• Aucun résultat trouvé

An efficient formulation for the simulation of elastic wave propagation in 1-dimensional collinding bodies

N/A
N/A
Protected

Academic year: 2021

Partager "An efficient formulation for the simulation of elastic wave propagation in 1-dimensional collinding bodies"

Copied!
17
0
0

Texte intégral

(1)

AN EFFICIENT FORMULATION FOR THE

SIMULATION OF ELASTIC WAVE PROPAGATION

IN 1-DIMENSIONAL COLLIDING BODIES

A. Depouhon, E. Detournay, V. Deno¨el

Universit´e de Li`ege (Belgium) University of Minnesota (USA)

ICOVP

Lisbon, September 9, 2013

(2)

PERCUSSIVE DRILLING: DOWN-THE-HOLE HAMMER

F T Piston Bit Bilinear bit/rock interaction F p Hammer casing Model specificities • Linear elasticity

• Multibody with contact

• Bilinear bit/rock interaction (BRI) law

− Piecewise linear

− Requires history variable

FE discretization → linear EOM for each body

M ˙v + Cv + Ku = fext+ fcon+ fbri

(3)

CONTACT HANDLING: PENALTY METHOD

• Regularizes unilateral constraints by introducing numerical stiffness at

interface

Body 1 Body 2

Contact stiffness

λcon= f ([g]), [g]= min(0, g)

• Quadratic contact potential possibly leads to energetic instability

Time Gap Time Fo rc e

• Stores energy during persistent contact

(4)

CONTACT HANDLING: PENALTY METHOD

• Regularizes unilateral constraints by introducing numerical stiffness at

interface

Body 1 Body 2

Contact stiffness

λcon= f ([g]), [g]= min(0, g)

• Quadratic contact potential possibly leads to energetic instability

0 5 10 15 20 10−1 100 101 102 -vf vf 0 -vf vf H0 g

Elastic bouncing bar benchmark

Newmark + linear contact force

Time No rm alize d en er gy Conservative Exact Dissipative

• Stores energy during persistent contact

(5)

CONTACT HANDLING: PENALTY METHOD

• Regularizes unilateral constraints by introducing numerical stiffness at

interface

Body 1 Body 2

Contact stiffness

λcon= f ([g]), [g]= min(0, g)

• Quadratic contact potential possibly leads to energetic instability

• Stores energy during persistent contact, Armero & Pet˝ocz (1998)

Midpoint + nonlinear contact force

N o rm a lize d e n e rg y Time 0 10 15 20 99.0% 99.5% 100% 5 Exact ArPe98 3 / 14

(6)

EVENT-DRIVEN INTEGRATION SCHEME

Concept Event Event

1. March EOM in time using any integration scheme

2. Detect occurrence of events related to BRI & contact status

3. Update EOM, go to 1

Pros & cons

+ Enables switch between BRI modes & correct handling of history variables

+ Maintains linearity of semi-discrete equations

+ Unilateral constraints become bilateral (easier)

+ Control of contact work

→ [g]= g

− Nonlinear robust event detection/localization required

− Possible troubles: chattering, zeno behavior

(7)

DISSIPATIVE MIDPOINT SCHEME

Armero & Romero (2001)

• One-step, four stage, 2nd order accurate

• Spectral annihilation property (ρ∞= 0 )

Γ0zn+1= Γ1zn+ `n with (χ > 0) zn=     un vn ˜ un−1 ˜ vn−1     Γ0=     K 2M∆t + C K 0 2I −∆tI 0 −∆tI 0 χ ∆t I I −χ∆tI −χ∆tK 0 χ ∆t K M     `n=     2(fn+ fn+1) 0 0 0     Γ1=     0 2M ∆t − C 0 0 2I 0 0 0 I 0 0 0 0 M 0 0    

• Also possible to reduce system to displacement-based formulation

0 = Z1un+1+ Z2un+ Z3vn− hn → vn+1= H1un+1+ H2un+ H3vn

(8)

EVENT DETECTION ALGORITHM

Key points

• Parallel search

• Constraint reset

Index set of active constraints

In = {i ∈C : (gL)i· (gR)i< 0}

Algorithm

Given time bracket [tL, tR] and zL, zR, gL, gR,In

1. Locate earliest event∀i ∈In (bisection, inverse interpolation, etc.)

2. Compute state vectors using the leftmost state and time step ∆t∗= t∗− tL: u∗, v∗

3. Compute event functions using updated state∀i ∈C: g∗

4. UpdateIn

5. Assess convergence: If g∗I

n

< tol : reset constraints, proceed with integration Else : update bracket [tL, tR],

proceed with event detection

(9)

EVENT LOCALIZATION

1. All procedures rely on the bracketing of an event after detection through a sign change of the event function.

2. Bisection is used if convergence is too slow.

3. Iterators:

• Bisection

t∗=1

2(tL+ tR)

• Inverse linear interpolation

t∗= tL−

tR− tL

gR− gL

gL

• Barycentric hermite interpolation (Corless et al. (2007))

C0=       0 gL 1 0 TgL0 1 gR 1 1 TgR0 −2 −1 2 −1 0       , C1=       1 1 1 1 0       t∗= T min Λ∈(0,1) Λ(C0, C1), T = tR− tL 7 / 14

(10)

ELASTIC BOUNCING BAR

Time ( ) 0 3 5 11 13 19 21 27 29 32 0 3 5 11 13 19 21 27 29 32 0 5 10 15 0 5 10 15 -0.6 -0.4 -0.2 0.0 Deformation 0 3 5 11 13 19 21 27 29 32 Axial de fo rm at ion He ight H ei ght -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 (H0, L, c0, g) = (5, 10, 30, 10) 8 / 14

(11)

BOUNCING BAR – BENCHMARKING

Problem data

• Single event: gap at contact • 100 linear elements, CFL = 1

Error measure: mechanical energy after 1 period

E = 12(uTKu + vTMv)t =16τW 100 101 102 103 0 2000 4000 6000 8000 10000 12000 14000 Total number of iterations 100 101 102 103 0 5 10 15 20

Contact stiffness ratio

CPU Time [s] Bisection Linear interp. Hermite interp. 9 / 14

(12)

BOUNCING BAR – BENCHMARKING

Learnings

• Contact stiffness strongly influences convergence of ED

• χ = 1/6: better convergence and lower error (∼ 3rd-order TDG)

• Bisection method not necessarily more expensive

100 101 102 103 0 2000 4000 6000 8000 10000 12000 14000 Total number of iterations 100 101 102 103 0 5 10 15 20

Contact stiffness ratio

CPU Time [s] Bisection Linear interp. Hermite interp. 9 / 14

(13)

DTH SYSTEM

Problem data

• 5 events: contact + BRI

• Linear interpolation + bisection

• Uniform velocity prior to impact (no defo.)

Piston Bit Contact Interface 1 Contact Interface 2 F p

Abit= 6525 mm2 Lbit= 357 mm Esteel= 210 GPa ρsteel= 7850 · 10−6g/mm3

Apis= 6525 mm2 Lpis= 300 mm KR= 106 N/mm γ = 10

(14)

DTH SYSTEM – CG VELOCITIES

Analysis

• Number of persistent contact phases varies with impact velocities

• Given nominal impact velocities design can ensure double impact

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 −4 −2 0 2 4 6 8 V elo ci ty [m m /m s] Time [ms] Piston Bit 11 / 14

(15)

DTH SYSTEM – PARAMETRIC ANALYSIS

Analysis

• Rebound velocities depend discontinuously on impact velocities

• Persistent contact phases play a critical role in post-impact velocities

Piston rebound velocity Bit rebound velocity

# contact @ P/B # contact @ B/R 1 2 3 4 5 1 0 -1 -2 -3 5 6 7 8 9 10 2 1 0 -1 -2 5 6 7 8 9 10 2 1 0 -1 -2 5 6 7 8 9 10 2 1 0 -1 -2 5 6 7 8 9 10 2 1 0 -1 -2 [m/s] [1] A C B D 12 / 14

(16)

SUMMARY

Framework for the handling of contact & events

• Contact is handled via penalty method

• Scheme is energetically stable

• Applies to

− Wave propagation in DTH systems (motivation) & chain systems

− Linear structural dynamics

Benchmark 1 – Elastic bouncing bar

• Best performance/accuracy with dissipative midpoint for χ = 1/6

• 

Influence of contact stiffness

Benchmark 2 – DTH system

• Discontinuous dependence & persistent contact phases

→ Possible to model DTH systems with RBD? Tough ...

(17)

CONTENTS

Motivation & Introduction

DTH percussive drilling

Contact handling: penalty method Event-driven integration scheme

Event-driven integration

Dissipative midpoint scheme Event detection

Applications

Elastic bouncing bar DTH hammer

Summary & work in progress

Summary

Références

Documents relatifs

Aujourd’hui des chaîne comme Harvery’s ou Burger King ont reproduit cet avantage que possédait MC Donald et c’est pourquoi la concurrence se fait de plus en plus vive dans ce

There are three prepositions in French, depuis, pendant and pour, that are translated as 'for' and are used to indicate the duration of an

Nous avons établi aussi, à partir de deux corpus électroniques unilingues étiquetés par catégorie grammaticale que nous avons constitués, des profils syntaxiques pour

correspondientes a circones del horizonte A (coraza ferruginosa) coinciden con edades entre 1500 y 1545 Ma del Granito de Parguaza o granitoides asociados encontrados en

We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the

Anne-Gaëlle T OUTAIN , who presents the Saussurian conception of the constitutive duality of the sign, shows that in traditional dualism sound / meaning, Saussure opposes

((such raising must be blocked. here, then what checks F _crY! I amSUlPSting that the type of languap that I am describing is exemplified in the Mayan languages, and I will show

In this sense, with a focus on crop production supply chain encountered at a typical French agricultural cooperative, this study investigates an alternative storage policy based-on