• Aucun résultat trouvé

Nonparametric estimation of the mark density of Exponential Shot-Noise

N/A
N/A
Protected

Academic year: 2021

Partager "Nonparametric estimation of the mark density of Exponential Shot-Noise"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02437229

https://hal.archives-ouvertes.fr/hal-02437229

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nonparametric estimation of the mark density of Exponential Shot-Noise

Paul Ilhe, Eric Moulines, François Roueff, Antoine Souloumiac

To cite this version:

Paul Ilhe, Eric Moulines, François Roueff, Antoine Souloumiac. Nonparametric estimation of the mark density of Exponential Shot-Noise. 10e Journées du groupe Modélisation Aléatoire et Statistique de la SMAI, Aug 2014, Toulouse, France. 2014. �hal-02437229�

(2)

Nonparametric estimation of the mark density

of Exponential Shot-Noise

P. Ilhe, E. Moulines, F. Roueff (ilhe,moulines,roueff@telecom-paristech.fr)

A. Souloumiac (antoine.souloumiac@cea.fr)

I

NTRODUCTION

Shot-noise processes - or Filtered Marked Point Processes - are natural models for phenomenons that can be represented as a linear filtration of sums of independent jumps (marks) (Yi)i∈Z

arrived at random times (Ti)i∈Z. There are particularly adapted to model data transfers in telecommunication or interacting particles in physics.Based on a low-frequency sample of the

Shot-Noise (X1, · · · , Xn), we introduce a novel nonparametric estimator of the mark density when arrival times follow a Poisson Process with intensity λ and the filter is of the form

h(t) = e−αt using a "plug-in" method with the empirical characteristic function ˆϕn(u) = n∆ −1 Pnk=1 eiuXk .

P

ROBLEM

We consider the stationary process (X

t

)

t≥0

defined by:

X

t

=

X

Tk≤t

Y

k

e

−α(t−Tk)

(1)

where:

1.

P

k

δ

Tk,Yk

is a Poisson random measure on R

2

with intensity measure λLeb ⊗ F

2. λ, α > 0

3. Y

0

has a p.d.f. θ which belong to the class:

Θ

C,K,L,a,β

= {θ : θ

p.d.f. ,

R

R

x

8

θ(x)dx ≤ K,

R

R

|u|

β

Y

(u)|du ≤ L, |ϕ

Y

(u)| ≥ Ce

−au

2

}

From its definition and under Assumptions 1-3, the characteristic function ϕ

X0

of X

0

is non

zero,differentiable and given by:

ϕ

X0

(u) = exp λ

R

0

Y

(ue

−αs

) − 1) ds



,

u ∈ R

S

YNTHETIC SCHEME

Figure 1:

Simulation of a Shot-Noise sample path

I

NVERSE PROBLEM AND ESTIMATOR

Inversion formula:

Differentiating the characteristic function ϕ

X0

gives:

ϕ

Y

(u) = 1 + u

αλ ϕ0

X0(u)

ϕX0(u)

,

u ∈ R

Estimation issues

:

Tempted to construct a "plug-in" estimator using the empirical characteristic (ECF) function but:

• ˆ

ϕ

n

(u)

might take arbitrary small values

• The "pluged-in" integrand might diverge

"Plug-in" estimator

We then propose a mark density estimator ˆ

θ

n

given by:

ˆ

θ

n

(x)

= 2 max

R

Z

h−1n 0

e

−ixu



1 + u

α

λ

ˆ

ϕ

0n

(u)

ˆ

ϕ

n

(u)

1

| ˆϕn(u)|≥κn



!

, 0

!

(2)

where

h

n

=



log(n)6a



1/2

and κ

n

=

C2

e

−ah −2 n

=

C 2

n

−1/6

Theoritical result :

sup

θ∈ΘC,K,L,a,β

E

θ



ˆ

θ

n

− θ

2 ∞



. log(n)

−β

N

UMERICAL

R

ESULTS

Illustration of our algorithm with two

numeri-cal examples with λ = 4.10

5

, α = 3, 5.10

5

:

• Marks

follows

a

gaussian

mixture

P

3

i=1

p

i

N

µii2

(x)

with:

p = [0.3 0.5 0.2] , µ = [4 12 22] , σ = [1 1 0.5]

Figure 2:

Gaussian mixture case

• Marks

follows

a

gamma

mixture

P

3

i=1

p

i

G

a,βi

(x)

with :

a = 2 , p = [0.2 0.3 0.5] , β = [3 6 12]

Figure 3:

Gamma mixture case

A

LGORITHM

Algorithm 1:

Nonparametric mark density estimator

Input: Shot-noise observations X1, · · · , Xn

1. Choose ∆ > 0.

2. Compute the histogram (Hi)i∈Z of observations with bins of size ∆ :

Hi = {Xk ∈ [∆i; ∆(i + 1)]}/n 3. Set (dHi)i∈Z by dHi = ∆iHi

4. Set N = 2∆ 16 and compute Xφ = FFT(H, N ), dXφ = FFT(dH, N ) It gives for k = 1, · · · , N , Xφk ' ˆϕn



− 2π(k−1)N ∆  and dXφk ' −i ˆϕ0n



− 2π(k−1)N ∆  5. Compute the ECF estimator : ˆϕY n  2π(k−1)

N ∆  = 1 + 2πα(k−1) N ∆λ dXφk dXφk

6. Compute the density estimator by : ˆθn = N ∆2 F F T ( ˆϕY n, N )

R

EMARKS

• The rate of convergence depends on the smoothness of the mark distribution

• The distribution F

X

of X

0

is regularly varying at 0 with index λ/α

,→

One can use Hill’s estimator to estimate λ/α

• When the mark distribution is a mixture of exponential laws, a parametric approach is possible

R

EFERENCES

[1] Lowen, Steven B and Teich, Malvin C, Power-law shot noise, Information Theory, IEEE Transactions on, 36(6) (1990) 1302–1318.

[2] Iksanov A. and Jurek Z., Shot noise distributions and selfdecomposability, Taylor & Francis, (2003).

[3] Neumann M. and Reiß M., Nonparametric estimation for Lévy processes from low-frequency observations, Bernoulli, 15(1) (2009) 223–248.

[4] Gugushvili S., Nonparametric estimation of the char-acteristic triplet of a discretely observed Lévy process, Journal of Nonparametric Statistics, (2009).

Références

Documents relatifs

[r]

Nous avons vu que dans le r´egime de compression lin´eaire, la d´ecompaction de la mousse dans le fluide suit une dynamique diffusive, bien pr´edite par la poro´elasticit´e

The exact definition of our estimator is given in Section 6. Here we only outline its construc- tion. The initial building block is a family of kernel estimators. In fact, the value

Given estimates of the projection coefficients, we then construct bona fide series estimators of the component densities and a least-squares estimator of the mixing proportions..

In this study, we develop two kinds of wavelet estimators for the quantile density function g : a linear one based on simple projections and a nonlinear one based on a hard

Based on such floristic evidence, three main recolonisation pathways inside the western Alps have been postulated (Fig. 1): the Rhodanian pathway, from the western refugia to the

The habitat choices are also consistent with life-history differences between peregra and ovata from the stony shore; ovata reproduction was much more negatively affected in

A potentially clinically relevant decrease in faldaprevir exposure was observed when coadministered with efavirenz; this decrease can be managed using the higher of the 2