• Aucun résultat trouvé

Exploring design space in embodiment design with consideration of models accuracy

N/A
N/A
Protected

Academic year: 2021

Partager "Exploring design space in embodiment design with consideration of models accuracy"

Copied!
5
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/10701

To cite this version :

Nicolas PERRY, Mehdi EL AMINE, Jérôme PAILHES - Exploring design space in embodiment

design with consideration of models accuracy - CIRP Annals - Manufacturing Technology - Vol.

64, n°1, p.181–184 - 2015

Any correspondence concerning this service should be sent to the repository

Administrator :

archiveouverte@ensam.eu

(2)

Exploring

design

space

in

embodiment

design

with

consideration

of

models

accuracy

Nicolas

Perry

(2)

*

,

Mehdi

El

Amine,

Je´roˆme

Pailhe`s

ArtsetMe´tiersParisTech,I2M–UMR5295,F-33400Talence,France

1. Introductionandstateofart

Life-cyclecostcanbeinfluencedupto70%bydecisionstaken

duringconceptualandembodimentdesignstages[1]. Theneedof

supportingdecisionmakingbyadequatetheoriesand

methodolo-giesisthusgreatestatthesestages.For manyyears,designhas

beenmostlydependentoncompanies’know-howanddesigners’

tacitknowledge[2]. Nowadays,agreatpartofdevelopmenttime

in design departments is spenton numerical calculationusing

behaviourmodels.Giventhemultitudehypothesis and

approx-imationsadopted inthesemodels,their capacity toadequately

representproductbehaviourshasalwaysbeenacriticalissuefor

designers. In addition, it is difficult to effectively qualify the

accuracy of results provided by these behaviour models. This

usuallyleadstoalong‘‘trial-and-error’’processinwhichseveral

physicalprototypesarerealizedandtested.Thisisafrequentcause

ofcost overrunsand scheduledelays. Moreover, it provides no

guaranteeofapproachingtheoptimalsolution.Withinthiswork,

the objective is to propose a multi-criteria decision-making

methodthataimstomaximizethesatisfactionofdesignobjectives

witha considerationoftheriskassociatedwiththeaccuracyof

behaviourmodels.

Multi-criteriadecision makingisa verycomplex problemin

modernindustry.AsclearlyexplainedbyKrauseandGolm[3]and

Elwanyet al.[4],itisprincipallyduetotheheterogeneousand

contradictorynatureofdesignobjectives,andtodataimprecision.

Intheframeworkofdecisionmakinginengineeringdesign,the

MethodofImprecision(MoI)proposedbyOttoandAntonsson[5]

hasdemonstrateditsefficiency.Itallowsdesignerstoformalize

imprecision in Design Alternative (DA) evaluation using fuzzy

logic.EachDAisthenevaluatedusingseveralpreferencevalues

which are finally aggregated into a generalized preference. In

addition, theMoIproposes axioms toprovide a framework for

applicationtothefieldofengineeringdesign,andtheabilitytouse

differentstrategiestoexpressthewillofdesigners.MoIprovides

solidtheoreticalbasisinthefieldofdecisionmakinginengineering

design.However,themainlimitofthisapproach,inourcontext

andforourpointofview,isthattheevaluationofDAdoesnottake

intoaccounttheaccuracydegreeofbehaviourmodels(ordata)

usedfortheevaluationofDA.Asanexample,twoDAmayillicitthe

same performance in term of achievementof design goals but

the risk related to the accuracy of behaviour models may be

different.TheattitudeofDecisionMaker(DM)inthiscasewillnot

bethesame.

Inaccuracy of behaviours models is due to: simplifying

hypotheses,uncertaintyintheidentificationofmodelparameters

and,inaccuracyofdigitalresolution[6].Evaluatingtheaccuracyof

abehaviourmodelisadifficulttask.Intheabsenceofsignificant

backgrounddata,statisticaltoolssuchacase-basedreasoningor

artificialneuralnetworkcannotbeused.Inthepresentcontext,we

supposethatreferencepointsexistandcorrespondtoresultsof

experimental testson realscale 1 prototype. Inthis case, it is

recommended to measure accuracy as the distance between

behavioursmodelresultandreferencepoints[7,8].Accordingto

Vernatet al.[7],theaccuracyestimationcriteriacanbelocalor

globalcriteria.Alocalerrorestimatecanbegiven,forexample,

throughthemaximum(Eq.(1))orminimumoftheabsoluteerror

inthemeasuredpoints,orsimplybytheerrorataparticularpoint.

Aglobalerrorestimatecanbegivenforexamplebythesquared

error(Eq.(2))allowsforexampletoobtainageneraltrendofthe

errorontheentiredesignspace.Itisrecommendedtocompare

theobtaineddistancewithathresholdvalueoraccuracyobjective

[7,8]. EM¼maxiX˜iXi    (1) Keywords: Decisionmaking Design Conceptsmaturity ABSTRACT

Reworktasksincollaborativedevelopmentprojectsdealingwithimmaturedesignconceptsarevery frequentandareresponsibleofcostoverrunsandscheduledelays.Takingintoaccountuncertaintyand accuracyofmodels(anddata)improvesdecisionmakingaccordingtostrategicorientationforproduct development.Basedonarealdesignoflight,slenderbutrigidsolarcollectorsupports,multipletoolshave beendevelopedandtestedtosupportdecisionmakingatdifferentstagesofdevelopmentprocess.The objectiveofthispaperistoinvestigatetheintegrationoftheseaccuracyevaluationsintothedesign process.Thisproposalisvalidatedbytheindustrialdevelopmentandvalidation.

* Correspondingauthor.

(3)

¯ E ¼X n i¼1 1 n X˜iXi    (1’)

Thelimitofsuchameasureofaccuracyoccurswhenthereare

veryfewreferencepointsandalargedesignalternativesspaceto

explore.Inthiscase,itisverydifficulttojustifythevalidityofthis

accuracymeasureinalldesignalternativesspace.

2. Proposedapproach

Whenexploringthesetofpossibledesignalternativesusingthe

results of behaviour models, decision maker’s preferences are

drivenbytwomainconsiderations:(i)maximizingthesatisfaction

ofdesignobjectives,and(ii)minimizingtheriskassociatedtothe

inaccuracyofbehaviourmodelsused.Intheproposedapproach,

thesetwoconsiderationsarerepresentedbynumericalindicators

that are respectively Overall Desirability Indicator (ODI) and,

SafetyIndicator(SI).

2.1. Overalldesirabilityindicator(ODI)

ODI quantifythe generallevelof satisfactionachievedby a

DA.Themodelusedforitscalculation(Fig. 1)issimilartoMoI

[5]. Startingfrom agivenDA thatis definedbythechoice of

design parameters (structural dimensions, materials, etc.),

behavioursmodels areusedtodetermine thesetofquantities

needed to assessthe achievement of design objectives (mass,

maximumstress,carbonfootprint,etc.).Theresultingquantities

arecalledObservationVariables(OV).ForeachOV,aDesirability

Index(DI)between0and1 isthenaffectedtoexpressthelevel

ofsatisfactionofthecorrespondingdesignobjective(Fig. 2).In

our approach, this process is made using the adjustable

desirability function proposed by Harrington’s [9] because of

its ease of parametrization and its appropriateness to the

differentkindsofdesignobjectives.TheODIisobtainedbythe

aggregation of DI of each design objectives. The aggregation

function used is Generalized Ordered Weighted Averaging

(GOWA) operator (Eq. (4)) proposed by Yager [10]. This

functionwaschosensincetheaggregationstrategyis

complete-lyadjustable bythechoiceof:(i)designobjectivesweightswi

thatexpresstheirrelativesimportanceand,(ii)theparameters

that reflects the level of compensation between design

objectives. Scott [11] proves that any DA in Pareto front can

bereachedbyadjustingwiands. Theinterpretationofthegiven

weightsisnot absolutebutdependsonthelevelof

compensa-tion (expressed by s). Inother way, the method used for the

determination of weight musttake into account the value of

s. In order to respect this constraint, we use in this work

the method of indifference points [11] that is based on the

definitionofindifferencedesignalternativesthatelicitthesame

performance, to determine simultaneouslya unique value for

thetrade-offstrategyandfortheweightratio.

ODI¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Xn j ðwjðDIjÞsÞ s v u u t (2)

The step of defining desirability functions and aggregation

function constitute a mean for capitalizing on knowledge

associated withdecision making.Italsoallows theautomation

thecalculation processvia theformalization ofdecision maker

preferences.ThisfacilitatesthetreatmentofseveralDA.Another

advantageofaggregationprocessisthatitrepresentsameanof

negotiating different and usually conflicting design objectives,

whichfacilitateinformationexchange,mutualunderstanding,and

jointdecision-makingincollaborativedevelopment[12].

2.2. Safetyindicator(SI)

Arecognizedprincipleinengineeringdesigndecisionsisthatof

annihilation [5,13,14]. It states that a minimum threshold is

required for each design objective, and if also one of these

thresholds is unmet, the DA is rejected regardless of the

satisfaction level of the otherdesign objectives.So, one of the

mainconcernsofdecisionmakersistoensurethesatisfactionof

these minimum thresholds. The proposed Safety Indicator (SI)

aims to assess the risk of not meeting the corresponding

acceptancethresholdduetotheinaccuracyofbehaviourmodels

used.Givenadesignalternative,aSafetyIndicator(SI)iscalculated

foreachdesignobjectiveanditsvalueistobemaximized.Inorder

tobeconservative,theminimumvalueisconsideredbetweenthe

differentSI.TheproceduretocalculateSIisinspiredfromFMEA

(Failure Mode Effects Analysis). Three factors are taken into

account:theoccurrenceoftherisk(O),thegravityofnotsatisfying

the acceptance threshold (G) and, the detectability (C). As the

classicFMEA,gravityisestimatedusinganumericalscale(from

Fig.1.EvaluationmodelofOverallDesirabilityIndicator.

Fig.2.Desirabilityandconfidencefunctions. 181–184

(4)

0.2 to1)associatedwithsemanticexpressions.Themethodsof

calculationofOandCareexplainedbelow.SIiscalculatedbythe

relation:

SI¼OGD (3)

2.2.1. Occurrenceoftherisk(O)

This factor is obtained by the relative distance between

Observation Variables (OV) calculated by behaviour model and

theacceptance threshold. Itis considered that thegreater this

distance is, the lower is the risk of not respecting acceptance

thresholdduetothelowaccuracyofbehaviourmodel.Inorderto

takeintoaccountthevaguenessofacceptancethreshold,amean

distancewascalculatedusingtwovaluesOV1

t andOVt2(Eq.(4)).

O¼1

2ðDðOVm0OV

1

tÞþDðOVm0OVt2ÞÞ (4)

whereDisthedistancedefinedby:

Dða;bÞ¼ ab j j b if a>b 0 if a<b 8 < : (5) 2.2.2. Detectability(D)

Inourcase,itisassumedthatatleastonedesignalternativehas

beenprototypedandtested.Itisconsideredasareferencepointto

evaluatetheaccuracyofbehaviourmodel.Foragivenobservation

variable, the accuracy of the model is given by the distance

betweenthevaluegivenbybehaviourmodel(OVi)andthevalue

givenbyexperimentalmeasuresonphysicalprototype ˜O ˜Vi. The

distanceusedis:

D0ðOV i; ˜O ˜ViÞ¼ OV ˜O ˜Vi ˜ O ˜Vi           (6)

Theconditionsinwhichexperimentaltestsonprototypewas

performed may be different of real environment. Moreover,

measuring instruments always exhibit a certain imprecision.

Experimental measures ˜O ˜Vi are thus subject to imprecision.

Assumingthatexperimentalmeasureiscomprisedbetween ˜O ˜V1i

and ˜O ˜V2i, we consider an average distance E obtained by the

followingequations: E¼ 1 ðD0ðOVi; ˜O ˜ViÞÞ D0 s if D0 ð ˜O ˜Vi;OViÞ<D0s 0 if D0ð ˜O ˜V i;OViÞ>D0s 8 > < > : (7) D0ðOVi; ˜O ˜ViÞ D E ¼D 0 ðOVi; ˜O ˜V 1 iÞþD 0 ðOVi; ˜O ˜V 2 iÞ 2 (8)

D0sisathresholddistanceoverwhichthemodelisconsidered

unusablebythedesigner.Inourcasestudy,weadoptavalueof

0.20 foreachobservationvariable.

The distance E is calculated for the design alternative

correspondingtotheprototype.Foradifferentdesignalternative,

in which different design parameters are used, this accuracy

measureisnolongervalid.Inordertocorrectthisindicator,itis

multiplied by a second term (Eq. (9)) that represents the

degradationofbehaviourmodelexactnessrelatedtothedistance

oftheevaluateddesignalternativefromthephysicalprototype.

D¼EY n i CDi¼ Yn i giðDPiDPoÞ (9)

n is the number of design parameters and CIi is a parameter

comprised between 0 and 1 and express the degradation of

measuredaccuracyE. Itiscalculatedusingconfidencefunctionsgi

(Fig. 2)thatexpressCDiasafunctionofthedistancebetweenthe

design parameter of the reference solution CDo and that of

candidate solution CDi. As shown in Fig. 2, this function is

parametrizedusing twopoints thatare estimatedby designers

involved in the development of the product. This additional

information allowsextendingtheuseof initialaccuracy

assess-menttoalldesignalternativesspace.

3. Applicationtotheindustrialcase

Inaconcentratedsolarpower(CSP)plant,themainfunctionof

solar collectors is to concentrate and redirect sunlight onto

absorbertubestoheatuptheworkingfluid.Thesolarcollectoris

composedofreflectiveplates(reflectiveglassesplatesorpolished

aluminiumplates)andasupportingstructurewhosefunctionisto

give andmaintain reflectiveplates shape (Fig. 3). A mounting

device is placed between the reflecting surface plates and the

supportingstructuretoensuretheconnectionbetweenthem.In

ourstudy,onlysupportingstructure isconsidered. Theconcept

selectedinconceptualdesignphaseistrussstructure.Thecostof

rawmaterialforthemanufacturingofsolarcollectorsrepresents

50%ofinvestmentcostforaCSPplant[15]. Itisthusimportantto

reducethestructuremass(objectiveDI3).Inaddition,inorderto

maintainagoodopticalperformance,elasticdeformationofthe

structuremustremainaslowaspossible(objectiveDI1).Finally,it

mustresistahighwindpressuretobeusableforamultitudeof

implementation sites (objective DI2). More details about the

productaregivenin[14].

A first behaviour model based on bars-type finite element

analysishasbeenproposedtoevaluateOV. Using thismodel,a

designofexperimentofdesignparametershasbeenperformedand

afirstDAhasbeenselectedforprototyping(Fig.3).Thecomparison

betweenmechanicaltestsandbehavioursmodelOVrevealsmajor

discrepancies(until35%oferror).Thefirstbehaviourmodelisnot

adapted to this structure since it does not correctly reproduce

physique phenomena in nods connexions, which are strongly

involved in the evaluation observation variables. A second

behaviourmodelhasbeenproposedusingshell-typefiniteelement

analysiswithahighlyrefined meshingin nodsconnexions.The

prototypetestingresultswereusedasareferencepointtotestthe

accuracyoftheimprovedbehaviourmodelandaseconddesignof

experiment procedure has been performed by varying design

parametersintheestablishedranges.EachofDAhasbeentestedin

termofODIandSI.Fig.4showstheresultsofdesignofexperiment.

At this stage of development, decisionsare required on the

evolution of actual DA (prototyped alternative) and on the

(5)

developmenttasksneededtothisdecision.Trade-offmustbedone

betweenODIandSI.Manyelementsaretobetakenintoaccount.In

thisparagraph,generalguidelinesarederived.Inthecasewhere

thedeadline of validating theproduct is approaching, decision

wouldpreferasolutioninZone1(Fig. 4)sincehavingafeasible

solutionisapressingissueinthiscase.Inothercircumstances,DM

wouldprefertoexploreDAwithhigherODI(Zone2 orZone3)

even with a low SI. But such a decision implies further

investigationsandfurthertimetoimproveSIofchosenDA.These

couldbedoneeitherbyimprovingbehaviourmodelssothatthe

accuracycomparedwithreferencepointwillbetterorbyrealizing

otherprototypesandothermechanicaltestsfortheselectedDA.In

ourcase,wecanobserveinFig. 4thatanimportantgapbetween

ODIofthereferencepointandthemaximumODIachievableduring

theseconddesignofexperiment.Suchapotentialofimprovement

cannotbeignored.DesignalternativeswithhighODIelicitalowSI

whichpreventstheirdirectvalidation.Furtherdevelopmenttasks

mustbedoneinourcasetoimprovethisSI.

Alternative structure that has already been developed and

testedinanexperimentalCSPplanthastobetakenintoaccountin

reasoning.ItsODIisestimatedto0.53butitsmainadvantageisits

highmaturitylevel.Itrepresentsaguaranteefordecisionmakers

sinceitcanbedirectlyintroducedtothesystem.Inthiscase,itis

moreacceptableforthecaseoftrussstructuretoexploreDAwith

lowSI.Thisscenarioisverycommonindesigndepartments.They

are usually encouraged to have a feasible solution with high

maturitydegreetoreducerisk.

Inourindustrialcase,thestrategicdecisionistoadopta

low-cost CSP plant. In the proposed approach, it is expressed by

assigninghighweighttotheobjectiveofstructuremassreduction

comparedwiththeotherdesignobjectives.Inmanysituations,the

decision maker wishes to know the effect of giving more

importance to some design objectives compared to others.

Thereby, we haveconsidered a second scenarioin which more

importanceisgiventoopticalperformance(whichimpactsenergy

efficiencyoftheCSPplant) comparedtostructuremass.Fig. 5

showstheresultsofODIandSIcalculationforthisscenario.Itcan

be seen that the cartography of ODI and SI changed. Such a

modificationindevelopmentstrategycanbedoneatearlyphases

ofdevelopmentprocessandimplyhavingaholisticviewofthe

global system by trying to understand how individual design

decisionsimpacthigh-levelattributesofthesystem[16].

4. Conclusionandfutureworks

Inthiswork,amulti-criteriadecisionmakingmodelisproposed

andtestedfortheselectionofdesignparameters.Itisbasedonthe

maximization of the satisfaction of design objectives and

minimization of the risk associated with the low accuracy of

behavioursmodels.Theconstructionofproposedindicatorspasses

through the formalization of preferences associated with the

achievementofdesignobjectivesaswellasthedecisionmaker

attitudetowardsrisk.Thedevelopmentcostofthismulticriteria

decision model is counterbalanced by the capitalization on

knowledge associated with decision making and the ability to

treat a broad spectrum of design alternatives. The strength of

proposedaccuracymeasure(detectability)is tocombine onthe

onehandanobjectivemeasurethat istheerrorfromreference

pointandontheotherhandasubjectivemeasurethatexpressthe

degradation of the initial accuracy measure in function of the

distance of DP from reference point. This combination allows

havinganaccuracymeasurethatcoversalldesignspace.Afuture

stepistoprovidethresholds forSIinordertoidentifyadesign

alternativethatcanbedirectlyintroducedtothesystemandto

treatothercasestudies.

References

[1]Zimmer L,Zablit P(2001)GlobalAircraftPredesignBasedonConstraint PropagationandIntervalAnalysis.ProceedingsofCEASConferenceon Multidis-ciplinaryAircraftDesignandOptimisation,Ko¨ln,Germany.

[2]SaridakisK,DentsorasA(2008)SoftComputinginEngineeringDesign–A Review.AdvancedEngineeringInformatics22(2):202–221.

[3]KrauseF-L,GolmF(1996)PlanningandMulti-criteriaOptimizationofDesign Processes.AnnalsoftheCIRP45(1):145–148.

[4]ElwanyMH,KhairyAB,Abou-AliMG,HarrazNA(1997)Combined Multi-criteria Approach for Cellular Manufacturing Layout. Annals of the CIRP 46(1):369–372.

[5]OttoKN,AntonssonEK(1993)TheMethodofImprecisionComparedtoUtility TheoryforDesignSelectionProblems.ProceedingsoftheASMEDesignTheory andMethodology,NewMexico,167–173.

[6]LemaireM(2014)MechanicandUncertainty,Wiley-ISTE.176p,ISBN: 978-1-84821-629-7.

[7]VernatY,NadeauJ-P,SebastianP(2010)FormalizationandQualificationof modelsAdaptedtoPreliminaryDesign.InternationalJournalonInteractive DesignandManufacturing4(1):11–24.

[8]MeckesheimerM(2001)AFrameworkforMetamodel-basedDesign:Subsystem MetamodelAssessmentandImplementationIssues,(PhDthesis)Pennsylvania StateUniversity.

[9]Harrington EC(1965)TheDesirabilityFunction.IndustrialQuality Control 21(10):494–498.

[10]YagerRR(1988)OnOrderedWeightedAveragingAggregationOperatorsin MulticriteriaDecisionMaking.IEEETransactionsonSystemsManand Cyber-netics18(1):183–190.

[11]Scott MJ,Antonsson EK (2000) UsingIndifference Points in Engineering Decisions.Proceedingsofthe11thInternationalConferenceonDesignTheory andMethodology,Baltimore,MD,ASME.

[12]JinY,GeslinM,LuSC-Y (1991)ImpactofArgumentativeNegotiationon CollaborativeEngineering.AnnalsoftheCIRP56(1):181–184.

[13]BiegelP,PechtM(1991)DesignTrade-offsMadeEasy.ConcurrentEngineering 1(3):29–40.

[14]ElAmineM,PerryN,Pailhe`sJ(2014)CriticalReviewofMulti-criteriaDecision AidMethodsinConceptualDesignPhases:ApplicationtotheDevelopmentof aSolarCollectorStructure.ProcediaCIRP21:497–502.

[15]KumaraV,ShrivastavaaRL,UntawalebS-P(2015)FresnelLens:APromising AlternativeofReflectorsinConcentratedSolarPower.Renewableand Sustain-ableEnergyReviews4:376–390.

[16]LuSC-Y,ElmaraghyW,SchuhG,WilhelmR(2007)AScientificFoundationof CollaborativeEngineering.AnnalsofCIRP56(2):605–634.

Fig.4.ODIandSIforeachcandidatesolutionforthefirstscenario.

Figure

Fig. 2. Desirability and confidence functions.
Fig. 3. Structure of solar collector and related design parameters.
Fig. 4. ODI and SI for each candidate solution for the first scenario.

Références

Documents relatifs

Keywords: Antisense oligonucleotide, Clinical trial, CRISPR, Gene editing, Gene therapy, Messenger RNA delivery, mRNA vaccine, RNA nanoparticle, Short interfering RNA

Durant notre stage dans l’unité de fabrication spécialisé dans l’industrie pharmaceutique « SAIDAL », nous nous sommes familiarisées avec l’unité de

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

Dans ce contexte, j’ai été chargé en 2008 de mener une activité de recherche sur l’analyse économique, sociétale et environnementale du cycle de vie des ouvrages d’art avec pour

Designing a lowcost effective network for monitoring large scale regional seismicity in a softsoil region (Alsace, France).. AGU Fall Meeting, Dec 2015, San Francisco, CA,

Journal of Metamorphic Geology 20:859-871 Essarraj S, Hibti M, Marignac C, Cathelineau M, Boiron M-C, Dubessy J (1999) Hercynian metamorphism of the Hajjar Pb- Zn-Cu

La capacité croissante à contrôler des systèmes quantiques toujours plus simples a pu être mise à prot pour étudier, tester et comprendre plus profondément encore cette

Mémoire de projet de fin d’étude Page 2 L’objectif de notre étude et d’optimisé des paramètres de fonctionnement (température et taux de reflux) de la