• Aucun résultat trouvé

Experimental study of the temperature effect on two-phase flow properties in highly permeable porous media: Application to the remediation of dense non-aqueous phase liquids (DNAPLs) in polluted soil

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental study of the temperature effect on two-phase flow properties in highly permeable porous media: Application to the remediation of dense non-aqueous phase liquids (DNAPLs) in polluted soil"

Copied!
15
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

http://oatao.univ-toulouse.fr/27658

To cite this version:

Philippe, Nicolas and Davarzani, Hossein and Colombano,

Stéfan and Dierick, Malorie and Klein, Pierre-Yves and

Marcoux, Manuel Experimental study of the temperature

effect on two-phase flow properties in highly permeable

porous media: Application to the remediation of dense

non-aqueous phase liquids (DNAPLs) in polluted soil. (2020)

Advances in Water Resources, 146. 103783. ISSN 0309-1708

Official URL:

https://doi.org/10.1016/j.advwatres.2020.103783

(2)

Experimental

study

of

the

temperature

effect

on

two-phase

flow

properties

in

highly

permeable

porous

media:

Application

to

the

remediation

of

dense

non-aqueous

phase

liquids

(DNAPLs)

in

polluted

soil

Nicolas

Philippe

a,c

,

Hossein

Davarzani

a,∗

,

Stéfan

Colombano

a

,

Malorie

Dierick

c

,

Pierre-Yves

Klein

c

,

Manuel

Marcoux

b

a BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45100 Orléans, France

b Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 31400Toulouse, France c REMEA, 22-24 rue Lavoisier, 92000 Nanterre, France

Keywords:

Dense non-aqueous phase liquid Two-phase flow

Capillary pressure-saturation relationship Relative permeability

Thermally enhanced DNAPL recovery

a

b

s

t

r

a

c

t

Theremediationofaquiferscontaminatedbyviscousdensenon-aqueousphaseliquids(DNAPLs)isachallenging problem.CoaltarsarethemostabundantpersistentDNAPLsduetotheirhighviscosityandcomplexity. Pump-ingprocessesleaveconsiderablevolumefractionsofDNAPLsinthesoilanddemandhighoperationalcoststo reachcleaningobjectives.ThermallyenhancedrecoveryfocusesondecreasingDNAPLviscositytoreduce resid-ualsaturation.Theoilindustryhaspreviouslyappliedthistechniquewithgreatsuccessforenhancedoilrecovery applications.However,insoilremediation,highporousmediapermeabilitiesandproductdensitiesmay invali-datethosetechniques.Additionally,theimpactsoftemperatureoncoaltar’sphysicalpropertieshavenotbeen thoroughlydiscussedinavailableliterature.Here,weinvestigatedhowcoaltar’sphysicalproperties,thecapillary pressure-saturationcurveandtherelativepermeabilityoftwo-phaseflowinporousmediadependonthe temper-atureandflowrateexperimentally.Drainageandimbibitionexperimentsunderquasi-static(steady-state)and dynamic(unsteady-state)conditionshavebeencarriedoutat293.15Kand323.15Kina1Dsmallcellfilledwith 1mmhomogeneousglassbeads.Twodifferentpairsofimmisciblefluidshavebeeninvestigated,coaltar-water andcanolaoil-ethanol.Resultsdemonstratedsimilartrendsfortemperatureeffectandvaluesoffluidproperties forbothliquidpairs,whichbacksuptheuseofcanolaoil-ethanoltomodelcoaltar-waterflow.Itwasfoundthat thereisnotemperatureeffectondrainage-imbibitioncurvesorresidualsaturationunderquasi-staticconditions. Indynamicconditions,theDNAPLresidualsaturationdecreasedby16%whenthetemperaturechangedfrom 293.15Kto323.15K.Thisdropwasmainlylinkedtodecreasingviscousfingering,aswellastheappearanceof wettingphasefilmsaroundtheglassbeads.Bothphenomenahavebeenobservedonlyindynamicexperiments. Ahighenoughpumpingflowrateisneededtogeneratedynamiceffectsintheporousmedium.Ethanolandoil’s relativepermeabilitiesalsoincreasewithtemperatureunderdynamicmeasurementconditions.Ourfindings in-dicatethatflowrateisanimportantparametertoconsiderinthermalenhancedrecoveryprocesses.Theseeffects arenottakenintoaccountintheclassicallyusedgeneralizedDarcy’slawformodelingtwo-phaseflowinporous mediawithtemperaturevariation.

1. Introduction

Densenon aqueousphaseliquids(DNAPLs)areliquidsdenserthan waterandslightlysolubleinwater.Duetotheirhighdensity,DNAPLs candeeplysinkintothesubsurfaceuntilreachingalesspermeablelayer andformanon aqueousreservoir.Subsurfacezonescontaminatedby DNAPLsaregenerallyhard todelimitduetosoil heterogeneity,soil dispersion,andthesubstantialdepthofthecontaminationcombined withgravity drivenfingerflow.Thusremediatingthesepollutantsin

Correspondingauthor.

E-mailaddress:h.davarzani@brgm.fr(H.Davarzani).

theaquiferisacomplicatedmatter.DNAPLsourcezonesareevenmore problematicbecausetheymaykeepondissolvingtoxiccompoundsinto thegroundwater.Ultimately,futurehealthandenvironmentalproblems canarise,suchasdrinkingwatercontaminationorsoilqualitydegrada tion.

CommonlyreportedDNAPLcontaminantsincludechlorinatedsol vents namely,trichloroethylene(TCE)andtetrachloroethylene(PCE)

that were previously widely used as solventsfor organic materi als(SchwilleandPankow,1988).CoaltarsarealsoanotableDNAPL found in the subsurface and are also more viscous than water. (Brownetal.,2006)havemeasuredcoaltar’sdynamicviscosityonmul tiplesitesandhavefoundthatthecoaltar/waterviscosityratiocanvary between10and106(Brownetal.,2006).Thisrangeislinkedtothe

(3)

Nomenclature Symbol Definition Bo Bondnumber( ) Ca Capillarynumber( ) g Gravitationalacceleration(m.s−2) K Intrinsicpermeability(m2 ) kr Relativepermeability( ) hc Capillaryheight(m) L Characteristiclength(m) M Viscosityratio( )

n VanGenuchtenparameter( )

p Pressure(Pa)

pc Capillarypressure(Pa)

R0 Dropmeanradius(m)

S Saturation( ) Sir Irreduciblesaturation( ) Sr Residualsaturation( ) T Temperature(K) u Darcyvelocity(m.s−1) Vc Characteristicvelocity(m.s−1)

𝛼 VanGenuchtenparameter(m−1)

𝛽 Shapefactor( )

𝛾 Interfacialtension(N.m−1)

𝜇 Dynamicviscosity(Pa.s)

𝜌 Density(kg.m−3)

𝜏 Dynamiccapillaritycoefficient(Pa.s)

Subscripts

Symbol Definition

CT Coaltar

dis Displacedphase

E Ethanol

inv Invadingphase

O Canolaoil

w Wettingphase(ethanolorwater)

W Water

nw Non wettingphase(canolaoilorcoaltar)

chemicalheterogeneityincoaltar.Diagnosisandriskassessmentare hardbecausetheexactcompositionofcoaltarisgenerallynotidenti fiable.Hence,asitepollutedbycoaltarisdifficulttocleanupandthe choiceforanapplicablerecoverymethodhastobemadeonacase by casebasis.

Inourstudy,thefocusisoncoaltarsourcezoneswithhighpollutant concentrations.Pumpinginthesubsurfacethroughproductionwellsis aprimarystepusedinremediationoperations.However,thepumping rateisvery low forDNAPLsandtheremediationcould taketens to hundredsofyears,whichiseconomicallyunsatisfying(USEPA,1996;

RussellandRabideau,2000;KavanaughandKresic,2008;Navy,2008;

Newelletal.,2011).Themost efficientcurrent methodsforremedi atingDNAPLsourcezonesarethermaltreatments(Dingetal.,2019). Generally,temperatureisincreasedtovaporize(McDadeetal.,2005;

Baker et al., 2006; Baston et al., 2010) or even burn (Rein, 2009;

Switzeretal.,2009;Hasanetal.,2015;Scholesetal.,2015)thepol lutant.Thevaporsgeneratedarethencollectedandtreatedwithcar bonactivatedfilters.However,generatinghigh temperaturefieldscan be dangerousfor thenutritionalandbiologicalfunctionsof thesoil. (Papeetal.,2015)haveshownthatevenifacontaminantcanbecom pletelytreatedat773.15K,thesoilisunusableforfutureconstruction orindustrialoperations(O’Carrolletal.,2005;Papeetal.,2015).Asa result,NAPLresidualsaturationislowerinthesoilafterathermallyen hancedprocess.Afterwards,thehighsoiltemperaturecanincreasethe degradationrateofchemicaltreatments(oxidation,surfactantflooding) andbiologicalmethods(bioorphytoremediation)(Melinetal.,1998).

Hot waterfloodingisanothertechniquethathasshownsuccessin treatingviscous NAPLs light ordense contamination.Theidea is toreducethedynamicviscosityoftheNAPLbyincreasingitstemper ature. During pumping,the hot waterwill progressivelyreplace the NAPLandleaveresidualNAPLsaturationinthesoil.Previousauthors haveshownthatinjectinghotwaterincreasestotalNAPLrecoveryvol umesby pumpingprocesses (Fulton andReuter, 1991; Davis, 1997;

O’CarrollandSleep,2007).PumpingaDNAPLphasefromthesubsur facecanberepresentedbyanimbibitionprocessinporousmedia.The DNAPLphaseisprogressivelypushedawayfromthesoilandthewater slowlyfillstheporesleftvacant.Thus,itisimportanttoanalyzeand betterunderstandfluiddisplacementsbeforedrawinganyconclusions. Tocharacterize thebehaviorofthephysical systemcomposed of DNAPL,water,andasolidmatrixisstillanongoingchallengeinfluid mechanics.Currently,modellingisbasedonthetheoryofimmiscible multiphaseflowinporousmedia.Inourcase,DNAPLandwaterarerep resentedastwoseparatephases,andthesoilisanimmobilesolidmatrix inwhichbothliquidsmayflow.Forthistypeofengineeringapplication, thesimultaneousflowofDNAPLandwaterinaporousmediumiscom monlydescribedusingthegeneralizationofDarcy’slawtomultiphase flowforeachphase(MuskatandMeres,1936).

𝒖𝑖=− 𝐾𝑘𝑟,𝑖(𝑆𝑖 ) 𝜇𝑖(𝑝𝑖𝜌𝑖𝒈 ) (1) whereuiistheDarcyvelocity(m.s−1),gthegravitationalacceleration,

Kthepermeabilitytensor(m2),p

ithepressure(Pa),𝜇iand𝜌i respec

tivelythedynamicviscosity(Pa.s)anddensity(kg.m−3).Thesubscript

idesignatesthewaterorDNAPLphase.Themaindifferencebetween Darcy’slawanditsextensiontomultiphaseflowistheadditionofrel ativepermeabilitytermskr,i.Itsignifiesthateachphaseflowsindepen

dentlythroughavirtualporousmediumofpermeabilityKkr,i(Si).The DNAPLoccupiesapartofthetotalporespace,dependingonitssatura tion,whichreducesthevolumeofwaterthatcanflowthroughandvice versa.Thisequationgenerallyholdstruewhenthereisnomomentum transferattheinterfaceofbothfluidphases(Whitaker,1986).

Thepresenceofthetwofluidphasesresultsinaninterfacethatissub jectedtointerfacialtensionattheporescale.Thisinterfacealsocausesa pressurediscontinuityatthemacroscale,withrespecttocapillarypres surepc.Thisissubsequentlydefinedasthedifferencebetweenthepres sureofthenon wettingfluidpnwandthepressureofthewettingfluid pw.

𝑝𝑛𝑤𝑝𝑤=𝑝𝑐(𝑆𝑤) (2)

ImmiscibleDNAPLsflowingintheaquifer canbeassimilatedtoa two phaseflowinporousmedia.Thedimensionlessnumberscontrolling theactualflow patternarerespectivelyBond number(Bo),capillary number(Ca),andviscosityratio(M).Inthecaseoftheimbibitionof awettingphaseinsideaporousmediumsaturatedwithanon wetting phase,thesenumberscanbewrittenas:

𝐵𝑜= (𝜌𝑛𝑤𝜌𝑤)𝑔𝐿 2 𝛾 (3) 𝐶𝑎= 𝑉𝑐𝜇𝑖𝑛𝑣 𝛾 (4) 𝑀=𝜇𝑖𝑛𝑣 𝜇𝑑𝑖𝑠 (5)

Lisacharacteristiclength.Inunconsolidatedmedialikeglassbeads,L isoftenchosenequaltothemeanparticlediameter.𝛾istheinterfacial

tensionbetweenbothliquidphases.Vcisacharacteristicvelocityrep resentingtheorderofmagnitudeoftheflowrateinsidethepores.The subscriptsinvanddisrespectivelyrepresenttheinvadinganddisplaced phase.Inthiswork,theDNAPLandwateraretheinvadingphasesdur ingdrainageandimbibition,respectively.Alternatively, theviscosity ratiomaybe replacedby themobilityratio (theratiobetween rela tivepermeabilityandviscosity).Thelatterincludesrelativepermeabil itiesinitscalculationandcanbemoresuitableforrealporousmedia

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

Table2

Bond,capillarynumbersandviscosityratioassociatedwiththetwo-phaseflowofoil/ethanolandcoaltar/waterbetween293.15K and323.15K.

Liquids Coal tar – water Canola oil-ethanol

T(K) Bo Ca M Bo Ca M 283.15 4.19 ×10 −1 5.24 ×10 −5 1.48 ×10 −2 4.36 ×10 −1 5.46 ×10 −5 1.32 ×10 −2 293.15 4.16 ×10 −1 5.20 ×10 −5 1.96 ×10 −2 4.66 ×10 −1 5.82 ×10 −5 1.64 ×10 −2 303.15 4.13 ×10 −1 5.16 ×10 −5 2.55 ×10 −2 4.99 ×10 −1 6.23 ×10 −5 2.01 ×10 −2 313.15 4.09 ×10 −1 5.11 ×10 −5 3.26 ×10 −2 5.35 ×10 −1 6.69 ×10 −5 2.43 ×10 −2 323.15 4.05 ×10 −1 5.07 ×10 −5 4.11 ×10 −2 5.77 ×10 −1 7.21 ×10 −5 2.91 ×10 −2

Density,dynamicviscosity,interfacialtension,andcontactanglere sultswereusedtocalculatetherelevantdimensionlessnumbersrelated toimbibitionexperiments(Table2).Bondnumber,Bo,andviscosityra tio,M,couldbecalculateddirectlywiththemeasuredparameters.The intrinsicvelocitycalculatedwithDarcylawwasusedtocalculateCa numbers.Thepressuredifferenceusedinthisexpressionisthesameas theoneusedinourexperiments.TheresultingdefinitionforCaisthus equivalenttotheoneproposedin(ChatzisandMorrow,1984).Since drainageismostlyastableprocessduetoafavorableviscosityratio, dimensionlessnumberswillbecalculatedinthecaseofimbibition,to verifythevalidityofDarcy’slaw.

Wefoundthebondnumbertobeslightlybelow1duetothesmall differenceindensitybetweenthetwophases.Theflowbetweencoal tar/waterandoil/ethanolin1mmglassbeadscan,therefore,bede scribedbyDarcy’slaw.Oil/ethanolBondnumberincreaseswithtem peraturewhilethatofcoaltar/waterdecreases.Thiscanbeexplained bythefactthatthedensitydifference(𝜌nw𝜌w)increaseswithtem peratureinthecaseofoil/ethanolbutdecreasesforcoaltar/water.The capillarynumberhasbeenfoundtobelowenough(10−5)tojustifythat

capillaryforcesprevailratherthanviscousforcesattheporescale.In addition,no emergenceofviscousfingershasbeennotedduringthe smallpressurestepexperiments.Thuswecanconcludethatmeasure mentsofcapillarypressure saturationinourcasehasbeendonewith respecttohypothesisbehindgeneralizedDarcy’slaw,namelythefact thattheinterfacebetweenbothliquidphasesisrigidandnofingering occurs.

Ithasbeenfoundthatviscosityratio,duringimbibition,decreases byafactor3forcoaltar/waterandafactorof2foroil/ethanol.Here, theinfluenceoftemperatureontheviscosityratiowasnotashighas expected.Thosevariationswerenotsufficienttochange theorderof magnitudeofthedimensionlessvaluesandtochangetheresidualsatu rations.Increasingthetemperaturehastwoconsequencesfortheimbi bitionprocess:increasingtheviscosityratioanddecreasingthecapillary number.Also,itappearsthattheeffectoftemperatureonresidualnon wettingphasesaturationSr,nwwasalmostnegligibleinbothcases.How ever,previous viscous LNAPL andDNAPL displacementexperiments haveshownthattheinjectionofhotwaterincreasestherecoveryrate ofthecontaminantandreducestheresidualsaturation(Jabbouretal., 1996;O’CarrollandSleep,2007).Theexperimentsaredoneherebyin creasingthecapillarypressurewithsmallpressuresteps.Severalweeks areneededtocompleteadrainageandimbibitioncycleexperiment.The capillarynumbersinourquasi staticexperimentsarestilllow(Ca<<

1),whichcorrespondstoacapillaryfingeringregime.Inthiscase,the displacementstructureiscontrolledbythefluctuationsinthecapillary thresholdpressuresatthedisplacementfront.Thus,theviscosityratio doesnothaveavisibleeffectontheresults.However,forhighinvasion rates,thedependenceonMmaybecomerelevantbecauseoftheviscous dominateddisplacement.

Inaddition,thedimensionlessnumbersbetweencoaltar/waterand oil/ethanolarequiteclose.Consideringthatoilandcoaltarareboth non wettingfluids,thesameresidualsaturationsandcapillarycurves betweenbothfluidpairsshouldbeexpected.Theuseofoil/ethanolas amodelfluidpairistherebyjustified.

4.2. Dynamiceffectontwo phaseflowproperties

Aspreviouslynoted,twopore volumes(PV)wereneededtoreach ethanol irreduciblesaturation. Theinjection of oilfrom the bottom (drainage)intotheporouscolumnsaturatedwithethanolwasfoundto beastableprocessatallflowrates.Duringthisstep,onlyethanolwas producedfromthecelloutletandassoonasoilreachedthecelloutlet, onlyoilwas.Thedisplacementfrontwasstableduetogravityeffects andbecauseoil’sdynamicviscosityishigherthanethanol’s(M>1).

Wesawacompletelydifferent trendfortheinjectionof10PVof ethanolfromthetopofthecell(imbibition).Thefollowingobservations wereobservedforthesmallestflowrate(6mL/min):theinjectionof 10PVofethanollasted38minutes.Onlyoilwasrecoveredduringthe first6minutes(0to1.6PV).Afterthat,ethanolbubblesstartedtoflow outseparatelyfromthesystemuntil10minutes(1.6to2.6PV).Then, ethanolandoilwerebothrecoveredasseparatephasesatthesametime. Inthetubing,oilwasflowingnearthewallswhileethanolwasrecovered nearthecenter(2.6to4PV).Finally,afterpumpingfor15minutes(4 to10PV),onlyethanolwasproducedfortherestoftheinjectionand theoilsaturationdidnotchange.

Thesesaturationchangesduringoilinjection(a)andpumping(b) areshowninFig.9,fordifferentflowratesandtemperaturevalues.

Theerrorbars showthedifferencebetweenthesaturation values calculatedfromtheimagingtechniqueandmassbalance.Forallsatura tionpoints,themaximumsaturationdifferencebetweenbothmethods is0.05(±1mL),whichvalidatestheproposedimagingtechniqueto determineliquidsaturationinsidethecell.AsshowninFig.9a,theirre duciblesaturationSir,whasbeenfoundnottodependontheflowrate. Itsvaluevariedbetween0.03(at6mL/min)and0.07(at24mL/min). Also, whenthepumpwasstopped between theinjectionandpump ingsteps,therewasasmalltimewindowwhereasaturation change occurred.Thiseffectwasevenmorenoticeableforalowflowrate.Dur ingthistime,wenoticedsaturationredistributioninsidethecelllikely duetoendeffects.There areindeedlocal saturationgradientsinside thecellatporescalethataremoreimportantindynamicconditions. However,wedo nottakeitintoaccount becausewemostly focused ourstudyonmacroscopiccharacteristicsandmeasurethemeansatura tionoverthewholecell.Conversely,oilpumpingheavilydependson bothflowrateandtemperature(Fig.9b).First,higheroilresidualsat urationswereobtainedforhigherflowrates.Duringtheexperiments, moreethanolfingerssweptalowerareaatahighflowrate.Thisphe nomenonhadalreadybeenobservedandconfirmedby(Doorwarand Mohanty,2015).Consequently,oilsaturationdecreasedataslowerrate eventhoughthepumpingratewashigher.Anotherimportantpointis thatresidualsaturationwasobtainedwithlowerporevolumesforlow flowrates.Almost8PVwereneededtoreachSr,o=0.29at24mL/min

whileonly5PVwereneededwithSr,o=0.06at6mL/min.Thecom parisonbetweenbothprofilesat12mL/min(oneobtainedat293.15K andtheother323.15K)showsthattemperaturehadtwoeffects.Theoil recoveryratewasincreasedathightemperature.Duringourfluidchar acterization,wenotedthatonlytheviscosityratiodecreasedwithtem perature.Thus,fewerfingersareformedduringtheinjectionofethanol insideoilat323.15K,andahighervolumeofoilisrecoveredfromthe

(12)
(13)
(14)
(15)

Johansson, C. , Bataillard, P. , Biache, C. , Lorgeoux, C. , Colombano, S. , Joubert, A. , Pigot, T. , Faure, P. , 2019. FerrateVI oxidation of polycyclic aromatic compounds (PAHs and po- lar PACs) on DNAPL-spiked sand: degradation efficiency and oxygenated by-product formation compared to conventional oxidants. Environmental Science and Pollution Research .

Johnson, E.F., Bossler, D.P., Bossler, V.O., 1959. Calculation of relative permeability from displacement experiments.

Kavanaugh, M. , Kresic, N. , 2008. In: Dimkic, H.J.B., Kavanaugh, M. (Eds.). IWA Publish- ing, pp. 520–600 M. .

Koci, X. , Quintard, M. , Robin, M. , Gadelle, C. , 1989. Effet de la température sur les pro- priétés de déplacement polyphasique en milieux poreux. Revue de l’Institut français du pétrole 44, 763–783 .

Kong, L. , 2004. Characterization of Mineral Oil, Coal Tar and Soil Properties and Investi- gation of Mechanisms that Affect Coal Tar Entrapment In and Removal From Porous Media. School of Civil and Environmental Engineering. Georgia Institute of Technol- ogy, Atlanta, p. 309 Ph.D. dissertation .

Lenormand, R. , Touboul, E. , Zarcone, C. , 1988. Numerical models and exper- iments on immiscible displacements in porous media. J. Fluid Mech.189 165–187 .

McDade, J.M. , McGuire, T.M. , Newell, C.J. , 2005. Analysis of DNAPL source-depletion costs at 36 field sites. Remediation 15, 9–18 .

McLaren, S., WorboysM., SpeakeO., P., M., 2009. Ex-situ thermally enhanced coal tar recovery - a low carbon option.

Melin, E. , Jarvinen, K. , Puhakka, J. , 1998. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Wa- ter Res.32 81–90 .

Moura, M. , Flekkøy, E.G. , Måløy, K.J. , Schäfer, G. , Toussaint, R. , 2019. Connectivity en- hancement due to film flow in porous media. Phys. Rev. Fluids 4, 094102 . Muskat, M. , Meres, M.W. , 1936. The flow of heterogeneous fluids through porous media.

Physics 7, 346–363 .

Navy , 2008. Plume management zone to manage chlorinated solvents. Naval Weapons Industrial Reserve Plant, Dallas, Texas, USA, p. 32 Department of the Navy Environ- mental Restoration Program 2008 progress report .

Newell, C.J. , Farhat, S.K. , Adamson, D.T. , Looney, B.B. , 2011. Contaminant plume classi- fication system based on mass discharge. Ground Water 49, 914–919 .

O’Carroll, D.M. , Phelan, T.J. , Abriola, L.M. , 2005. Exploring dynamic effects in capillary pressure in multistep outflow experiments. Water Resour. Res.41 .

O’Carroll, D.M. , Sleep, B.E. , 2007. In: Hot water flushing for immiscible displacement of a viscous NAPL, 91, pp. 247–266 .

Pape, A. , Switzer, C. , McCosh, N. , Knapp, C.W. , 2015. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma 243-244, 1–9 .

Qin, Y. , Wu, Y. , Liu, P. , Zhao, F. , Yuan, Z. , 2018. Experimental studies on effects of tem- perature on oil and water relative permeability in heavy-oil reservoirs. Sci. Rep.8 12530 .

Rein, G. , 2009. Smouldering Combustion Phenomena in Science and Technology . Reinecke, N. , Mewes, D. , 1997. Investigation of the two-phase flow in trickle-bed reactors

using capacitance tomography. Chem. Eng. Sci.52 2111–2127 .

Russell, K.T. , Rabideau, A.J. , 2000. Decision analysis for pump-and-treat design. Ground Water Monitor. Remed.20 159–168 .

Sanaiotti, G. , Silva, C.A.S.da , Parreira, A.G. , Tótola, M.R. , Meirelles, A.J.A. , Batista, E.A.C. , 2010. Densities, viscosities, interfacial tensions, and liquid − liquid equilibrium data for systems composed of soybean oil + commercial linoleic acid + ethanol + water at 298.2 K. J. Chem. Eng. Data 55, 5237–5245 .

Scholes, G.C. , Gerhard, J.I. , Grant, G.P. , Major, D.W. , Vidumsky, J.E. , Switzer, C. , Torero, J.L. , 2015. Smoldering remediation of coal-tar-contaminated soil: pilot field tests of STAR. Environ. Sci. Tech.49 14334–14342 .

Schwille, F. , Pankow, J.F. , 1988. Dense chlorinated solvents in porous and fractured media - Model experiments. Lewis Publishers, Chelsea, MI, United States .

Sleep, B.E. , Ma, Y. , 1997. Thermal variation of organic fluid properties and impact on thermal remediation feasibility. J. Soil Contam.6 281–306 .

Smith, J.E. , Zhang, Z.F. , 2001. Determining effective interfacial tension and predicting finger spacing for DNAPL penetration into water-saturated porous media. J. Contam. Hydrol.48 167–183 .

Switzer, C. , Pironi, P. , Gerhard, J.I. , Rein, G. , Torero, J.L. , 2009. In: Self-Sustaining Smol- dering Combustion: A Novel Remediation Process for Non-Aqueous-Phase Liquids in Porous Media, 43, pp. 5871–5877 .

USEPA, 1996. Pump and treat ground water remediation a guide for decision makers and practitioners. EPA/625/R-95/005.

Vargaftik, L.D.N.B. , Volkov, B.N. , Voljak , 1983. International tables of the surface tension of water. J. Phys. Chem. Ref. Data 817–820 .

Wang, J. , Dong, M. , Asghari, K. , 2006. Effect of oil viscosity on heavy oil-water rel- ative permeability curves. SPE/DOESymposium Improved Oil Recovery. Society of Petroleum Engineers .

Welge, H.J. , 1952. A simplified method for computing oil recovery by gas or water drive. J. Petrol. Tech.4 91–98 .

Whitaker, S. , 1986. Flow in porous media II: The governing equations for immiscible, two-phase flow. Transport in Porous Media 1, 105–125 .

Wu, M. , Cheng, Z. , Wu, J. , Wu, J. , 2017. Estimation of representative elementary volume for DNAPL saturation and DNAPL-water interfacial areas in 2D heterogeneous porous media. J. Hydrol.549 12–26 .

Références

Documents relatifs