• Aucun résultat trouvé

The asteroseismic analysis of the pulsating sdB Feige 48 revisited

N/A
N/A
Protected

Academic year: 2021

Partager "The asteroseismic analysis of the pulsating sdB Feige 48 revisited"

Copied!
23
0
0

Texte intégral

(1)

The asteroseismic analysis of the

The asteroseismic analysis of the

pulsating sdB Feige 48

pulsating sdB Feige 48

revisited

revisited

V. Van Grootel

(2)

Contents

Contents

1.

1.

Method and objectives for an asteroseismological analysis.

Method and objectives for an asteroseismological analysis.

Introduction of the rotation of the star

Introduction of the rotation of the star

2.

2.

About Feige 48: spectroscopy, close binary system and

About Feige 48: spectroscopy, close binary system and

first asteroseismic analysis (Charpinet et al., 2005)

first asteroseismic analysis (Charpinet et al., 2005)

3.

3.

Results from re-analysis with rotation :

Results from re-analysis with rotation :

• Search for the optimal model with solid rotationSearch for the optimal model with solid rotation • Period fit and mode identificationPeriod fit and mode identification

• Comparison with Charpinet et al. (2005)Comparison with Charpinet et al. (2005)

• Consistency with Han’s simulations (2003) and Stellar Evolution TheoryConsistency with Han’s simulations (2003) and Stellar Evolution Theory

• Comments about the period of rotationComments about the period of rotation

4.

4.

Testing the hypothesis of a fast core rotation

Testing the hypothesis of a fast core rotation

5.

(3)

1. Asteroseismological analysis :

1. Asteroseismological analysis :

Method and Objectives

Method and Objectives

Forward approach

Forward approach

: fit theoretical periods with

: fit theoretical periods with

all observed periods simultaneously

all observed periods simultaneously

• Internal structure calculation from TInternal structure calculation from Teffeff, log , log gg, log q(H) (here after, , log q(H) (here after,

lqh) and M lqh) and Mtottot

• Calculation of the adiabatic and non-adiabatic pulsations + Calculation of the adiabatic and non-adiabatic pulsations + rotational splitting calculation (see next slide)

rotational splitting calculation (see next slide)

• Double-optimisation scheme to find the best fit(s)Double-optimisation scheme to find the best fit(s)

S

S² = ² = ΣΣ (P (Pobsobs – P – Pthth)²)²

A-posteriori

A-posteriori

mode identification (

mode identification (

k, l

k, l

,

,

m

m

). For

). For

l:

l:

independent test from multi-colour photometry

(4)

Introduction of the star rotation

Introduction of the star rotation

Ω(r) rotation, 1st order Perturbative Theory:

Ω(r) rotation, 1st order Perturbative Theory:

where

where

and

and

Dziembowski’s variables are given

Dziembowski’s variables are given

by pulsation codes. For each theoretical (adiabatic) period

by pulsation codes. For each theoretical (adiabatic) period

m

m

= 0,

= 0,

calculation of the multiplets for a given Ω(r) (solid, fast core or

calculation of the multiplets for a given Ω(r) (solid, fast core or

linear rotation)

linear rotation)

.

.

Advantage :

Advantage :

All observed periods can be used for analysis, no need for assumptions about

(5)

2. What is known so far

2. What is known so far

about Feige 48

(6)

Feige 48 : Spectroscopy

Feige 48 : Spectroscopy

Koen et al., 1998

Koen et al., 1998

• TTeffeff = 28,900 ± 300 K = 28,900 ± 300 K • log log gg = 5.45 ± 0.05 = 5.45 ± 0.05

Heber et al., 2000, Keck/HIRES

Heber et al., 2000, Keck/HIRES

• TTeffeff = 29,500 ± 300 K = 29,500 ± 300 K • log log gg = 5.50 ± 0.05 = 5.50 ± 0.05

+ + VV sin sin ii ≤ 5 km s ≤ 5 km s-1-1

Charpinet et al., 2005, MMT

Charpinet et al., 2005, MMT

• TTeffeff = 29,580 ± 370 K = 29,580 ± 370 K • log log gg = 5.480 ± 0.046 = 5.480 ± 0.046

(7)

Feige 48 : a close binary system

Feige 48 : a close binary system

S. O’Toole et al., 2004:

S. O’Toole et al., 2004:

Detection of a companion to the

Detection of a companion to the

pulsating sdB Feige 48.

pulsating sdB Feige 48.

HST/STIS, FUSE archives

HST/STIS, FUSE archives

• Velocity semi-amplitude KVelocity semi-amplitude KsdB sdB = 28.0 ± 0.2 km s= 28.0 ± 0.2 km s-1-1

• Orbital period of 0.376 ± 0.003 d (Orbital period of 0.376 ± 0.003 d ( 9.024 ± 0.072h) 9.024 ± 0.072h) • The unseen companion is a white dwarf with ≥ 0.46 MThe unseen companion is a white dwarf with ≥ 0.46 Mss • Orbital inclination Orbital inclination ii ≤ 11.4° ≤ 11.4°

(8)

Feige 48 : time-series photometry

Feige 48 : time-series photometry

CFHT, six nights in June 1998. Resolution of

CFHT, six nights in June 1998. Resolution of

~ 2.18 µHz

~ 2.18 µHz

9 periods detected:

9 periods detected:

Mean spacing: <

Mean spacing: <

Δν

Δν

> ~ 28.2 µHz,

> ~ 28.2 µHz,

σ(Δν)

σ(Δν)

= 2.48 µHz

= 2.48 µHz

Spacing

Spacing

of

of

52.9 µHz with

52.9 µHz with

f

f

11

(Δm=2) !!!

(Δm=2) !!!

(9)

Feige 48 : first asteroseismic analysis

Feige 48 : first asteroseismic analysis

Charpinet et al., A&A 343, 251-269, 2005

Charpinet et al., A&A 343, 251-269, 2005

Assumption of 4

Assumption of 4

m

m

= 0 modes, no rotation included

= 0 modes, no rotation included

Only degrees

Only degrees

l

l

≤ 2

≤ 2

Structural parameters obtained:

Structural parameters obtained:

T

T

effeff

= 29 580

= 29 580

± 370 K (fixed)

± 370 K (fixed)

, log

, log

g

g

= 5.4365

= 5.4365

± 0.0060

± 0.0060

,

,

lqh = -2.97

lqh = -2.97

± 0.09 and

± 0.09 and

M

M

tottot

= 0.460

= 0.460

± 0.008

± 0.008

Ms

Ms

Period fit :

Period fit :

<dp/p> ~ 0.005%, <dp> ~ 0.018s, close

<dp/p> ~ 0.005%, <dp> ~ 0.018s, close

to the accuracy of the observations

to the accuracy of the observations

!

!

Derived inclination

Derived inclination

i

i

≤ 10.4 ± 1.7°, very good

≤ 10.4 ± 1.7°, very good

agreement with O’Toole et al.

(10)

First Asteroseismic analysis:

First Asteroseismic analysis:

Mode Identification

(11)

3. New asteroseismological

3. New asteroseismological

analysis with rotation

(12)

Search for the optimal model with

Search for the optimal model with

solid rotation

solid rotation

Solid Rotation: hypothesis

Solid Rotation: hypothesis

No assumption about

No assumption about

m

m

= 0 modes (used all 9 periods); still

= 0 modes (used all 9 periods); still

only degrees

only degrees

l

l

≤ 2; no

≤ 2; no

a-priori

a-priori

constraint on identification

constraint on identification

Optimisation on 4 parameters : log

Optimisation on 4 parameters : log

g

g

, lqh, M

, lqh, M

tottot

and P

and P

rotrot

Several models* can fit the 9 periods, the preferred one is:

Several models* can fit the 9 periods, the preferred one is:

T

Teffeff = 29 580 = 29 580 ± 370 K (still fixed)± 370 K (still fixed), log , log gg = 5.4622 = 5.4622 ± 0.0060± 0.0060, ,

lqh = -2.58

lqh = -2.58 ± 0.09 and± 0.09 and M Mtottot = 0.519 = 0.519 ± 0.008± 0.008 Ms Ms

Solid rotation P

Solid rotation P

rot

rot

= 32 500s ± 2200s

= 32 500s ± 2200s

9.028 ± 0.61h

9.028 ± 0.61h

Excellent

Excellent

agreement with orbital period determined

agreement with orbital period determined

independently from velocities variations (P

independently from velocities variations (P

orb orb

= 9.024 ±

= 9.024 ±

0.072h).

0.072h).

(13)

Analysis with solid rotation:

Analysis with solid rotation:

Mode Identification

(14)

Space parameters maps

Space parameters maps

Left : lqh and M

Left : lqh and M

tottot

fixed; right : T

fixed; right : T

effeff

and log

and log

g

g

fixed

fixed

log log gg Teff Teff lqhlqh Mtot Mtot

(15)

Comparison with Charpinet et al., 2005

Comparison with Charpinet et al., 2005

About model parameters:

About model parameters:

• New surface gravity log New surface gravity log gg closer to spectroscopy closer to spectroscopy

• Total mass relatively high (MTotal mass relatively high (Mtottot ~ 0.52 M ~ 0.52 Mss) but ) but possiblepossible according to according to

Han’s simulations (2003) Han’s simulations (2003)

• H-envelope slightly thicker, still completely consistent with Stellar H-envelope slightly thicker, still completely consistent with Stellar Evolution Theory

Evolution Theory

About period fit and mode identification:

About period fit and mode identification:

• The difference is about the The difference is about the mm = 0 modes in the doublet (343-346s) = 0 modes in the doublet (343-346s) and the triplet (374-378-383s). The identification “

and the triplet (374-378-383s). The identification “m m = -1, = -1, m m = -2” is = -2” is maybe unexpected, but the intrinsic amplitudes are never known

maybe unexpected, but the intrinsic amplitudes are never known • Forcing Charpinet’s model + solid rotation : Forcing Charpinet’s model + solid rotation : SS² ~ 2.6 (4x poorer). No ² ~ 2.6 (4x poorer). No

convergence to a Rotation Period of ~ 32 500s (rather ~ 29 500s) convergence to a Rotation Period of ~ 32 500s (rather ~ 29 500s)

Conclusion : Charpinet’s model is not given up, but there is also hints in favor of a higher mass Conclusion : Charpinet’s model is not given up, but there is also hints in favor of a higher mass

model model

(16)

Consistency with Han’s simulations

Consistency with Han’s simulations

and EHB Stellar Evolution Theory

(17)

Comparison with Charpinet et al., 2005

Comparison with Charpinet et al., 2005

S² S² ~ 0.6~ 0.6 log g ~ 5.46 log g ~ 5.46 M M ~ 0.52 M~ 0.52 M S² S² ~ 0.9~ 0.9 log g ~ 5.45 log g ~ 5.45 M M ~ 0.49 M~ 0.49 M S² S² ~ 2.6~ 2.6 log g ~ 5.435 log g ~ 5.435 M M ~ 0.46 M~ 0.46 M

Suggestion

Suggestion

: time-series spectroscopy observations

: time-series spectroscopy observations

could give (needed) hints about

(18)

Comments about the period of solid

Comments about the period of solid

rotation

rotation

(= 9.028

(= 9.028

± 0.61h)

± 0.61h)

Fitting all 9 periods independently is impossible (very poor

Fitting all 9 periods independently is impossible (very poor

S

S

²

²

and no convincing models)

and no convincing models)

→ not a slow rotator

→ not a slow rotator

The smallest

The smallest

Δ

Δ

f

f

is 8.82 µHz (

is 8.82 µHz (

P

P

rotrot

~1.2 days at the

~1.2 days at the

slowest

slowest

),

),

but again convincing models don’t exist at this rate

but again convincing models don’t exist at this rate

Even without knowing the orbital period, ~ 9.5h is the only

Even without knowing the orbital period, ~ 9.5h is the only

acceptable rate for the rotation period

acceptable rate for the rotation period

Conclusion :

Conclusion :

Orbital period = Rotation period

Orbital period = Rotation period

(even if lower accuracy for P (even if lower accuracy for Protrot))

Confirmation of the

Confirmation of the

reasonable assumption of a

reasonable assumption of a

tidally locked system

tidally locked system

(19)

4. Testing the hypothesis of

4. Testing the hypothesis of

a fast core rotation

(20)

4. Testing a fast core rotation

4. Testing a fast core rotation

(Kawaler et al. ApJ 621, 432-444, 2005)

(Kawaler et al. ApJ 621, 432-444, 2005)

Reminder : only degrees

Reminder : only degrees

l

l

≤ 2 for this star

≤ 2 for this star

→ ideal to test the hypothesis of a fast core

→ ideal to test the hypothesis of a fast core

Surface rotation fixed at the optimal value of

Surface rotation fixed at the optimal value of

32,500s. Core rotation was varied from 500 to

32,500s. Core rotation was varied from 500 to

32,500s, by steps of 500s. For each core period,

32,500s, by steps of 500s. For each core period,

computing merit function

computing merit function

S

S

²

²

Transition fixed at 0.3 R* (following Kawaler et

Transition fixed at 0.3 R* (following Kawaler et

al., 2005)

(21)

Testing a fast core rotation

Testing a fast core rotation

log S²

log S²

Surface fixed at 32,500s

(22)

Conclusions and room for improvement

Conclusions and room for improvement

We determined an « alternative » convincing model for

We determined an « alternative » convincing model for

Feige 48 by adding the rotation as a free parameter. This

Feige 48 by adding the rotation as a free parameter. This

rotation is found to be solid with a period of

rotation is found to be solid with a period of

~ 9.028h

~ 9.028h

(equals to orbital period), which confirms that the system is

(equals to orbital period), which confirms that the system is

tidally locked. A fast core rotation can be excluded for this

tidally locked. A fast core rotation can be excluded for this

star.

star.

Room for improvement:

Room for improvement:

• Better observations (more pulsations modes Better observations (more pulsations modes andand better resolution) better resolution) are needed to confirm/reject the results (and choose between the are needed to confirm/reject the results (and choose between the

models…) models…)

• Multi-colour photometry to confirm degrees Multi-colour photometry to confirm degrees l l (particularly (particularly ll = 0 or 2 = 0 or 2 for 352s mode)

for 352s mode)

• Ultimate test: time-series spectroscopy to confirm/reject the Ultimate test: time-series spectroscopy to confirm/reject the ll and and mm

values inferred values inferred

Thank you for your attention !

(23)

Testing a fast core rotation

Testing a fast core rotation

Apparently slight differential rotation: best

Apparently slight differential rotation: best

S

S

²

²

obtained for P

obtained for P

corecore

~ 29,500s (and P

~ 29,500s (and P

surfsurf

= 32,500s)

= 32,500s)

BUT not significant:

BUT not significant:

g

g

and

and

f

f

-modes are very sensitive to a fast core rotation, while

-modes are very sensitive to a fast core rotation, while

most p-modes are not (except « marginal » ones)

most p-modes are not (except « marginal » ones)

The triplet 374-378-382s, identified as the

The triplet 374-378-382s, identified as the

g

g

-mode «

-mode «

l

l

= 2,

= 2,

k

k

= 1 », shows Δ

= 1 », shows Δ

f

f

of 29.5µHz and 31.2µHz, above the mean

of 29.5µHz and 31.2µHz, above the mean

spacing of 28.2µHz. This is better reproduced with a fast

spacing of 28.2µHz. This is better reproduced with a fast

core rotation. But these higher Δ

core rotation. But these higher Δ

f

f

are not significant with a

are not significant with a

resolution of 2.17µHz !

resolution of 2.17µHz !

Conclusion : a fast core rotation is impossible for Feige 48, which has Conclusion : a fast core rotation is impossible for Feige 48, which has

Références

Documents relatifs

Elle a été réopéré~ après échec de la commissurotomie mitrale (maladie mitrale) et pro- thèse omniscie~ce en position aortique~.. En outre} 2 malades sont perdus

première, dans le cahier, sans parapluie comme si j’allais retrouver la chaise oubliée posée sur la terrasse en plein soleil, et que j’commande tout c’que j’ai pas pu, avant,

Elle s'y était risqué et petit à petit, elle s'était prise au jeu, menant une double vie et deux fois par semaine, elle se grimait d'une perruque brune,

La raison pour laquelle nous voulons interroger cette population est que nous avons tous les deux entrepris notre FP1 avec celle-ci et nous aimerions approfondir nos

Un devis intéressant pourrait être une recherche en action : des préceptrices et des étudiantes ou infirmières nouvellement diplômées pourraient faire partie de l’équipe

et a été conçue afin d’être facilement reproductible (à l’aide du cédérom).. 2007, Guide de prévention du décrochage scolaire, CTREQ, Québec. À titre d’enseignante

L'évolution récente des charges liées à l'assistance des personnes inactives dans une conjoncture de chômage élevé, de même que le constat de faibles taux d'activité non

Dans le but d’appréhender les mécanismes biologiques dans la biodégradation accélérée de cet herbicide, nous avons conduits des cultures microbiennes par