• Aucun résultat trouvé

Do males and females gammarids defend themselves differently during chemical stress ?

N/A
N/A
Protected

Academic year: 2021

Partager "Do males and females gammarids defend themselves differently during chemical stress ?"

Copied!
7
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Aquatic

Toxicology

j o ur na l h o me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a q u a t o x

Do

male

and

female

gammarids

defend

themselves

differently

during

chemical

stress?

E.

Gismondi

,

C.

Cossu-Leguille,

J.-N.

Beisel

UniversitédeLorraine,LaboratoireInterdisciplinairedesEnvironnementsContinentaux(LIEC),CNRSUMR7360,MetzF-57070,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18April2013

Receivedinrevisedform4July2013 Accepted13July2013 Keywords: Gammarussp. Gender Cadmium Detoxificationmechanisms Energyreserves Confoundingfactor

a

b

s

t

r

a

c

t

Toinvestigatexenobioticimpactsonorganismphysiology,severalstudiesinvolvebiomarker assess-ment.However,moststudiesdonottakeintoaccountthetoxiceffectonbothmalesandfemales.Here, wehaveinvestigatedtheinfluenceofgenderonthedetoxificationresponse(reducedglutathione, metal-lothionein,␥-glutamylcysteinligaseandcarotenoid),energyreserves(protein,lipidsandglycogen)and biomarkeroftoxiceffects(malondialdehyde)inGammarusroeseliexposedtocadmium.Aprincipal com-ponentanalysisrevealedthatG.roeselimalesandfemalesweredifferentlyimpactedbycadmium.We observedlowermalondialdehydelevelsinfemalesthaninmales,whatevertheconditiontested(i.e. control,2and8␮gCdL−1),althoughthepatternofresponsesofcontrolandexposuresto2or8␮gL−1

wasthesameforbothgenders.Resultscouldbelinkedtoapparentlymoreeffectivedetoxification dis-playedbyfemalesthanbymales.Proteinconcentrationswereunchangedinbothgenders,lipidscontents werealwayssignificantlydecreasedandglycogencontentsdecreasedonlyinfemales.Thisstudy sup-portstheimportanceoftakingintoaccountthegenderinecotoxicologicalstudiestohaveanoverview ofxenobioticseffectsonapopulation.

© 2013 Published by Elsevier B.V.

1. Introduction

Arisinganthropogeniccontaminationofaquaticenvironments

isstillinprogress,andthisdisturbanceiswellknowntoinduce

dys-functionsinorganisms,whichcouldleadtopopulationdeclinesin

sensitivespecies.Toevaluatetheseenvironmentalrisks,

ecotoxic-ologicalstudiesusebiomarkers(Peakall,1994)whicharemainly

antitoxiccompounds(e.g.metallothionein,reducedglutathione)

thatrespondtovariouscontaminations,butalsovarious

detoxifi-cationenzymes,asforexamplecatalaseorglutathioneperoxidase

(Allanetal.,2006;VasseurandCossu-Leguille,2003).Ifthesetools

allowtoevaluatetheimpactofenvironmentalcontaminationson

organisms,oneproblemtheyposeisthattheirresponsesarenot

onlyinfluencedbypollutants,butcanalsovaryaccordingto

con-foundingfactorssuchasbioticfactors(e.g.age,size)(Srodaand

Cossu-Leguille,2011a;Xuereb,2009)orabioticfactors(e.g.

tem-perature)(Geffardetal.,2005,2007;Gismondietal.,2012a;Serafim

etal.,2002).

Amongfreshwaterspecies,thosethatbelongtothecrustacean

genusGammarussp.arepopularandsuitableorganismsfor

eco-toxicologicalassessment of environmentalpollutants ata large

scale,mostlybecausethisgenusiswidespreadthroughoutalarge

∗ Correspondingauthor.Tel.:+33387378429;fax:+33387378512. E-mailaddress:gismondi.eric@gmail.com(E.Gismondi).

rangeofmarineandfreshwaterhabitats.Gammaridsareknown

tobeeasytouseinbothlaboratoryandfieldstudies(seeKunz

et al.,2010 for a review).Hence manyecotoxicological studies

havebeencarriedoutusingtheseaquaticorganismstoevaluate

toxicimpactofxenobiotics(Adametal.,2010;Khanetal.,2011;

Krappetal.,2009;Sornometal.,2010;SrodaandCossu-Leguille, 2011b;Vellingeretal.,2012;Zubrodetal.,2010).Nevertheless,to

ourknowledge,onlyafewstudieshavebeendevotedto

investi-gatetheeffectofxenobioticsonbothmaleandfemalegammarids.

Inspiteoftheimportanceofthegenderasapotential

confound-ingfactor,moststudieshaveusedonlymalesorfemales,toavoid

thissourceofvariation,orhavenottakenintoaccountthe

gen-derandusedindividualsregardlessoftheirgender.Mixingboth

gendersisincontradictionwiththefactthatthefewstudiesin

whichbothgendershavebeentestedseparatelyhavehighlighted

significant differences between the responses of both genders.

Forinstance,Sornometal.(2010)observedthatGammarus

roe-selifemales were moresensitivethan maleswhen exposed for

72hto salinitystress. Indeed,females LC50 (concentration that

causedthedeathof50%ofindividuals)valuewasonaverageof

9.28gNaClL−1infemalesascomparedtomaleLC50whichwason

average12.24gNaClL−1.Inaddition,theauthorsobservedhigher

ventilationactivityinfemalesthaninmales.Undercopper

expo-sure,Sroda and Cossu-Leguille(2011b) have underlined higher

sensitivity in females as compared to malesin two gammarid

species,i.e.G.roeseliandtheinvasiveamphipodDikerogammarus

0166-445X/$–seefrontmatter © 2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.aquatox.2013.07.006

(2)

villosus,althoughfemaleshadhigherantioxidantenzymeactivity

(e.g.glutathioneperoxidase). Infact,theLC50 valueofG.roeseli

femaleswas2.5-foldlowerthanthatofmales(22and53␮gCuL−1,

respectively),whiletheLC50valueofD.villosusfemaleswas

1.2-foldlowerthanmales(230and275␮gCuL−1,respectively).Inthe

sameway,McCahonandPascoe(1988)havefoundthatfemalesof

Gammaruspulexweretwiceassensitiveasmaleswhenexposedto

cadmiumfor48h.Thesefewstudiesultimatelyshowthat

under-standingofxenobioticeffects onbothgenders isofimportance

toprovideearlywarningsignalsofpopulationeffectsandprotect

them.

Theaimofthepresentstudywastoexaminetheimportanceof

genderontheresponsesofantitoxicdefencesandenergy

biomark-ersintheamphipodG.roeseliexposedtocadmiumfor 96h.Cd

accumulatesintheanimalprobablymostlythroughthegills,where

metalscansignificantlyinfluenceosmoregulationandrespiration

(Vellingeretal.,2012).Usually,theinternalconcentrationofmetals

in gammarids increases with exposure concentration and this

bioaccumulationcouldinduceoxidativestressduetothe

overpro-ductionofreactiveoxygenspecies(Vellingeretal.,2013).Antitoxic

defencestoprotectcellswereestimatedbymeasuringthereduced

glutathione(GSH)concentrationsandthe␥-glutamylcysteinligase

(GCL)activity,aswellasmetallothionein(MT)andcarotenoid

con-centrations.GSHis an essential tripeptide inthe detoxification

system:itsthiolgroupsscavengeorganicormetallicxenobiotics

(Griffith,1999;Vasseurand Leguille,2004), butitalsoplaysan

important role as a substrate for several antioxidant enzymes

likeselenium-dependantglutathioneperoxidaseor

glutathione-S-transferases.The␥-glutamylcysteinligaseistheenzymethatlimits

thedenovoGSHsynthesis.Metallothioneins(MT)areinvolvedin

thebindingofmetallic compoundsthankstotheirthiolgroups

andcontributetoprotecttissuesagainstoxidativedamages(Bigot

etal.,2011;Roesijadi,1992).Carotenoids,whichareusedin

antiox-idantdefences(Palozzaand Krinsky,1992)andinvolved inthe

reproduction(Gilchristand Lee, 1972), werealsomeasured. To

evaluatecellulardamagesinorganisms,wemeasuredthe

malon-dialdehydelevel(MDA).Thiscompoundisanend-productofthe

lipidmembranedegradationandisconsideredasabiomarkerof

toxiceffects.Finally,energyreservesofgammaridswereestimated

by measuringprotein concentrations as well as total lipid and

glycogencontents.Wehypothesized(H1)thatG.roeselifemales

are more sensitive tocadmium than males, according tomost

resultsobtainedinpreviousstudies.Asecondhypothesisisthat

adifferenceexistsbetweenmalesandfemales intermsof

anti-toxic defence mechanisms and capacities (H2), which explains

thedifferenceofsensitivity.Ourthirdhypothesis(H3)isthatthe

energeticcost of physiologicalresponsestothe chemicalstress

increasestheuseofbodyreservesingammaridsbutwitha

dif-ferentpatternbetweenmalesandfemalesforglycogen,lipidsand

proteins.

2. Materialsandmethods

2.1. Cadmiumexposure

Malesand non-ovigerousfemalesofG.roeseliwerecollected

usingpondnetsandartificialtrapsduringthespringof2012,in

theFrenchNied River(Rémilly, North-easternFrance,49◦00 N

and6◦23 E)where cadmiumconcentrationsin thewaterwere

lower than 0.2␮gL−1 (LADROME Laboratory, Valence, France).

Non-ovigerousfemaleswerechosentoavoidtheinfluenceofthe

eggs(McCahonandPascoe,1988).Malesandfemalesweresorted

outonthespotbyobservinggnathopods(smallerinfemalesthan

inmales).Gammaridsweretransferredtothelaboratoryinlarge

containers filledwith river water. In thelaboratory, theywere

acclimated for5days at15◦Cin anEDTA-free ElendtM4

solu-tion (Elendt and Bias, 1990), and fed ad libitum with alder

leaves.TestsolutionswerepreparedusingEDTA-freeElendtM4

solution with CdCl2 added to obtain two cadmium

concentra-tions:2and8␮gCdL−1(measuredconcentrations:1.95±0.03and

7.93±0.04␮gCdL−1).ControlsconsistedofEDTA-freeElendtM4

solutiononly.Cadmiumconcentrationswerechosenaccordingto

(i)the96hLC50obtainedinourpreviousstudywhichwere107

and 50␮gCdL−1 for femalesand males,respectively (Gismondi

etal.,2012b);andto(ii)themaximumadmissiblecadmium

con-centrationindrinkingwater,whichis5␮gCdL−1 (CD98/83/EC,

1998).Foreachexposurecondition,threereplicatesof12G.roeseli

malesandthreereplicatesof24G.roeselifemaleswereexposed

at15◦Cfor96hinaquariapreviouslysaturatedwiththe

corre-spondingcadmiumsolutionsfor5days.Duringcadmiumexposure,

animalswerenotfed.Morefemaleswereusedbecauseabout50%

areinfectedbyvertically-transmittedmicrosporidia,whichcould

biastheinterpretationofthebiomarkerresponsesandincreasethe

femalesensitivity(Gismondietal.,2012c).Asonlyfemaleswere

infected by the vertically-transmitted microsporidia (Gismondi

et al.,2012c), at theend of the experiment, gonadal tissuesof

femalesweredissectedandthemicrosporidianstatusoffemales

wasverifiedusing themethodfromGismondiet al.(2012c) to

keeponlyuninfectedfemales.Then,6poolsof6individuals(i.e.

malesandfemalesseparated)wereconstitutedforeachcondition,

frozeninliquidnitrogenandstoredat−80◦Cawaitingbiomarker

analyses.

2.2. Samplepreparation

EachpoolwashomogenizedwithaPotterElvejhemmanual

tis-suegrinderin50mMphosphatebufferKH2PO4/K2HPO4(pH7.6)

supplementedwith1mMphenylmethylsulphonylfluoride(PMSF)

and 1mM l-serine-borate mixture as protease inhibitors, and

5mMphenylglyoxalasa␥-glutamyltranspeptidaseinhibitor.The

homogenizationbufferwasadjustedtoavolumetwo-foldthewet

weightofthesamplepool(e.g.200␮Lofhomogenizationbuffer

for100mgofwetweighttissue).Thetotalhomogenatewasdivided

intosevenpartstomeasurethedifferentparameters.Foreach

repli-cate,twoindependentmeasuresweremadeforeachbiomarker.

2.3. Biomarkermeasurements

All biomarker measurements were performed according to

Gismondietal.(2012d).Energyreserve(lipids,glycogen,proteins)

measurementswereconductedwithspectrophotometrical

meth-odswhileantitoxicdefences(GSH,GCL,MT)andbiomarkeroftoxic

effects(MDA)weremeasuredusingHPLCmethods.

In parallel, carotenoid concentrations were measured by a

spectrophotometricalmethodadaptedfromRauqueandSemenas

(2009).Avolumeof40␮Lofthetotalhomogenatewasdilutedin

450␮Lof96%ethanolandkeptfor6hinthedarkat4◦C,before

beingcentrifuged10minat3500×g. Theopticaldensityof the

resultingsupernatant wasmeasuredat422, 448and 476nm.A

commercialcarotenemixture(Sigma–Aldrich,France) wasused

as a standard. Carotenoid concentrationswere expressedin ng

carotenoidsmg−1lipids.

2.4. Statisticalanalyses

Alldatametnormalityandhomogeneityofvariance

assump-tions(ShapiroandBartletttests,p-values>0.05).Our datawere

analyzedbyusingANOVAtestswithrespectto“individualgender”

and“cadmiumexposure”asfixedfactors.Then,TukeyHSDposthoc

testswereusedtodescribesignificantdifferences.Alltestswere

(3)

The relationships between biomarker responses considered

altogetherand cadmiumexposureconditions wereassessed by

usingaprincipalcomponentanalysis(PCA)usingR2.9.0software.

3. Results

ANOVAtests(Table1)revealedaneffectofgender,cadmium

exposureand interaction betweengender and cadmium

expo-sure.Indeed,exceptforproteinconcentrations,cadmiumexposure

impactedall biomarker responses. Similarly, gender also

influ-encedallbiomarkers.Theinteractionbetweenthesetwofactors

influencedfourout ofeightbiomarkers:glycogencontent,GSH

concentration,GCLactivityandMDAlevels.

3.1. Energyreserves

Overall,cadmiumexposuresinfluencedtheenergyreservesofG.

roeselimalesandfemales.Proteinconcentrationswereunchanged

regardlessofthegender(Fig.1A),lipidcontentswerealways

sig-nificantly decreased (Fig. 1B) and glycogen contents were only

decreasedinfemales(Fig.1C).Indetail,lipidcontentwasdecreased

inmalesandfemalesaccordingtoaconcentration-response

rela-tionship.In bothgenders,lipidscontentswere1.3-and1.8-fold

lower at 2 and 8␮gCdL−1 respectively, compared to controls

(Fig. 1B). Contrary to lipid results, glycogen content was only

impactedin G.roeselifemales. Indeed, nosignificantdifference

wasobservedinmaleswhateverthecadmiumexposureswhilein

females,glycogencontentwasinaverage1.3-foldlowerinexposed

femalesthanincontrols(Fig.1C).

3.2. Antitoxicdefences

Likeenergyreserves,antitoxicdefenceswereinfluencedby

cad-miumexposure inboth gammaridgenders (Table1).In males,

theGCL activitywassignificantlyincreasedwhenanimalswere

exposedto8␮gCdL−1,whiletheexposureto2␮gCdL−1didnot

resultinasignificantincrease(Fig.1D).Theenzymeactivitywas

significantly higher (1.7-fold) in males exposed at 8␮gCdL−1,

as compared to unexposed ones. In females, regardless of the

cadmium concentration, GCL activity was significantly higher

in organisms exposed to 2␮gCdL−1 (1.6-fold increase) and to

8␮gCdL−1(2.2-foldincrease).

GSHconcentrationwasalsoinfluencedbycadmiumexposure

since an 1.2-fold increase was observed at 2␮gCdL−1 in both

genders,ascomparedtounexposed ones(Fig.1E).However,no

significantdifferenceswereobservedbetweentheGSH

concentra-tionsmeasuredat2␮gCdL−1andthosemeasuredat8␮gCdL−1in

G.roeselimalesandfemales.

Results of metallothionein concentrations showed a

concentration-dependent increase in both genders (Fig. 1F).

However, this increase was higher in males than in females.

Indeed,MTconcentrationincreasedbyafactorof1.6inmalesand

of1.3infemalesexposedto2␮gCdL−1ascomparedtorespective

controls.Moreover,at8␮gCdL−1,MTconcentrationdoubledin

malesandincreasedbyafactorof1.5infemales,ascomparedto

respectivecontrols.

Carotenoidlevels significantly decreased in males according

toa concentration-dependent relationship(Fig.1G). Carotenoid

contents were 1.2- and 1.4 lower in males exposed to 2 and

8␮gCdL−1 respectively, as compared to controls. In contrast,

carotenoid levels decreased significantly in females (1.5-fold

decrease)exposedto8␮gCdL−1comparedtounexposedfemales.

However, no significant difference was observed between

carotenoid levels in control females and females exposed to

2␮gCdL−1(onlyatendencyofdecreasewasobserved).

Fig.1. Energyreserves(protein,lipidsandglycogen),antitoxicdefence(GSH,GCL, MTandcarotenoids)andtoxiceffectsbiomarker(MDA)responsesinG.roeselimales andfemalesexposedto2and8␮gCdL−1for96h.Lettersabovethebarsindicate

(4)

Table1

Univariateanalysesofvariance(ANOVA)investigatingvariationsinenergyreserves(lipid,proteins,andglycogen),defencecapacity(GSH,GCL,MT,carotenoids),andtoxicity biomarker(MDA),inGammarusroeseli,accordingtogenderandcadmiumexposure.Significantdifferencesareindicatedinbold(p<0.05).

Sumofsquare d.f. F p-Value

Proteins Cadmium 18.37 2 3.21 0.054 Gender 492.77 1 172.36 <0.001 Cadmium×gender 13.3 2 2.33 0.115 Lipids Cadmium 12.58 2 53.12 <0.001 Gender 8.09 1 68.35 <0.001 Cadmium×gender 0.43 2 2.04 0.148 Glycogen Cadmium 0.98 2 8.22 0.001 Gender 14.77 1 247.72 <0.001 Cadmium×gender 1.83 2 15.36 <0.001 GSH Cadmium 2.14 2 31.69 <0.001 Gender 10.57 1 313.84 <0.001 Cadmium×gender 0.29 2 4.36 0.022 GCL Cadmium 0.27 2 49.41 <0.001 Gender 0.05 1 17.66 <0.001 Cadmium×gender 0.02 2 3.56 0.041 MT Cadmium 3.19 2 29.31 <0.001 Gender 69.11 1 1267.38 <0.001 Cadmium×gender 2.25 2 20.64 0.78 Carotenoid Cadmium 449.12 2 51.77 <0.001 Gender 1730.56 1 398.98 <0.001 Cadmium×gender 27.01 2 3.11 0.059 MDA Cadmium 11.23 2 38.83 <0.001 Gender 19.73 1 136.48 <0.001 Cadmium×gender 1.38 2 4.77 0.016

3.3. Biomarkeroftoxiceffects

MDAlevel,reflectingcelldamage,wasinfluencedbycadmium

exposure(Table1andFig.1H).Whateverthegender,anincrease

inMDAlevelswasobserved.Inmales,MDAlevelswereincreased

according to a concentration-dependent response. Indeed, we

observeda1.3-and1.7-foldincreaseinmalesexposedto2and

8␮gCdL−1,respectively. In contrast,a significantincrease was

observedonlyinfemalesexposedtothehighestcadmium

concen-tration.Nosignificantdifferencewasobservedinfemalesneither

betweencontroland theexpositionat2␮gCdL−1,norbetween

individualsexposedatthetwocadmiumconcentrations.

3.4. Principalcomponentanalysis

ThePCAperformedonallbiomarkermeasurementsresulted

inafirstfactorialplanwhichexplained89.9%ofthetotalinertia

(Fig.2).TheF1-axisexplained61.5%ofthetotalinertiawhereas

thesecondprincipalcomponent(F2)accountedfor28.3%.F1was

positivelycorrelatedtocarotenoids,glycogenandprotein

concen-trationsandnegativelycorrelatedtoGSH,andinlesserextentto

GCLactivityandMTconcentrations.F2waspositivelycorrelatedto

lipidscontentandnegativelycorrelatedtoMDAlevels.

F1-axisallowedtheseparation ofmalesand females

accord-ingtoantitoxicdefences.Femaleswereobservedwiththehighest

GSH and MT concentrations as well as GCL activity, whereas

malespresented highestlevelsof carotenoids.Similarly, F2has

alloweddifferentiatingbetweenexposureconditionswithinmale

andfemalegroupsaccordingaconcentration-dependentresponse

(controlonthenegativepartoftheF2-axis,C2attheoppositealong

thisaxis).Lowerintra-groupvariations(i.e.smallellipsesonthe

PCAprojection) wereobserved inmales accordingtocadmium

exposure, while in females, theintra-group variation increased

dependingonthecadmiumconcentration.

4. Discussion

4.1. Validationofourecotoxicologicalapproach:biomarker

responsesundercadmiumstress

AllbiomarkersmeasuredinG.roeselimalesandfemaleswere

influencedbytheexposuretocadmium.

MDAlevels increased in exposed gammarids according toa

concentration-dependent response,reflecting thetoxic effectof

cadmiumatthetestedconcentrations.Thisresultisinaccordance

withpreviousstudiessuchasthoseofCorreiaetal.(2002),and

SrodaandCossu-Leguille(2011a)whohaveobservedanincrease

ofMDAlevelsinG.locustaorG.roeseli,respectively,afteracopper

exposure.

Withintheantitoxicdefencesmeasured,thepatternofGSH

con-centrationsisthemostdifficulttointerpret.TheincreaseofGSHin

G.roeseliexposedto2␮gCdL−1couldresultfromtheincreaseof

theGCLactivity,whichistheenzymelimitingthedenovoGSH

syn-thesis(Volohonskyetal.,2002).Itisnowadmittedthatanincrease

ofGSHconcentrationfollowingGCLactivationistheresultofan

oxidativestress(Dickinsonetal.,2004).Inourstudy,theabsence

ofGSHconcentrationincreaseinG.roeseliexposedto8␮gCdL−1

compared with gammarids exposed to 2␮gCdL−1, while GCL

activity was increased, could be explained by the use of GSH

asascavengerofreactiveoxygenspeciesproducedbycadmium

(VasseurandLeguille,2004),andalsobythefactthatGSHisused

asasubstratebysomeantioxidantenzymessuchas

glutathione-S-transferasesorglutathioneperoxidases(Saezetal.,1990).

WiththesamepatternasthatofGSH,MTconcentrationswere

increasedincadmium-exposedG.roeseli.Thisrisecouldbelinked

withtheMTsynthesisinducedbytheexposuretoseveralmetals

includingcadmium(Bigotetal.,2011;Stillman,1995),asobserved

byMartinezetal.(1996)intheamphipodEchinogammarus

(5)

Fig.2. ResultsofthecorrelationcircleandtheprincipalcomponentanalysisonbiomarkerresponsesofGammarusroeselimalesandfemalesexposedtocadmiumfor96h. F:females,M:males,C1:2␮gCdL−1andC2:8␮gCdL−1.

alsodescribed in bivalves suchas in Mytilus edulis exposed at

400␮gCdL−1for65days(BebiannoandLangston,1991).

Carotenoidlevelswerealsoimpacted bycadmiumexposure

duetothefactthattheyplayanantitoxicantrolebyscavenging

freeradicals(KrinskyandDeneke,1982;Krinsky,1989).Indeed,

byscavengingfreeradicals, carotenoidscouldreducelipid

per-oxidationandthus,maintainthecellularintegrity(Jörgensenand

Skibsted,1993).

Concerningenergyreserves,proteinconcentrationsdidnotvary

aftercadmium exposure but lipid and glycogen contents were

reducedinexposedgammarids.Theseresultscouldbeexplainedby

themobilizationofenergyreservestoestablishantitoxicdefences.

Indeed,lipidsandglycogenareknowntobemobilizedinexposed

organisms(Durouetal.,2008),andthusrapidlyimpactedbytoxic

stress,evenduringashort-termexposuresuchasinourstudy.In

contrast,proteinconcentrationsareprincipallymobilizedinlong

termexposure,whichcouldexplainthatwedidnotobserveprotein

concentrationdecrease.However,thelipidcontentdecreasecould

belinkedtotheglycogencontentdecrease.Sanchoetal.(1998)and

Dutraetal.(2009)havesuggestedthatglycogendecrease,observed

in Anguillaanguilla exposed tofenitrothion and Hyallelacastroi

exposedtocarbofuran,respectively,couldbeduetopollutantstress

cost,whilethedecreaseinlipidcontentcouldbeexplainedbythe

useoflipidsasanenergysourcetocompensatefortheglycogen

lost.

4.2. Differencesbetweengenders

Overall,thePCAusedinourstudyhighlighteddifferencesinthe

responsesofG.roeseliaccordingtogender.

Celldamageislessimportantinfemalesthaninmalesaccording

tothelowerMDAlevelsregardlessofthecadmiumconcentration

tested,suggestingthanfemalesarelesssensitivetocadmiumthan

males(H1refuted).Thisresultcontrastswithseveralother

stud-iessuchasthoseofSornometal.(2010)aboutG.roeseliexposed

toasalinitystress,SrodaandCossu-Leguille(2011b)aboutG.

roe-seliandtheinvasiveD.villosusundercopperexposure,McCahon

andPascoe(1988)concerningG.pulexandacadmiumexposure

for48h.Thisdifferencecouldbeexplainedbythedifferenttypeof

stressused(e.g.salinity,copper)orthedifferentspeciesused(e.g.G.

pulex,G.roeseli).Nevertheless,ourresultsconfirmthoseobserved

inapreviousstudywherewefoundthatthe96hLC50ofG.

roe-selifemalesexposedtocadmiumwashigherthanthe96hLC50of

males(Gismondietal.,2012b).

Differencesofcelldamagebetweenmalesandfemalescouldbe

theconsequenceofadifferenceinantitoxiccompound

concentra-tions.OurstudyhighlightedhigherGSHandMTconcentrationsand

higherGCLactivityinfemales(H2validated),allowingthemtohave

abetterantitoxicdefencewhenexposedtopollutants.Thisisin

agreementwithotherinvestigationsonamphipodswhich

under-linedhigherantioxidantenzymesactivityinfemalesasforexample

in G.roeseli(Srodaand Cossu-Leguille,2011a), or lower

metal-lothioneinconcentrationsinmalessuchasinGammaruslocustra

(Correiaetal.,2004).

Thedifferentantitoxicantmoleculelevelscouldbelinkedto

energyreservesandenergymetabolism.Incontrols,weobserved

that females have higher lipid but lower glycogen and protein

contentthanmales.Thedifferencesinenergyreservesbetween

genderscouldbeexplainedbydifferencesinfeedingasobserved

by Dick et al. (2005). Indeed these authors examined guts of

Echinogammarusmarinusandconcludedthat femalesconsumed

significantly more animals than males, resulting probably in a

higherenergyintake.Thisdifferenceinenergycontentcouldalso

beexplainedbythehighneedsofenergyinfemalesfor

oogene-sis(Sutcliffe,1993).Whenindividualswereexposedtocadmium,

(6)

lipidcontentswerealwayssignificantlydecreasedandglycogen

contentswereonlydecreasedinfemales(H3validated).The

differ-encebetweenmalesandfemalesisinapparentcontradictionwith

theirrespectiveinvestmentsinreproduction.Oogenesisandegg

incubationrequirehighlipidsynthesisandmobilization,in

com-parisontoprocessesofspermatogenesis,whicharelessdemanding

intermsofenergy(BuikemaandBenfield,1979).Malesmightalso

haveamoreconstantphysiologicalstatethanfemalesduetothe

asymmetryoftheenergyrequiredingamete production.Ifthis

resourceallocationbetweengendersisgenerallyassumedtolead

toabetterphysiologicalstateformales(theoppositeofourresults),

acomplementaryviewisthatfemaleshavehigherenergyreserves

ascomparedtomalesthatcanbereallocated.Thus,thedifferencein

reproductioncostscouldallowfemalestohaveabettermetabolism

toassumeantitoxicdefencemechanismswhentheyareexposed

toachemicalstressor.Twootherhypotheseshavebeenadvanced

toexplainabetterresistanceoffemalesbycomparisonwithmales

(McClellan-Greenetal.,2007).First,highfemaleresistanceas

com-paredtomalescouldbelinkedtoahighermoltingrate,theprocess

ofexoskeletonsheddingbeingapotentialremovalpathwayof

pol-lutants.Thishypothesissupports thehighintra-group variation

weobservedinfemalesexposedtothehighestconcentrationof

cadmium.Second,ovodepositioninvolvesthetransferof

contam-inantsintotheeggswhichconferstofemalesabettermetabolism

toeliminate environmental contaminants(Dipintoet al., 1993;

Oberdörsteretal.,2000).Pöckletal.(2003)showedthatG.

roe-selifemalescanreproduceduringtheirentirelife-spanof1.5–2

yearsaboutsixtoeightsuccessivebroods,whichadd-uptothe

productionofatleast200eggs.Hence,reproductioncoulddecrease

bodyburdensofcontaminantssincemanychemicalsareassociated

withlipidsandtransferredtooocytes.However,furtherstudiesare

neededtoinvestigatetheimportanceoftheseprocesses(molting

rate,levelofdetoxificationduetoexuviaandeggproduction)in

genderdifferences.

5. Conclusions

This work underlined the differential antitoxic defence

responsesingammaridsaccordingtogender.Ourresultsrevealed

thatG.roeselifemalesseemtobelesssensitivetocadmiumthan

malesprobablyduetoabettermobilizationofantitoxicdefences.

Studiesontheinfluenceofgender,especiallyfemales,understress

conditionsseemtobeimportanttohaveanoverviewofxenobiotics

effectsonthepopulation.Inanthropogeniccontextswherefemales

aremore sensitivetocertainpollutants than males,population

declinescantakeplacefasterinenvironmentscontaminatedby

thesecompounds.AsGammarussp.isanimportantcompartment

intheecosystem,thedeclineofgammaridsinthesedisturbed

envi-ronmentscanhaveseriouseffectsonthecycleoforganicmatter

andtheoverallfoodweb.

Acknowledgments

Thisstudy wassupported bythe FrenchMinistry of

Educa-tionandResearch(Ministèredel’EnseignementSupérieuretdela

Recherche),whichwesincerelythankhere.Thepresentworkwas

fundedbytheresearchprogramEC2CO(EcosphèreContinentaleet

Côtière).WearegratefultoCéliaJoaquim-Justoforimprovingthe

Englishtextandwewishtothanktheanonymousreviewersfor

theirhelpfulcommentsonapreviousdraftofthispaper.

References

Adam,O.,Degiorgi,F.,Crini,G.,Badot,P.-M.,2010.HighsensitivityofGammarus sp.juvenilestodeltamethrin:outcomesforriskassessment.Ecotoxicologyand EnvironmentSafety73,1402–1407.

Allan,I.J.,Vrana,B.,Greenwood,R.,Mills,G.A.,Roig,B.,Gonzalez,C.,2006.Atoolbox forbiologicalandchemicalmonitoringrequirementsfortheEuropeanUnion’s WaterFrameworkDirective.Talanta69,302–322.

Bebianno,M.J.,Langston,W.J.,1991.MetallothioneininductioninMytilusedulis exposedtocadmium.MarineBiology108,91–96.

Bigot,A.,Minguez,L.,Giambérini,L.,Rodius,F.,2011.Earlydefenseresponses in thefreshwater bivalveCorbicula flumineaexposedto copper and cad-mium:transcriptionalandhistochemicalstudies.EnvironmentalToxicology26, 623–632.

Buikema,A.L.,Benfield,E.F.,1979.Useofmacroinvertebratelifehistory informa-tionintoxicitytests.JournaloftheFisheriesResearchBoardofCanada36, 321–328.

Correia,A.D.,Livingstone,D.R.,Costa,M.H.,2002.Effectsofwater-bornecopper onmetallothioneinandlipidperoxidationinthemarineamphipodGammarus locusta.MarineEnvironmentResearch54,357–360.

Correia,A.,Sousa,A.,Costa,M.,Moura,I.,Livingstone,D.,2004.Quantificationof metallothioneininwholebodyGammaruslocusta(crustacea:amphipoda)using differentialpulsepolarography.ToxicologicalandEnvironmentalChemistry86, 23–36.

Dick,J.T.A.,Johnson,M.P.,McCambridge,S.,Johnson,J.,Carson,V.E.E.,Kelly,D.W., MacNeil,C.,2005.PredatorynatureofthelittoralamphipodEchinogammarus marinus:gutcontentanalysisandeffectsofalternativefoodandsubstrate het-erogeneity.MarineEcologyProgressSeries291,151–158.

Dickinson,D.A.,Levonen,A.-L.,Moellering,D.R.,Arnold,E.K.,Zhang,H., Darley-Usmar, V.M., Forman, H.J., 2004. Human glutamate cysteine ligase gene regulationthroughtheelectrophileresponseelement.FreeRadicalBiologyand Medicine37,1152–1159.

Dipinto,L.M.,Coull,B.C.,Chandler,G.T.,1993.Lethalandsublethaleffectsofthe sediment-associatedPCBaroclor1254onameiobenthiccopepod. Environmen-talToxicologyandChemistry12,1909–1918.

Durou,C.,Mouneyrac,C.,Pellerin,J.,Péry,A.,2008.Conséquencesdesperturbations dumétabolismeénergétique.In:Lesbiomarqueursdansl’évaluationdel’état écologiquedesmilieuxaquatiques.Lavoisier,Paris,pp.273–289.

Dutra,B.K.,Fernandes,F.A.,Lauffer,A.L.,Oliveira,G.T.,2009.Carbofuran-induced alterationsintheenergymetabolismandreproductivebehaviorsofHyalella cas-troi(Crustacea,Amphipoda).ComparativeBiochemistryandPhysiology–Part C:ComparativePharmacology149,640–646.

Elendt,B.-P.,Bias,W.-R.,1990.TracenutrientdeficiencyinDaphniamagna cul-turedinstandardmediumfortoxicitytesting:effectsoftheoptimizationof cultureconditionsonlifehistoryparametersofD.magna.WaterResearch24, 1157–1167.

Geffard,A.,Amiard-Triquet,C.,Amiard,J.C.,2005.Doseasonalchangesaffect metal-lothioneininductionbymetalsinmussels,Mytilusedulis?Ecotoxicologyand EnvironmentSafety61,209–220.

Geffard,A.,Quéau,H.,Dedourge,O.,Biagianti-Risboug,S.,Geffard,O.,2007. Influ-enceofbioticandabioticfactorsonmetallothioneinlevelinGammaruspulex. ComparativeBiochemistryandPhysiology–PartC:ComparativePharmacology 145,632–640.

Gilchrist,B.M.,Lee,W.L.,1972. Carotenoidpigmentsandtheirpossiblerolein reproductioninthesandcrab,Emeritaanaloga(Stimpson,1857). Compar-ativeBiochemistryandPhysiology–PartB:ComparativeBiochemistry42, 263–294.

Gismondi,E.,Beisel,J.N.,Cossu-Leguille,C.,2012a.Influenceofgenderandseason onreducedglutathioneconcentrationandenergyreservesofGammarusroeseli. EnvironmentalResearch118,47–52.

Gismondi,E.,Cossu-Leguille,C.,Beisel,J.-N.,2012b.Acanthocephalanparasites:help orburdeningammaridamphipodsexposedtocadmium?Ecotoxicology21, 1188–1193.

Gismondi,E.,Rigaud,T.,Beisel,J.-N.,Cossu-Leguille,C.,2012c.Microsporidia para-sitesdisrupttheresponsestocadmiumexposureinagammarid.Environmental Pollution160,17–23.

Gismondi,E.,Cossu-Leguille,C.,Beisel,J.-N.,2012d.Doestheacanthocephalan par-asitePolymorphusminutusmodifytheenergyreservesandantitoxicdefencesof itsintermediatehostGammarusroeseli?Parasitology139,1–8.

Griffith,O.W.,1999.Biologicandpharmacologicregulationofmammalian glu-tathionesynthesis.FreeRadicalBiologyandMedicine27,922–935.

Jörgensen,K.,Skibsted,L.H.,1993.Carotenoidscavengingofradicals.Zeitschriftfur Lebensmittel-Untersuchungund-Forschung196,423–429.

Khan,F.R.,Irving,J.R.,Bury,N.R.,Hogstrand,C.,2011.Differentialtoleranceoftwo Gammaruspulexpopulationstransplantedfromdifferentmetallogenicregions toapolymetalgradient.AquaticToxicology102,95–103.

Krapp,R.H.,Bassinet,T.,Berge,J.,Pampanin,D.M.,Camus,L.,2009.Antioxidant responsesinthepolarmarinesea-iceamphipodGammaruswilkitzkiitonatural andexperimentallyincreasedUVlevels.AquaticToxicology94,1–7. Krinsky,N.I.,1989.Antioxidantfunctionsofcarotenoids.FreeRadicalBiologyand

Medicine7,617–635.

Krinsky, N., Deneke, S., 1982. Interaction of oxygen and oxy-radicals with carotenoids.JournaloftheNationalCancerInstitute69,205–210.

Kunz,P.Y.,Kienle,C.,Gerhardt,A.,2010.Gammarusspp.inaquaticecotoxicology andwaterqualityassessment:towardintegratedmultileveltests.In:Whitacre, D.M.(Ed.),ReviewsofEnvironmentalContaminationandToxicology,vol205. SpringerNewYork,NewYork,pp.1–76.

Martinez,M.,Ramo,J.D.,Torreblanca,A.,Pastor,A.,Diaz-Mayans,J.,1996.Cadmium toxicity,accumulationandmetallothioneininductioninEchinogammarus echi-nosetosus.JournalofEnvironmentScienceandHealth,PartA:Environmental Science31,1605–1617.

(7)

McCahon,C.P.,Pascoe,D.,1988.Increasedsensitivitytocadmiumofthefreshwater amphipodGammaruspulex(L.)duringthereproductiveperiod.Aquatic Toxico-logy13,183–193.

McClellan-Green,P.,Romano,J.,Oberdörster,E.,2007.Doesgenderreallymatterin contaminantexposure?Acasestudyusinginvertebratemodels.Environmental Research104,183–191.

Oberdörster,E.,Brouwer,M.,Hoexum-Brouwer,T.,Manning,S.,McLachlan,J.A., 2000.Long-termpyreneexposureofgrassshrimp,Palaemonetespugio,affects moltingandreproductionofexposedmalesandoffspringofexposedfemales. EnvironmentalHealthPerspectives108,641–646.

Palozza,P.,Krinsky,N.I.,1992.Antioxidanteffectsofcarotenoidsinvivoandinvitro: anoverview.In:CarotenoidsPartA:Chemistry,Separation,Quantitation,and Antioxidation.AcademicPress,pp.403–420.

Peakall,D.B.,1994.Theroleofbiomarkersinenvironmentalassessment(1). Intro-duction.Ecotoxicology3,157–160.

Pöckl,M.,Webb,B.W.,Sutcliffe,D.W.,2003.Lifehistoryandreproductivecapacity ofGammarusfossarumandG.roeseli(Crustacea:Amphipoda)undernaturally fluctuatingwatertemperatures:asimulationstudy.FreshwaterBiology48, 53–66.

Rauque,C.A.,Semenas,L.,2009.Effectsoftwoacanthocephalanspeciesonthe reproductionofHyalellapatagonica(Amphipoda,Hyalellidae)inanAndean PatagonianLake(Argentina).JournalofInvertebratePathology100,35–39. Roesijadi,G.,1992.Metallothioneinsinmetalregulationandtoxicityinaquatic

animals.AquaticToxicology22,81–113.

Saez,G.T.,Bannister,W.H.,Bannister,J.V.,1990.FreeRadicalsandThiolCompounds. TheRoleofGlutathioneAgainstFreeRadicalToxicity.CRCPressInc.,Florida. Sancho,E.,Ferrando,M.D.,Fernandez,C.,Andreu,E.,1998.Liverenergymetabolism

ofAnguillaanguillaafterexposuretofenitrothion.Ecotoxicologyand Environ-mentSafety41,168–175.

Serafim,M.,Company,R.,Bebianno,M.,Langston,W.,2002.Effectof tempera-tureandsizeonmetallothioneinsynthesisinthegillofMytilusgalloprovincialis exposedtocadmium.MarineEnvironmentResearch54,361–365.

Sornom,P.,Felten,V.,Médoc,V.,Sroda,S.,Rousselle,P.,Beisel,J.-N.,2010.Effect ofgenderonphysiologicalandbehaviouralresponses ofGammarusroeseli

(CrustaceaAmphipoda)tosalinityandtemperature.EnvironmentalPollution 158,1288–1295.

Sroda,S.,Cossu-Leguille,C.,2011a.Seasonalvariabilityofantioxidantbiomarkers andenergyreservesinthefreshwatergammaridGammarusroeseli. Chemo-sphere83,538–544.

Sroda,S.,Cossu-Leguille,C.,2011b.Effectsofsublethalcopperexposureontwo gammaridspecies:whichisthebestcompetitor?Ecotoxicology20,264–273. Stillman, M.J., 1995. Metallothioneins. Coordination Chemistry Reviews 144,

461–511.

Sutcliffe,D.W.,1993.ReproductioninGammarus(Crustacea,Amphipoda)female strategies.FreshwaterForum,26–64.

Vasseur,P.,Cossu-Leguille,C.,2003.Biomarkersandcommunityindicesas com-plementary tools forenvironmental safety.Environment International28, 711–717.

Vasseur,P.,Leguille,C.,2004.Defensesystemsofbenthicinvertebratesinresponse toenvironmentalstressors.EnvironmentalToxicology19,433–436. Vellinger,C.,Parant,M.,Rousselle,P.,Immel,F.,Wagner,P.,Usseglio-Polatera,P.,

2012.Comparisonofarsenateandcadmiumtoxicityinafreshwateramphipod (Gammaruspulex).EnvironmentalPollution160,66–73.

Vellinger,C.,Felten,V.,Rousselle,P.,Mehennaoui,K.,Parant,M.,Usseglio-Polatera, P.,2013.SingleandcombinedeffectsofcadmiumandarsenateinGammarus pulex(Crustacea,Amphipoda):understandingthelinksbetweenphysiological andbehaviouralresponses.AquaticToxicology,inpress.

Volohonsky,G.,Tuby,C.N.Y.H.,Porat,N.,Wellman-Rousseau,M.,Visvikis,A.,Leroy, P.,Rashi,S.,Steinberg,P.,Stark,A.A.,2002.Aspectrophotometricassayof ␥-glutamylcysteinesynthetaseandglutathionesynthetaseincrudeextractsfrom tissuesandculturedmammaliancells.Chemico-BiologicalInteractions140, 49–65.

Xuereb,B.,2009.AcetylcholinesteraseactivityinGammarusfossarum(Crustacea Amphipoda):intrinsicvariability,referencelevels,andareliabletoolforfield survey.AquaticToxicology93,225–233.

Zubrod,J.P.,Bundschuh,M.,Schulz,R.,2010.Effectsofsubchronicfungicide expo-sureontheenergyprocessingofGammarusfossarum(Crustacea;Amphipoda). EcotoxicologyandEnvironmentSafety73,1674–1680.

Figure

Fig. 1. Energy reserves (protein, lipids and glycogen), antitoxic defence (GSH, GCL, MT and carotenoids) and toxic effects biomarker (MDA) responses in G
Fig. 2. Results of the correlation circle and the principal component analysis on biomarker responses of Gammarus roeseli males and females exposed to cadmium for 96 h.

Références

Documents relatifs

Using a protocol involving SPME and GC-EAD analysis previously employed for apple- and hawthorn-origin flies (Zhang et al., 1999; Nojima et al., 2003), we have identified a blend

ةبسانمو ةحيرم هعااضوأ ، ةلداعو ةفيطل نأ نيح يف ةموابنكيم دلانود اهب ثدحي يتلا ةقيرطلا نأ نم قلطنا هبارطاضا ثدحات يتلا يه ( يبلسلا يلخادلا ثيدحلا

Par ailleurs, comme pour tous les autres mâles du règne animal, leur morphologie et leur comportement sont importants pour la taxonomie et les théories évolutionnistes.. La

représentent des fonctions additionnelles. Nous pouvons les rajouter sur se trouve en général sur la colonne latérale ou sur les colonnes en pied de page de notre site. Par

In males plasma E2 levels remained below 2 ng/ml during all the experiment for the farmed group (Figure 4d), while wild males exhibited signi fi cantly higher levels ( P &lt; 0.05) at

The first section is devoted to review the literature in relation to gendered language, differences in males and females talk, report/rapport talk and hedging by both

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The group also assessed the impact of vector control using a UK data-driven Culicoides mechanistic population model to explore the impact of vector control on seasonal