouds types

- Low clouds (St, Sc)

- Convective clouds (Cu)

- Clear skies and thermal inversions

 A Modèle Atmosphérique Régional (MAR) / WRF-ARW

comparison

 Conclusions

(3)

Solar irradiance modelling over Belgium

using WRF-ARW :

I. Context

PREMASOL project :

- Photovoltaic production day-ahead  Solar Incident Irradiances (SWD) forecasting (+ 2m Wind and T°) using WRF-ARW forced by GFS - Global and diffuse irradiance measurement at Centre Spatial de Liège (CSL)

PhD :

Regional Climate Model version calibrated for solar irradiance, wind and temperature modelling over Belgium  forecasting and future changes

(4)

Solar irradiance modelling over Belgium

using WRF-ARW :

II. Simulations set-up

 WRF-ARW v3.6 (released April 2014)

Surface schemes : 6 microphysic schemes : 16 Short-wave schemes : 7 boundary layer schemes : 10 Cumulus schemes : 9 surface layer schemes : 7

Inner domain : 5 km Time-scale : 15 minutesObservations : SWD measured at Liège (Sart-Tilman)

Validation : Two periods  November – December 2013

March – April 2014 Relative BIAS and RMSE (in %)

(5)

Solar irradiance modelling over Belgium

using WRF-ARW :

III. Results

 Huge number of possible set-ups

 Lot of them tested at our laboratory

NO SIGNIFICANT CHANGES

In spring : significant positive (dry) BIAS (+20%) and RMSE ~

40 %

In winter : slight negative BIAS (-10%) but very large relative

RMSE (~70%)

 Get inside scheme codes for further calibration

Surface scheme : Noah lsm Microphysics scheme : Thompson

SW scheme : Dudhia Surface layer scheme : Monin-Obukhov Cumulus scheme : Kain-Fritsch Boundary layer scheme : MYNN 2.5

(6)

Solar irradiance modelling over Belgium

using WRF-ARW :

III. Results

Over a « long » period : no significant changes/improvements

But for some days, changes can be important …

November – December 2013 March – April 2014

6 J.Beaumet (ULg) rBIAS(%) rRMSE(%) Alp5 = 0.5 -9,4 76,3 Alp5 = 1.0 -11,8 77 Alp5 = 5.0 -5,8 68,9 Alp5 = 10.0 0 71,6 rBIAS(%) rRMSE(%) Alp5 = 0.5 22,7 41,4 Alp5 = 1.0 22,2 41,5 Alp5 = 5.0 23 42,2 Alp5 = 10.0 21,1 42,6 Relative (in %) BIAS and RMSE for the modelling of solar irradiance (SWD) using different WRF versions at Liège (Sart-Tilman)

Alp5 : in winter  reduced negative BIAS for increasing values

(7)

Solar irradiance modelling over Belgium

using WRF-ARW :

IV. Focus : modelling of low clouds (St, Sc)

7 J.Beaumet (ULg)

Modelled vs Observed SWD at Liège (Sart-Tilman)

WRF versions : alp5 = 0.5,1,5,10

(8)

Solar irradiance modelling over Belgium

using WRF-ARW :

IV. Focus : modelling of low clouds (St, Sc)

8 J.Beaumet (ULg)

Modelled cloud water content over Liège (Sart-Tilman)

WRF versions : alp5 = 1,5

(9)

Solar irradiance modelling over Belgium

using WRF-ARW :

IV. Focus : modelling of low clouds (St, Sc)

9 J.Beaumet (ULg)

Modelled cloud water content over Liège (Sart-Tilman)

WRF versions : alp5 = 1,5

Obs:

Am. 5,6/8 St Pm. 8/8 Sc

(10)

Solar irradiance modelling over Belgium

using WRF-ARW :

IV. Focus : modelling of convective clouds (Cu)

10 J.Beaumet (ULg)

Modelled vs Observed SWD at Liège (Sart-Tilman)

WRF versions : alp5 = 0.5,1,5,10

(11)

Solar irradiance modelling over Belgium

using WRF-ARW :

IV. Focus : modelling of convective clouds (Cu)

11 J.Beaumet (ULg)

Modelled cloud water content over Liège (Sart-Tilman)

WRF versions : alp5 = 1,5

(12)

Solar irradiance modelling over Belgium

using WRF-ARW :

IV. Focus : clear skies and pollution peak?

12 J.Beaumet (ULg)

Modelled vs Observed SWD at Liège (Sart-Tilman)

(13)

Solar irradiance modelling over Belgium

using WRF-ARW :

V. MAR (ULg) / WRF comparison (2013)

13 J.Beaumet (ULg)

Modelled vs Observed SWD at Liège (Sart-Tilman)

(14)

Solar irradiance modelling over Belgium

using WRF-ARW :

VI. Conclusions

I. Boundary layer scheme parameters modifications :

- No significant improvement considering long periods - Lack of convective clouds in WRF simulations

unchanged

- Possible strategy for ensembles forecasts

II. Encouraging results for MAR model

(15)

Solar irradiance modelling over Belgium

using WRF-ARW :

Reference

Nakanishi M. and Niino H., 2004. An improved Mellor Yamada Level-3 model with Condensation physics : its design and verification. Boundary-Layer Meteorology, 112, 1-31.

Mellor G. and Yamada T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20/4, 851-875.

Kitamura Y., 2010. Modifications of the Mellor-Yamada-Nakanishi-Niino (MYNN) model for the stable stratification case. Journal of the Meteorological Society of Japan, 88-5, 857-864.

Lopez-Coto I., Bosch J., Mathiensen P. and Kleissl J., 2012. Comparison between several

parameterization schemes in WRF for solar forecasting in coastal zones. UCAR technical notes.

Questions ?

Références

Documents relatifs

And finally, for the 2003–2008 time interval, and the 400–500 and 500–600 nm range, the SOLID and SORCE composite give a negative solar cycle variation, while SATIRE-S, NRLSSI2,

souffrent des mêmes incertitudes que les modèles de grandes échelles (Jacob et al. Nous utilisons ici le modèle ARW/WRF pour désagréger sur le Centre-Est de la France les données

Absolute (a) and clear-sky normalised (b) RMSE of the WRF irradiance forecasts per lead time as a mean over the 12 con- sidered sites on Réunion Island for all free forecast

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

To forecast the cloud index over a given site (a pixel of a satellite- derived irradiance map), the method requires a current observation of the cloud structures from which the

The second one (dotted) has been measured at very high spec- tral resolution on a quiet portion of the solar disk by the SUMER spectrome- ter (Curdt et al. 2001), and the third

Molecular oxygen content can be deduced from pressure measurement and ozone content can be determined from absorbed solar spectra recorded between 270 and 285 nm

Our method obtains state-of-the- art results on video prediction and 5min-ahead irradiance forecasting against strong recent baselines, highlighting the benefits of