• Aucun résultat trouvé

Evidences for liquid encapsulation in PMMA ultra-thin film grown by liquid injection Photo-CVD

N/A
N/A
Protected

Academic year: 2021

Partager "Evidences for liquid encapsulation in PMMA ultra-thin film grown by liquid injection Photo-CVD"

Copied!
6
0
0

Texte intégral

(1)

To link to this article : DOI:10.1016/j.porgcoat.2013.05.027

URL :

http://dx.doi.org/10.1016/j.porgcoat.2013.05.027

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 14102

To cite this version:

Manole, Claudiu Constantin and Marsan, Olivier and Charvillat, Cedric and

Demetrescu, Ioana and Maury, Francis Evidences for liquid encapsulation in

PMMA ultra-thin film grown by liquid injection Photo-CVD. (2013) Progress in

Organic Coatings, vol. 76 (n° 12). pp. 1846-1850. ISSN 0300-9440

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes.diff.inp-toulouse.fr

(2)

Evidences

for

liquid

encapsulation

in

PMMA

ultra-thin

film

grown

by

liquid

injection

Photo-CVD

Claudiu

Constantin

Manole

a,b,∗

,

Olivier

Marsan

a

,

Cedric

Charvillat

a

,

Ioana

Demetrescu

b

,

Francis

Maury

a

aCIRIMAT,CNRS/INPT/UPS,4alléeE.Monso,BP44362,31030Toulousecedex4,France bUPB,FacultyofAppliedChemistryandMaterialsScience,1-7Polizu011061,Bucharest,Romania

Keywords:

Poly(methylmethacrylate) Photo-CVD

DirectLiquidInjection RamanConfocalSpectroscopy AtomicForceSpectroscopy

a

b

s

t

r

a

c

t

Thispaperdealswiththecharacterizationofultra-thinfilmsofPMMAgrownbyanoriginal photo-assistedChemicalVaporDepositionprocessequippedwithapulsedliquidinjectionsystemtodeliver themonomer.Thenanometricthickfilmsshowedagoodabilitytoencapsulatealiquidphaseas micro-dropletsprotectedbyathinpolymerictightmembraneintheformofblisters.Techniquesthatarecapable toanalyzetheseheterogeneousstructuresatmicro-andnanoscopicscalesuchasRamanConfocal Spec-troscopyandAtomicForceMicroscopywereusedtocharacterizethesepolymerfilms.Theliquiddroplets werefoundtobemonomerencapsulatedbyaPMMAfilm.Thespecificpropertiesoftheseultra-thin filmsexhibitself-healingcapabilitiesatmicroscopicscalemakingthemattractiveforfunctionalization ofsurfacesandinterfaces.

1. Introduction

TheChemicalVaporDeposition(CVD)isavaluableand versa-tiletechniquetogrowmicro-andnanostructuredmaterials.Itfinds applicationsinmanynanofabricationareasforinstancetoproduce carbonnanotubes[1],lowdielectrics[2],core–shell nanostruc-tures[3]andnanocompositecoatings[4].TodevelopindustrialCVD processesseveraltechnologiescompetetodeliverthehighflow ratesofreactivegasrequiredforhighgrowthratesandlargescale reactors.Startingfromliquidmolecularcompoundsasprecursors, thisincludesforinstanceAerosolAssistedCVD[5]andpulsedDirect LiquidInjectionCVDcoupledtoaflashvaporizationoftheliquid monomertoformthevaporphase(DLI-CVD)[6].Forthislast tech-niqueawideareaofapplicationsistargetedbyintensiveresearch oninorganicmaterials,eitheroxides[7–9]orcarbides[6,10,11]. OrganicmaterialsarealsodepositedbyCVDprocessesusing vari-ousactivationtechniquesofthereactivegasphasetocompensate theverylowdepositiontemperatureimposedbythesethermally fragilematerials.Thuspolymericthinfilmsweregrownbyinitiated CVD(iCVD),e.g.hot-filamentactivation[12,13],PlasmaEnhanced CVD(PECVD)[14]andtheGrahamprocess[15]usingrespectively chemical,plasmaandthermalactivationmethods.

∗ Correspondingauthorat:FacultyofAppliedChemistryandMaterialsScience, UniversityPolitehnicaBucharest,Str.Polizu1-7,011061,sector6,Bucharest, Roma-nia.Tel.:+40214023930;fax:+40213111796.

E-mailaddress:claudiu.manole@ymail.com(C.C.Manole).

The ultra-thin polymericfilms discussedin this paper were obtainedbyanoriginalCVDprocess.First,theoriginalitycomes fromthephotonactivationofthegasphase(Photo-CVD)without irradiatingthethinlayergrowingonthesubstrate.Uptonowthis techniquewasreportedtodepositinorganicmaterials[16]. Sec-ondly,sincethepolymerizationinvolvesaliquidmonomerasCVD precursoranovelapproachwastouseDLI-CVD.Thisdual inno-vationresultedinthedepositionofultra-thin(nanometric)poly (methylmethacrylate)(PMMA)filmsthat,underparticular condi-tions,encapsulatedaliquidphaseofitsmonomer.PMMAthinfilms werepreviouslydepositedbyiCVDandevidencesforafree-radical mechanismwerefound[13].TheapproachoftheDLIPhoto-CVD processisbasedonthephotonactivationofthegasphase.Ithas theadvantageofdepositingatroomtemperature(orlower), with-outdirectsubstrateirradiationanditallowstoobtainaconformal coverageatlowpressures(oversolidandliquidsurfaces).

Becausethefilmsarenanometricthicktheircharacterization requires specific tools and methodologies. This paper gives an insightintothemeansofcharacterizingsuchpolymericultra-thin films.Theexperimentalresultsdeducedfromthetechniquesused givedirectand indirectevidencesofthemainfeaturesof these PMMAthinfilms.

2. Materialsandmethods

ThecoreofthePhoto-CVDsystemstandsinavertical align-mentperpendiculartothesubstratesurfaceofanInjectionSystem, aVaporizationChamber,anUVactivationchamberofthegasphase

(3)

Table1

ExperimentalparametersusedforDLIPhoto-CVDofPMMAfilms.

Parameters Inj-1 Inj-2

Depositiontemperature(◦C) 18 18

Totalpressure(Torr) 9.5 9.5

Injectorconditions

fliq(Hz) 1 1

ton(ms) 1 1

N2carriergasininjector(sccm) N/A 150

N2carriergasinvaporizationchamber(sccm) 108 N/A

Setpoint(%) N/A 10

fgas(Hz) N/A 1

andaSampleReactor.Theinjectorsystemsflashvaporizesthe liq-uidmonomerusedasprecursor.Fortheexperimentsreportedin thispaper,twocommercialinjectionsystemsprovidedby Kem-stream(www.kemstream.com)wereused.

Inthecaseofinjectionsystem1(Inj-1)aliquidinjector commu-nicatesdirectlytoavaporizationchamber.Theamountofliquid injectedis computercontrolledbyanopeningtime (ton)and a

repeatingfrequency(fliq)oftheprocess.Inthevaporization

cham-berthesprayoftheliquidisvaporizedandmixedwithacontinuous streamofN2usedascarriergasmonitoredbyamassflowmeter.

Theinjectorsystem2(Inj-2)isanewgenerationdesignedto improvetheatomizationandthegasflowrateoftheprecursor.It hastwo-stagecomponents.Itcontainsafirstliquidinjectorthat pulsesthemonomertoamixingchamber.Theamountofliquid injectedatthisfirststageiscontrolledbyanopeningtime(ton)and

arepeatingfrequency(fliq)oftheprocess.Thisfirstliquid

injec-torcommunicateswithasecondgasinjectoractingalsoasmixing chamberwiththecarriergas.Thegasinjectormixesthespraywith N2ascarriergasandthenpulsestheliquid/carriergasmixtureinto

theflashvaporizationchamber.Thegasinjectionismonitoredby amassflowmeter.Theamountofgasinjectediscontrolledbythe softwarethatconvertsagivensetpoint(percentofsccm)inopening time.Therecurringpulsedopeningtimeofthegasinjectorisgiven bya gasfrequency(fgas).Bothinjectionsystemsproducesprays

withdifferentcharacteristicsintermsofaveragesizeofdroplets andsizedistribution.

For Inj-1 setup, the monomer waspushed by a pressure of 3.8barofN2towardstheinjectorwhichoperatedatfliq=1Hzand

ton=1ms.IntheInj-2setup,themonomerwaspushedwitha

pres-sureof3.5barandtheN2carriergaspressurewasof2bar,with

Setpoint=10%and fgas=1Hz.Theexperimentalparameterswith

respecttotheinjectingconditionsaresummarizedinTable1. TheUVchamberconsistsoffourHglowpressurelamps emit-tingat254nm(HeraeusmodelNNI60/35XL).Foreachlamp,the radiativefluxat254nminairatroomtemperaturewas20Wand theirradianceatthiswavelengthwas150␮W/cm2atadistanceof

1m.Theyare38cmlongandplacedaroundaquartztubeof5cmin diameterand40cmlong.Thelampsandthetubearesurroundedby ashellandapolishedaluminumreflector.Thetemperatureofthe lampsandthequartztubearemaintainedaround80◦Cbyastream ofcompressedair.Thevaporphaseisphoto-activatedwhenpassing intothisquartztubeandiscarriedtowardsthesamplereactor.For thedeposition,themonomermethylmethacrylate(MMA) (con-taining∼0.004%hydroquinoneasstabilizer) wasmixedwith2% 1-hydroxycyclohexylphenylketoneasphoto-initiator(PI)inorder toaidthepolymerization.TheywerebothpurchasedfromSigma Aldrichandusedasreceived.

The substrates in the growth reactor were placed perpen-dicularly tothemain gasstreamon asample holder equipped witha temperaturecontrolsystem.Theywerekeptatambient temperature(18◦C).Theyweredegreased andcleanedin ultra-sonicbathwithacetoneand thenethanol. During deposition,a substrateareawasmaskedinordertoallowadirectcomparison

between a deposited and an undeposited zone. The masking was performedby placing the polished face of a Si(100) chip (10mm×5mm×0.4mmdirectlyonthepolishedsurfaceofa rect-angular Si(100) wafer (30mm×5mm×0.4mm). The intimate contactbetweenthetwopolishedsurfacespreventsthediffusion ofreactivegasbetweenthemandthereforethecontaminationof themaskedsurfaceofthesubstrateduringtheCVDrun.Inorder tohaveadifferenttypeofsurfaces,a25mm×25mm×1mmglass substratewasalsousedneartheSi(100)substrate.

TheAtomicForceMicroscopy(AFM)datawasobtainedbyan AgilentTechnology5500AFMoperatinginacousticmodewith sil-iconTypeVIIMACLeverfromAgilent.TheAFMmeasurementswere madeataspeedof5nm/satroomtemperatureinambientair.The RamanspectraandinsituOpticalMicrographieswereobtainedat roomtemperaturebyaHoribaLabRAMRamanConfocal Spectrom-eterwitha5mWlaseremittingat532nm.Bothtechniquesoffer directcharacterizationofthesamples.However,withrespectto ultra-thinnanometriclayers,thesecharacterizationscanprovide direct and indirect experimentalresults. TheAFM offers direct resultsovertheultra-thinfilmduetotheatomicforceinteractions thatitmeasures;itisreallyasurfaceanalysistechnique.

TheRamanConfocal Microscopy(RCM)analysisofultra-thin polymericfilmsprovidesbothdirect andindirectresultsinthe sensethatitisnotreallyasurfaceanalysistechniqueanditcan beinvasiveforthematerialanalyzed.Thesamplescanbeanalyzed as-depositedandaftersubsequenttreatmentseitherinsituduring theRamananalysisasaresultoftheinteractionbetweenthelaser beamandthematerial,orvariouspost-treatments.Inthiswork,we focusonpost-thermaltreatmentintheambientairofaMemmert Model550ovenat115◦C.

3. Resultsanddiscussion

ThetwoDLIsystemsallowedencapsulatingdifferentvolumes ofliquidinsideapolymericthinmembraneonthesurfaceofa sub-strate.Thetwoinjectionsystemswithcontinuous(Inj-1)orpulsed (Inj-2)carriergasofferedthepossibilitytoinvestigateultra-thin filmswithdifferentmorphologiesandproperties.

Inafirstseriesofdepositionexperiments,theInj-1 injection systemwasusedtoobtainverythin polymericfilmbytheDLI Photo-CVDprocess.Theformationofananometricthickmembrane isdifficulttoidentifyandcharacterize,inparticulartodetermine itsthicknessandstructuralfeaturesbecauseorganicpolymersare generally nonconductive and thermally fragile materials. Infor-mationwithrespecttothepresenceofanultra-thinfilmcanbe obtaineddirectlybyAFMorindirectlybyextrapolatingRCMdata. TheAFMtopographyofanuncoatedarea(Fig.1a)andacoated area(Fig.1b)overthesamesubstrateisshown inFig.1.Itcan beobservedthatthemaximumheightforacoatedareaincreased byapproximately30nmwithrespecttotheuncoatedone,which revealsthepresenceofanultra-thinfilmcoveringthesurfaceofthe substrate.Bymappingthephaseofthecantileveroscillations,the AFMoffersthepossibilitytoidentifyvariationsinthesample com-position.InFig.1c,thephaseimagingofthecoatedareashowssuch aphasechangeandrevealstwotypesofstructures.First,whatcan beregardedasencapsulatedliquiddroplets(structure#1),looking asblistersca.1␮mindiameterspreadoutoverthesurfaceofthe sampleand,secondly,smallerheterostructureslookingasagood conformalcoverageofsolidnanoparticlesthatcontaminatedthe surfaceoftheSisubstratebyathinfilm.

Afterthedeposition,theblistersobservedonthesurface pre-servetheirshape,sizeanddistributiononthesurfaceevenafter2 monthsinambientairandindark.Theydonotshowanychange duetoeitherchemicalreactivityforinstancewithairorto evap-orationofthevolatileliquid.Indeed,iftheliquidwastheMMA

(4)

Fig.1.AFMtopographyforanuncoatedarea(a)andforacoatedarea(b)withtheInj-1system.Thephaseimageofthedepositedareaisalsopresented(c)withpossible liquidencapsulationasblisters(1)andinhomogeneitiesresultingfromconformalcoverageofparticlescontaminatingthesurfaceoftheSi(100)substrate(2).

monomer,itsvaporpressureissufficientlyhigh(29.5Torrat20◦C) tobecompletelyevaporated.Thisindicatestheliquiddropletsare protectedfromtheenvironmentbyaverythinpolymeric mem-brane.Atthisstage,thebestassumptionistoconsiderthatthese blisterslikestructurescontainaliquidthatshouldbethemonomer andthephotoinitiatormoleculesincetheyarethesoleliquid com-poundsinvolvedintheCVDprocess.

Raman analysis of an as-deposited droplet-like structure approximately10␮mwide, revealsthe C C bonds ofboth the monomer(notpresentinthepolymer)andthephotoinitiatorwith bandsat1640cm−1 and1660cm−1,respectively.Thisresultsin abroadcumulativeC Cpeakinthisspectralrange(Fig.2).Even iftherewereonly2%ofPIintheinitialsolutioninjected,itcan bepresent in anamount significantly greater in theseblisters. Indeed,thevolatilityofMMA(29.5Torrat20◦C)comparedtoPI (2.2×10−3Torr)suggeststhatapartofthemonomerislikely evap-oratedduring thedepositionunderreduced pressure (9.5Torr), whichenrichestheproportionofPIintheliquidcondensedonthe substratesurface.

Theissueofseparatingthetwospeciestodeterminethe compo-sitionoftheliquidinthedropletswillberesolvedbyasubsequent post-treatmentofthesample.TheRamantechniquewasreported asa tool for estimating theextentof polymerizationof PMMA after a thermal treatment, highlightingthe 115◦C temperature as optimum temperaturefor monomer polymerization[17].As observedinFig.2,thebandassociatedtothemonomerdecreases graduallywiththeincreaseofthetimeofathermalpost-treatment at115◦Cin air.Thisindicatesthepresenceofliquid MMAinto theobserveddrop-likestructurethatprogressivelypolymerizeby

Fig.2.Ramanspectraofa10␮mencapsulateddropletsobtainedwithInj-1system afteranthermal(115◦C)post-treatment.

thermal activation.Duringand afteralloftheRaman measure-ments,thefilmandthedropletsdepositedusingtheInj-1system werepreservedintact.

ThefurtheruseoftheInj-2injectionsystemwillprovide poly-mericthinfilmswithsimilarfeatures,butwithdifferentproperties. Largerdropletswereincorporatedintoathinfilmgrownusingthe Inj-2injectionsystem.TheAFMforcemicroscopywasperformed ontothreepointsindicatedintheAFMtopographicalimage(Fig.3). TheAtomicForceSpectroscopyinvolvesthreestepsof theAFM cantileverbehavior:(i)anapproachhalfcycle,whenthecantilever tipapproachesthesurface,(ii)acontactwiththesampleand(iii)a retractinghalfcyclewhenthecantileverretracts.Fig.3bshowsthat thebareSisubstrate(thereference)hasashortapproach/retracting cycle(∼0.5s).Duetotheultra-thinpolymericfilmcoveringthe sub-strate,theapproach/retractcyclesarelonger(∼1.5s)thatindicates amoreelasticbehaviorcomparedtothebareSisubstrate.Ifpure liquidwerepresentontothesurfaceasfreedroplets,i.e.without encapsulationinanultra-thinmembraneasblisters,theAFMtip wouldhavepenetratedtheliquideasily,indicatingthusadifferent retractingcyclefortheregion3comparedtoregions1and2.

ItiswellknownthatthefocusedRamanlasergeneratesheat thatcandamagematerialsiftheyabsorbthephotons.Forinstance, thelaser-inducedthermaleffectswerestudiedoncarbon nano-tubesandonmagnetiteoxidation[18,19].Also,theoptimizedlaser energycanbeusedtoachieveweldingofPMMAsheets[20].Here, duringtheRamanMicroscopyanalysesoflayersobtainedby Inj-2system,theultra-thinfilm ontheSisubstrate wasirradiated insitubythelaserbeam.Duringthislaserirradiationfor approx-imately15s,bothadestructiveanda constructiveeffectcanbe extrapolated.

Firstly,theas-depositedblisterapproximately30␮min diam-eter(Fig.4a)onwhichthelaserfocusshowsacatastrophicfailure of the film bythe presence of a crater-like structure (Fig.4b). Thefocal diameterof theRCMlaserwas430nm.Theresulting crater-like geometry after the exposure to laser beam reaches approximately5␮mindiameter.Thedegradationprocesscanbe essentiallydescribedbythefollowingsteps:(i)laserenergy absorp-tionatthethin filminterfacewiththeSisubstrateleadingtoa suddentemperatureincreaseoriginatingessentiallyfrom absorp-tionoftheSi,(ii)initialthermalstrainandpossiblymelting(suchas depolymerizationofPMMA[21])and/orvaporizationoftheliquid species(MMA),and(iii)thermallyinducedpolymerizationfrom encapsulatedmonomerinthelowtemperatureareas(attheedges ofthecrater)[22].InFig.4aandb,thelaserbeamwasfocusedon aheterogeneityembeddedintheblister.Thisheterogeneitylikely originatingfromthesurfacecontaminationoftheSisubstrateis uncoveredafterlaserirradiationatthecenterofthecraterasshown inFig.4b.Forblisterswithoutsuchcontaminationthebottomof thecrateriscleanafterlaserexposureandnoparticleisobserved atthecenter(Fig.4d).

(5)

Fig.3.TheAFMtopography(a)witharrowsindicatingtheareaswheretheforcespectroscopydata(b)wereobtainedforthePMMAfilmpolymerizedwiththeInj-2system andforthebareSisubstrate.

Fig.4. InsituopticalmicroscopyimageoffilmsdepositedwiththeInj-2systemacquired(a)(c)beforeand(b)(d)afterirradiationbyfocusinga5mWlaserbeamemitting atawavelengthof532nmoftwoblister-likestructuredepositedover(a)(b)glassand(c)(d)Si(100)substratesduringRamananalysis.

Thepresenceofsuchcrater-likestructuresafterseveralRaman analysessupportsthisdegradationprocess.Ramanlaserprovides a heatgradient acrossthe surfaceof thesample, witha maxi-mumtemperatureatthecenterofthespotandasharpdecrease towardsambienttemperature attheperiphery. Shebanova and LazorobservedthatRamanlaserirradiation(at512nm)induced theoxidationofmagnetite[18].Thisoxidationcouldoccurat tem-peraturescloseto240◦C[18].Theirstudywasorientedtowardsthe determinationofthelocaltemperatureforthelaser-heatedspot.It involvedthevariationofthepowertothesample(7–60mW)over aspotsizeofaround5–10␮m,forinstance50mW/5␮m.Forthe opticalobjectiveusedinourexperimentsthecalculatedspotsizeof our5mWlaserisaround0.5␮m.Thereforetheapproximatepower persurfaceareaoftheRCMusedinourexperimentsisofthesame orderofmagnitude(5mW/0.5␮m).At50mWthetemperaturewas correlatedbyShebanovaandLazorataround410◦Cformagnetite

[18].Sisubstratestronglyabsorbsirradiationat532nmanditcan readilytransmititslocalheattothepolymericfilm.Therefore,itcan besuspectedthatattheobservedradiusof2.5␮mfromthecenter ofthecrater(i.e.edgeofthecrater)thetemperaturecouldreachan

optimumvaluenear100◦Cthatleadstoaself-healingmechanism oftheblisterbythermalpolymerization.Thesealingattheedgeof theexposedareacanbeconsideredasaconstructiveeffectoflaser irradiation(Fig.4c).

ThedifferentbehaviorofthesamplespreparedusingtheInj-1 andInj-2 systemsobservedduringRamananalysesmaybedue to a different composition of the liquid (for instancethe ratio MMA/PI)encapsulatedinthepolymerfilm.Thenanometer-thick PMMAfilmsthatencapsulatepolymerizablemonomericspecies showself-healingproperties,withtheabilitytore-sealthearea thatsufferedacatastrophicfailure.Thisisachievedunderparticular conditionsdictatedbytheactivationparametersofthe polymer-izationsuchasthetemperatureinducedbylaserheating.

4. Conclusions

AnoriginalPhoto-CVDprocess wasusedtoobtainultra-thin nanometric PMMA films. After the photo-excitation of thegas phase, the monomer polymerizes over both liquid and solid

(6)

surfaces.Twocommercialinjectorsystemsallowedliquid encap-sulationasblisterswithdifferentmorphologiesandproperties.A partoftheliquidmonomerwasencapsulatedasmicrodropletsin theultra-thinpolymericfilm.AFMandRCMtechniqueswereused tocharacterizesuchfilmsandevidencesforliquidencapsulation weregiven.Thefilmpresentsself-healingbehavioratmicrometric scale,apropertythathasthepotentialtobealsoexploitedatlarger scales.

Acknowledgements

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the RomanianMinistryofLabour,FamilyandSocialProtectionthrough theFinancialAgreementPOSDRU/88/1.5/S/61178.

References

[1]R.K.Sahoo,V.Daramalla,C.Jacob,Mater.Sci.Eng.B177(2012)79–85. [2]S.-J.Cho,I.-S.Bae,J.-H.Boo,ThinSolidFilms518(2010)6417–6421. [3]L.Cao,H.Jiang,H.Song,Z.Li,G.Miao,J.AlloysCompd.489(2010)562–565. [4]D.Barreca,D.Bekermann,E.Comini,A.Devi,R.A.Fischer,A.Gasparotto,M.

Gavagnin,C.Maccato,C.Sada,G.Sberveglieri,E.Tondello,Sens.ActuatorsB: Chem.160(2011)79–86.

[5]F.-D.Duminica,F.Maury,S.Abisset,ThinSolidFilms515(2007)7732–7739. [6]A.Douard,C.Bernard,F.Maury,Surf.Coat.Technol.203(2008)516–520. [7]M.E.A.Warwick,C.W.Dunnill,J.Goodall,J.a.Darr,R.Binions,ThinSolidFilms

519(2011)5942–5948.

[8]M.G.Nolan,J.A.Hamilton,S.O’Brien,G.Bruno,L.Pereira,E.Fortunato,R. Mar-tins,I.M.Povey,M.E.Pemble,J.Photochem.Photobiol.A:Chem.219(2011) 10–15.

[9]A.Douard,F.Maury,Surf.Coat.Technol.200(2006)6267–6271.

[10]A.Shanaghi,A.R.S.Rouhaghdam,S.Ahangarani,P.K.Chu,T.S.Farahani,J. Non-Cryst.Solids258(2012)3051–3057.

[11]N.Yoshida,S.Terazawa,K.Hayashi,T.Hamaguchi,H.Natsuhara,S.Nonomura,J. Non-Cryst.Solids(2012),http://dx.doi.org/10.1016/j.jnoncrysol.2012.03.028. [12]K.Chan,K.K.Gleason,Langmuir21(2005)11773–11779.

[13]K.Chan,K.K.Gleason,Chem.Vap.Deposit.11(2005)437–443. [14]T.B.Casserly,K.K.Gleason,Chem.Vap.Deposit.12(2006)59–66. [15]V.Santucci,F.Maury,F.Senocq,ThinSolidFilms518(2010)1675–1681. [16]A.M.Boies,J.T.Roberts,S.L.Girshick,B.Zhang,T.Nakamura,A.Mochizuki,

Nanotechnology20(2009)295604.

[17]F.Pallikari,G.Chondrokoukis,M.Rebelakis,Y.Kotsalas,Mater.Res.Innov.4 (2001)89–92.

[18]O.N.Shebanova,P.Lazor,J.RamanSpectrosc.34(2003)845–852.

[19]Y. Zhang,H.Son, J. Zhang,J. Kong, Z.Liu, J. Phys.Chem. C111 (2007) 1988–1992.

[20]I.Jones,J.Rudlin,Proceedingsofthe2ndInternationalConferenceonJoining Plastics,NationalPhysicalLaboratory,2006,pp.25–26.

[21]B.B.Troitskii,G.A.Domrachev,L.V.Khokhlova,L.I.Anikina,DokladyPhys.Chem. 375(2000)268–270.

[22]J.Bovatsek,A.Tamhankar,R.Patel,N.M.Bulgakova,J.Bonse,Proc.SPIE7201 (2009)720116.

Figure

Fig. 2. Raman spectra of a 10 ␮m encapsulated droplets obtained with Inj-1 system after an thermal (115 ◦ C) post-treatment.
Fig. 4. In situ optical microscopy image of films deposited with the Inj-2 system acquired (a) (c) before and (b) (d) after irradiation by focusing a 5 mW laser beam emitting at a wavelength of 532 nm of two blister-like structure deposited over (a) (b) gla

Références

Documents relatifs

However, cruise ship traffic through the Canadian Arctic is typically between the months of July to late September or early October, where the environmental conditions are

cents; observant Jews with Polish moustaches; Polish marrano aristocrats; Polish Nazi informants who identified Jews incorrectly; Jews in Poland who would have been

Craft technology approaches like e-textiles and paper electronics can take advantage of existing craft practices to connect technology making to new communities, but

Information Retrieval (IR) systems heavily rely on a large number of parameters, such as the retrieval model or various query expansion parameters, whose values greatly influence

It is divided in three main parts: (i) the general information concerning electrified liquid – liquid interface including its structure, the charge transfer reactions,

tially from the effective source temperature T1 cal- culated by Sherlock et a1./3/ for values of ~ I A used in their heat pulse experiments. For example, for energy flux of

b) Comparison of the interfacial moduli (p) and the bulk moduli (G) is only possible at the same frequency and deformation. Therefore, interpolation between several bulk data

Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450˚C onto glass and silicon substrates by pulsed laser deposition technique (PLD).. The effects of glass