• Aucun résultat trouvé

Bounds for rewards of systems with client/server interaction

N/A
N/A
Protected

Academic year: 2021

Partager "Bounds for rewards of systems with client/server interaction"

Copied!
20
0
0

Texte intégral

(1)

lients/servers intera tion SusannaDonatelli 1? ,SergeHaddad 2 ,Patri eMoreaux 2;3

, andMbayeSene 2

1

UniversitàdiTorino,DipartimentodiInformati asusidi.unito.it

2

LAMSADE{haddad, moreaux, sene}lamsade.dauphine.fr

3

RESYCOM,UniversitédeReimsChampagne-Ardenne

Abstra t. This paper presents a new methodto ompute bounds of

performan e parametersofMarkov hainsexhibitingapartition ofthe

statespa ewithsomefamilyofsubsetsvisitedinasequentialorder.We

use this stru ture to ompute bounds of steady state reward rates on

thesesubsetswithout omputingtheglobalsteadystateprobabilitiesof

thewhole hain.Themethodpresentedisbasedona ombinationofan

aggregation pro edure onthe subsets anda strongsto hasti ordering

ontheresultingaggregatedspa e.

1 Introdu tion

Performan emodelsbasedon ContinuousTime MarkovChains(CTMC)have

proven theirusefulness formany years.In this ontext, performan e measures

anbefrequentlyexpressedas(steadystate)expe tedrewardrates(or

instanta-neousrewardinsteadystate)R= P

s2S G

r(s)[s℄wherer(s)istherewardrate

asso iatedwiththestatesand the(row)ve torofthesteadystate

probabili-tiesoftheCTMCM=(S G

;Q;

0

)withstatespa eS G

,generatorQandinitial

probabilities

0

.Unfortunately,itisoftenimpossibleto ompute withan

an-alyti almethod duetothe omplexityoftheintera tionsamong theentities of

the system (there is no " losed" form for ). In these situations, we are lead

to numeri allysolvethelinearsystemQ=0.Thereare,however,well known

di ultiesforsolvingthisequation,amongthesethesizeofthestatespa e,and

formanysystems,thestinessofthelinearsystemwhentherearerareeventsin

themodelledsystem.To opewiththeseproblems,statespa eredu tion

meth-ods havebeen provenverypowerful.To omputetheexa tsolution,redu tion

methodsusuallyinvolvethewhole statespa e.Thesemethodsarebasedonthe

stru tureofthebehaviourofthesystem,liketensorbasedmethods,oronexa t

Markovian aggregation (lumping methods). Another large lass of methods is

basedonapproximatesolutions.Thepri etopayforthee ien yofthe

om-putation is then the di ulty to appre iate the quality of the result. Finally,

boundingmethods,oftenbasedonpartialredu tionofthe hain,areatradeo

?

Thisworkhasbeendevelopedwithintheproje tHCMCT94-0452(MATCH)ofthe

(2)

quantiableestimation ofthequalityoftheresults.

Whateverthebounding method,it isalwaysguidedby thestru ture ofthe

model, dedu edfromthepropertiesofthestudiedsystem.An important

stru -turalpropertyofMisthepossibilitytofa torizethestatespa eintoapartition

of N subspa esS G

k

, allowingthede omposition R= P N k =1 R k .Depending on

thepropertiesofMwithrespe ttotheS G

k

,severalmethodshavebeendevised,

mainlybasedontheCourtoisresults[2,3℄and/orsto hasti orderings[10℄.

In this paper, we are on erned with systems exhibiting sequen es of

ele-mentary a tionssu hthat,in ea h sequen e,there is anonnull probability to

rea h the next a tion. Examples of su h systems are those with sequen es of

lient/serverlikeintera tions,repairablesystems,databasesystems.Many

au-thors,forinstan e [8,6,5,1℄,havestudied su h systemsandit hasbeen shown

that beside bounding the total probability of states orresponding to a given

sequen e(i.e.(S G

k

)),oneofthemainproblemsistoobtainboundsofthe

prob-ability distributioninside aS G

k

. Wepresenthere anew method to bound the

onditional steadystaterewardratesonthe subsetsofstates orresponding to

thesesequen esofa tions.Towardsthisgoal,weextendthestrongsto hasti

or-deringbetweenMarkovianpro essestoaggregatedversionsofthepro essesfrom

stru turalinformationabouttheMarkov hain,without omputingthe bounded

aggregated hain.

The organization of the paper is as follows: in Se tion 2 we present the

ontextoftheworkandourapproa h.InSe tion3,weintrodu earstmethod

to ompute lower bounds of rewardsrates on subsets of states, together with

resultsaboutstrongsto hasti orderingandaggregation.Wealsodeneageneral

appli ationframeworkandwestudyadetailedexamplewithnumeri alresults.

InSe tion4,ase ondmethodisproposedwhi hextendsresultstoother lasses

of systems and we explain in details omputations of the bounds through an

example.Se tion5 on ludesthepaper.Anextendedversionofthispaper,with

detailed numeri alresultsisavailable[4℄.

2 Approa h

Weareinterestedinsystemswith lientandserverentitiesanda tivitieswhi h

maybe lassiedasautonomous lient'sa tivitiesandintera tiona tivities

be-tween lientsandservers.Whateverthe(highlevel)modellingformalismofsu h

systems(QN,SPN,:::),thisleadstoCTMCswhereitispossibletoidentifysets

S G

k

orrespondingtotheseintera tions.Inthepresentstudy,weindeedworkat

the Markov hain level. In many important ases, although the state spa e of

intera tions islargedueto their omplexity,the orrespondingrewardremains

"small"withregardtothe ontributionoftheautonomousa tivities.Thisisalso

the asefordependabilitymodels, where" lient/serverintera tions"statesare

(3)

Ifthe whole statespa e of the hain is S G = N k =1 S G k

, then the rewardis

R= P N k =1 R k andR k =(S G k ) P s2S G k r(s)(sjS G k

).We anregardthequantity

R =k = P s2S G k r(s)(sjS G k

) asthe (steadystate) onditionalrewardrate ofthe

measureonS G

k

.Toobtainbounds forRwemaythen omputeboundsforR

=k

andfor(S G

k

).Note howeverthatforsomeimportantmodels[8℄,onlyR

=k are

needed. Inthispaperwe on entrateourselvesontherst problem(obviously,

these bounds mustbe omputed without omputing the distribution  on the

S G

k

).Morespe i ally,asshowedbymanyauthors[8,6,7,1℄,themostdi ult

problemisfrequentlytoderivealowerboundofR

=k

so thatweonlystudythis

problemin thefollowing.

Intherestofthepaper,werename,foreaseofreading,R

=k

asRandS G

k asS,

sothatwestudythe omputationofalowerboundR ofR= P

s2S

r(s)(sjS).

Notethat,in this paper, weassumethat there isa singleentrypointin S,

orrespondingtothebeginningofservi e.Infa t,ifthisisnotthe ase,Courtois

has shown that there is a family(

s 0

) of positivereals with P s 0 2in(S) s 0 =1 su hthat (sjS)= P s 0 2in(S) s 0  s 0

(sjS)where in(S)istheset of entrypoints

of S and s

0

thesteady stateprobabilitiesofthemodied hain withallinput

transitions of S "redire ted" to s 0

. Hen e, we may derive a bound R from

boundsR s

0

.

Evidently, arst lowerbound ofR is min

s2S

fr(s)g(S). This is obviously

verypoor,sin eif9s:r(s)=0thenthelowerboundiszero.Togofurther, we

supposethat,on eagain,thespa eSitself,possessesastru turewhi hwillhelp

to dene tighter bounds. If intera tionsare sequen esof elementary a tions,S

maybepartitionedinto subsets(S

i )

1in

su hthat ris onstantin ea h S

i .If r(s)=r i fors2S i ,thenR= P n i=1 r i (S i jS)(with(AjB)= P s2A (sjB)).

We propose two methods to nd a lowerbound of R , whi h are based on

an extension of thestrong sto hasti ordering of Markov hains to aggregated

versionsofthese hains(seeProposition1)without omputingthebounded

ag-gregated hain.We all"adaptedboundingmatri es"(seeDenition1)matri es

whi hallowsu hanextension.Therstmethod bounds the onditional

proba-bilities (:jS)themselves.Asweshallsee inSe tion 3weobtainR >0under

onditionsdis ussed at theend of these tion. To opewith systemswhi h do

notsatisfytherequired onditionsofmethod1,weproposeinSe tion4ase ond

method, whi hrelaxesthese onditionsbutneedsmorestru turalproperties.

3 First method

Letusre allthatwewantto omputealowerboundof R

S =

P

s2S

r(s)(sjS)

where S isasubspa eof thewholestatespa e S of aMarkov hain.Moreover

we assumethat S may be partitioned into n subsets S

i su h that S i = fs 2 S j r(s) =r i g, sothat R S = P n i=1 r i (S i

jS). Inthis se tion we shalldire tly

(4)

bounds b [i℄,we anderivethelowerbound R S = n i=1 r i b  [i℄ withR S >0

under onditionsexplainedattheendofthese tion.

Wethenpresentageneral lassofsystemsforwhi hourmethodisappli able,

followedbyanee tiveexampleofsu hasystem.

3.1 Idea of the method

Ourmain obje tiveisto obtainbounds b [i℄ using onlytheparametersofthe

model (for instan e the generator Q of the hain) and not the steady state

probabilities on S whi h will not be omputed. To this end, we rst restate

the problem in the framework of DTMCs. As usual with the uniformization

method,wetakeP =I jSj + 1 M Q jS whereM max s2S f Q[s;s℄gandQ jS isthe restri tionofQto S.

Sin e,forDTMCs,we anestablishalinkbetweenthesteadystate

probabil-itiesandthematrixP viatheso alledvisit-ratios,wedeneboundsfor(S

i jS)

fromboundsofmatri esderivedfromthematrixP.

Denotingbys

0

theuniqueentrystatein S fromtherest ofthewholestate

spa e,itiswellknownthat

(sjS)= V(s 0 ;s) P s 0 2S V(s 0 ;s 0 ) (1) whereV(s 0

;s)denotesthemeannumberofvisitstosfroms

0

beforeleavingS.

Togetalowerboundof(S

i

jS),itisthensu ientto omputealowerboundof

P

s2Si V(s

0

;s)andanupperboundof P s 0 2S V(s 0 ;s 0

).Thelinkwiththematrix

P liesintherelationV(s

0 ;s)=  P k 0 P k  [s 0 ;s℄ A majorization of P s 0 V(s 0 ;s 0

) by a dire t ( omponentwise) majorization

of P may, in the general ase, provide a non stri tly substo hasti jSjjSj

matrix P +

so that the power sum of P +

would have no meaning. Hen e, we

ompute a majorization of (S

i

jS) by an upper bounding aggregation on the

(S i ),withannmatrix b P +

,theboundingbeing" ompatible"withthepower

sum operator.Onthe other hand,we omputeaminorization of (S

i

jS) bya

lowerbounding (againannmatrix) ofP[s

i ;S j ℄= P s j 2S j P[s i ;s j ℄8s i 2S i .

Anotheradvantageoftheintrodu tionofthesetwonnmatri esisthat,sin e

we ompute powers of matri es, smaller matri es will allow faster and more

a urate omputations.

Note that, in fa t, we may hoose dierent partitions (S

i

) for the upper

boundingof P s 0 V(s 0 ;s 0

)andthelowerboundingofV(s

0

;s).However,forease

ofreading,wekeepthesamepartitionfortherestofthisse tion.

3.2 Boundingsubsto hasti matri es

Inthis se tion,weprovideamean todene bounds forasubsto hasti matrix

and its powerseries. The following lemma sets out su ient onditions for a

nnmatrixtolowerboundV(s

0 ;S i )= P si2Si V(s 0 ;s i ).

(5)

Lemma1. Let P be a nn matrix su h that 8i;j, 8s i 2 S i ; P [i;j℄  P[s i ;S j ℄.Then 0  X k 0 ( b P ) k 1 A [i;j℄min s i 2S i fV(s i ;S j )g (2) Proof. Sin eV(s i ;S j )=  P k 0 P k  [s i ;S j

℄, letusprovebyindu tion that for

anyk:( b P ) k [i;j℄min s i 2S i fP k [s i ;S j ℄g.

Thepropertyis learlytrue from the hypothesis for k= 1.Assuming that

thepropertyistruefork,wehave

P k +1 [s i ;S j ℄ def = X s j 2S j n X l=1 X s l 2S l P k [s i ;s l ℄:P[s l ;s j ℄= n X l=1 X s l 2S l P k [s i ;s l ℄:P[s l ;S j ℄  n X l=1 ( b P ) k [i;l℄: b P [l;j℄

fromthehypothesisandthepropertyfork.

In ontrastwiththeminorization,themajorizationofV(s

0 ;S

i

)imposessome

onstraints on thebounding matrix. Adaptation is an extension of the strong

sto hasti ordering [10℄ on ept between Markovian pro esses to b P + and an aggregationofPonthe(S i

).Monotoni ity,likeforMarkovianpro esses,ensures

theexpansionofaninitialstrongsto hasti orderingto any(dis rete)time,by

transitionsofthe hain.

Denition1. AnnmatrixX is monotoni i 81i<jn; 81m

n; P m l=1 X[i;l℄ P m l=1 X[j;l℄ A nn matrix b P +

is an adapted (upper) bound of P with respe t tothe

partition(S

i )

1in

i(i)itismonotoni and(ii) 81in; 8s2S

i ; 81 mn; P m j=1 P s 0 2Sj P[s;s 0 ℄ P m j=1 b P + [i;j℄

Adaptation is asu ient ondition to upper bound the visit-ratios, as stated

in thenextpropositionwhi histheequivalenttotheresultforMarkovian

pro- esses.

Proposition1. If b

P +

isanadapted upper boundofP,thenfor any integerk

81in; 8s2S i ; 81mn; m X j=1 X s 0 2S j P k [s;s 0 ℄ m X j=1 ( b P + ) k [i;j℄ (3)

Proof. Theproofisdonebyindu tion.

(6)

A= m X j=1 ( b P + ) k +1 [i;j℄= m X j=1 n X l=1 ( b P + ) k [i;l℄ b P + [l;j℄= n X l=1 ( b P + ) k [i;l℄ m X j=1 b P + [l;j℄

Usinga lassi altransformation

A= " n X l=1 ( b P + ) k [i;l℄ # 2 4 m X j=1 b P + [n;j℄ 3 5 . . . + " t X l=1 ( b P + ) k [i;l℄ # 2 4 m X j=1 b P + [t;j℄ m X j=1 b P + [t+1;j℄ 3 5 . . . + " 1 X l=1 ( b P + ) k [i;l℄ # 2 4 m X j=1 b P + [1;j℄ m X j=1 b P + [2;j℄ 3 5 Bymonotoni ityof b P +

,ea hse ond termoftheprodu tsispositive,hen ewe

mayapplytheindu tiveinequalityonthersttermsfors2S

i AB= " n X l=1 X s 0 2S l P k [s;s 0 ℄ # 2 4 m X j=1 b P + [n;j℄ 3 5 . . . + " t X l=1 X s 0 2Sl P k [s;s 0 ℄ # 2 4 m X j=1 b P + [t;j℄ m X j=1 b P + [t+1;j℄ 3 5 . . . + " 1 X l=1 X s 0 2Sl P k [s;s 0 ℄ # 2 4 m X j=1 b P + [1;j℄ m X j=1 b P + [2;j℄ 3 5

We now apply the inverse transformation to B: B = P n l=1 P s 0 2S l P k [s;s 0 ℄  h P m j=1 b P + [l;j℄ i and sin e b P +

is an adapted upper bound of P, B  C =

P n l=1 P s 0 2Sl P k [s;s 0 ℄  h P m j=1 P s 00 2Sj P[s 0 ;s 00 ℄ i

.Rearrangingtheorderof

sum-mation,wegetC= P m j=1 P s 00 2S j P n l=1 P s 0 2S l P k [s;s 0 ℄P[s 0 ;s 00 ℄= P m j=1 P s 00 2S j P k +1 [s;s 00 ℄

3.3 Bounds for onditionalsteady state probabilities

Gatheringpreviousresults,we anstatethefollowingtheoremwhi hprovidesa

lowerboundof(S

i

jS).Thenweexplainhowtoobtainanupperbound(S

i jS)

(7)

Theorem1. Let b

P and b

P be the matri es of lemma 1 and proposition 1,

andlet b

P +

isstri tlysubsto hasti . Then,for any i

(S i jS)  P k 0 ( b P ) k  [1;i℄ P n j=1  P k 0 ( b P + ) k  [1;j℄ (4)

Proof. From(1), and hoosing i=1ands

i =s

0

weapplylemma1and

propo-sition1withm=nandtakingthelimitinthesumoverk.

Fromthepreviousbounds,we annow omputeanupperboundof(S

i jS).

The derivation of this bound is similar to the omplement property used for

probabilitydistributions:Pr(SnA)=1 Pr(A))Pr(A)1 Pr (SnA) with

Pr (SnA)Pr(A). LetV = P s2S V(s 0

;s),wehavefrom proposition 1,(with b P + stri tly sub-sto hasti ): P i j=1 V(s 0 ;S j ) P i j=1  P k 0 ( b P + ) k  [1;j℄ def = V + i .Fromlemma1, V  P n j=1  P k 0 ( b P ) k  [1;j℄ def = V .Sin e(S i jS)= P s2S i V(s 0 ;s) V , P i j=1 (S j jS) = P i j=1 V(s0;Sj) V  V + i V .Hen e (S i jS)maxf V + i V i 1 X j=1  (S j jS);1 X j6=i  (S j jS)g (5) where (S j

jS)isthelowerbound givenbythetheorem1.

Theee tive omputation of theabovebounds of (S

i

jS) involvesthe

nu-meri al al ulation of two power series of matri es whi h are performed with

standardmethods[9℄.

3.4 A general appli ationframework

S

1

S

2

S

n-1

S

n

S

s

0

(8)

Inthisse tionweshowhowtobuildmatri es b

P and b

P foralarge lassof

systems.Thestru tureofthesesystemsmustbesu hthat weshouldbeableto

derivethe b P and b P +

matri esdire tlyfromthemodel.Moreover,thememory

requirementsforthe omputation of b

P and b

P +

must be polynomial, oreven

linear,withrespe ttothesizeofthemodel.Weassumethatthestru tureofthe

statespa e S is asdepi tedin Figure 1and that there is onlyoneentrystate

inS,whi hbelongstoS

1

.Finally,weimposethatthesystemmayleaveSfrom

ea hstateofS

n .

Thedenition of b

P is theeasiestone.Wesimplytake

b P = 0 B B B B B B     . . . . . . . . .   1 C C C C C C A with b P [i;j℄ 8 < : min s2S i P s 0 2S j P[s;s 0 ℄ ifj=i orj =i+1 =0 otherwise Itis learthat b

P fullls thehypothesisoflemma1.

Theideabehindthedenition of an upperbound b

P +

is tolowerthe

tran-sition probabilities of leaving S and to lower the "advan e" from S

i to S

i+1 .

Let us suppose that the stru ture of the system allows us to derive to

se-quen es(L

i

)and(N

i

)withthefollowingproperties.LetusdenotebyLeave(s)=

1 P s 0 2Snfsg P[s;s 0

℄thetransition probability ofleavingS from s,then 81

in; 0L i min s2S l ;li fLeave(s)g(L n

>0sin ethe hainmayleaveSwith

anonnullprobabilityfromea hstateofS

n ).L

n 1

lowerboundsthetransition

probabilityforthe hain to leaveS from S

n 1 orS

n and L

1

lowerbounds the

transition probability for the hain to leave S. (L

i

) is obviously an in reasing

sequen e.

TheN

i

(Next),instead,hastolowerboundthetransitionprobabilitiesfrom

anystateofS i tothesetS i+1 :0<N i min s2S i P s 0 2Si+1 P[s;s 0 ℄.Notethatwe

proposethe ondition 0<N

i

rather than0 N

i

, whi h seems quitenatural,

and provides asu ient ondition for b

P +

to bestri tly substo hasti (see the

proofoflemma2). Withthese onditions,wedenethematrix

b P + = 0 B B B B B B  1 L 1 N 1 N 1 1 L 2 N 2 N 2 . . . . . . . . . N n 1 1 L n 1 C C C C C C A with b P + [i;j℄=0if j6=iorj6=i+1 Lemma2. b P +

isstri tlysubsto hasti andisanadaptedupperboundofPwith

respe ttothe partition (S

i ) 1in . Proof.  b P +

isstri tlysubsto hasti :for1in 1: b P + [i;i℄=1 L i N i 1 min s2S l ;li f1 P s 0 2S P[s;s 0 ℄g min s2S i P s 0 2Si+1 P[s;s 0 ℄=max s2S l ;li P s 0 2S P[s;s 0 ℄

(9)

min s2Si s 0 2S i+1 P[s;s 0 ℄max s2Si s 0 2S P[s;s 0 ℄ min s2Si s 0 2S i+1 P[s;s 0 ℄ 0

Forallothervaluesofj, learly b P + [i;j℄0.Moreover P j b P + [i;j℄=1 L i  1.Sin e1 L n <1,and8in 1; N i >0, b P + isstri tly substo hasti .  b P +

ismonotoni :wehavetoshowthatfori<jandmgiven:A= P m l=1 b P + [i;l℄ P m l=1 b P +

[j;l℄=B andby transitivity, it issu ient to provethepropertyfor

j=i+1.Wehavethefollowingsituations:

m A B m<i 0 0 m=i b P + [i;i℄0 m=i+11 L i 1 L i+1 N i+1 1 L i+1 andAB sin e (L i )is in reasing m>i+11 L i 1 L i+1 (sameasabove)  b P +

isanadaptedupperboundofP:giveni;j;mands2S

i

,letusprovethat

A= P m j=1 P s 0 2Sj P[s;s 0 ℄ P m j=1 b P + [i;j℄=B. Form<i: A=B=0. Form=i: A= P s 0 2Si P[s;s 0 ℄=1 P s 0 = 2S P[s;s 0 ℄ P s 0 2Si+1 P[s;s 0 ℄from

the properties of the hain in S, so that A 1 (1 P s 0 2S P[s;s 0 ℄) N i  1 L i N i =B Form>i:A= P s 0 2Si P[s;s 0 ℄ + P s 0 2Si+1 P[s;s 0 ℄=1 Leave(s)1 L i =B

againfromthepropertiesofthe hain inS.

Above results were establishedwith the hypothesis that we haveonly one

entrypoint belonging to S

1

. Courtois and Semal [2℄showed that if we havea

set S (0)

1

of entrypointsin S

1

, there are positivereals (a

s )

s2S (0)

1

su h that the

steadystatedistributionisalinear ombinationofthesteadystatedistributions

 (s)

orresponding to the modied Markov hain where all inputs in S

1 are "redire ted" to s 2 S (0) 1 :  = P s2S (0) 1 a s  (s) , with P s2S (0) 1 a s = 1. Sin e our

boundsdonotdependonthea tualentrypointinS

1

,weseethattheyarestill

validforallthedistributions (s)

,thereforeforanydistribution orresponding

toa hainwithoutauniqueentrypointinS

1 .

3.5 Anexample

We illustrate the general framework exposed above and we present numeri al

results foradetailed exampleof asystem. Inthe framework of lients/servers

systems, let us assume that lients request a servi e that is omposed of two

phases: omputation of therequested results and transmissionof these results

from the server to the lient. The omputation may be done by n distin t

unitswithexponentialservi edistributionwithdierentrates

l

,andthe

trans-mission may be arried out in nt dierent ways, also with exponentialservi e

distributionwithrates

m

(10)

aset ofservers,S

i

isthesetofstateswheretheresultsofi 1 lient'srequests

ofthen 1arebeingtransmitted, omputedbutnotyetre eivedbythe lient,

andn irequestsforwhi htheserverisstillinthe omputationphase.Froma

stateinS

i

,aservermaybeginitstransmissionofresults,whi hmeansthatthe

hain leavesS

i

and entersS

i+1

, oranewrequest enters the servi esubsystem

orone lienthasre eiveditsresults,whi hmeansthatthe hainleavesS,oran

a tionindependentoftheservi eso urs,whi histranslatedbyatransitionof

the hain insideS

i

.Wesupposethat thesystemmaya tuallyleavetheservi e

area(i.e.S

n

)whenallrequestsareinthere eptionofresultsphase.It ouldnot

bethe ase:forexampleanErlangdistribution (withmorethanone stage)for

transmission, generates (Markovian)entrystates in S

n

that do not fulll this

ondition.

Computation of the bounding matri es First, let us note that expressions (4)

and (5) for bounds do not depend on the a tual value of M involved in the

uniformization pro edure.Sin e it iseasy to omputeonesu h valuefrom the

model ofthesystem,wesimplyassumeherethatM isxed.

Wenow show howto omputethe matri es b P and b P + . Le us denote by min ; max ; min and max

therespe tiveminimumandmaximumofthevarious

ratesof omputationandtransmission.We hoose b P [i;i+1℄= (n i) min M and sin e b

P [i;i℄mustfulll b

P [i;i℄min

s2S i f1 P s 0 = 2S i q s;s 0 M g,weset b P [i;i℄=1 (n i) max+(i 1) max+xmax M wherex max

denotesanupperboundofthearrivalrate

ofnewrequests.ApossiblevalueforM isthenM=(n 1)maxf

max ; max g+ x max +1. Forwhat on erns b P +

,wedenethequantitiesL

i andN

i

.Sin e ontributions

to Leave(s) omefrom internal(endof servi eofa lient'request)andexternal

(newrequest)eventsofS,we anminorizeLeave(s)usingaminorizationofthe

arrivalrates(x min ).SowetakeL i = (i 1) min+xmin M

.Ontheotherside,we hoose

N i = (n i) min M .

Complexity redu tion Letus evaluatetheredu tionofthestatespa eusingthe

aggregatedstates orrespondingtotheS

i

insteadof thesubsetsS

i

themselves.

As we an hooseone omputationamong n andone transmissionamong nt,

jS i j= n i+n 1 n 1   i 1+nt 1 i 1  .Sin emin fn i;i 1gb n 1 2 ,wehave,with in reasingvaluesofn, n i+n 1 n 1  =((n 1) n 1 )=(n n 1 )or i 1+nt 1 i 1  = ((i 1) nt 1 )=(n nt 1 ),thatistosay,jS i j(n minfnt;n g 1 ).Forexample,

withn=100;n =5andnt=10wesubstituteoneelementforasubsetS

i with

about10 5

elements.

Numeri al results Wehave omputedboundingve torsb andb +

fora

simpli-edversionofourexample:weassumeonlytwostagesinthehyperexponential

distribution for omputation, and also two stages in the one for transmission.

(11)

min max min max

As quality riterion, we ompare thevalue = P

n

i=1 b

 [i℄ to 1: themore is

nearfrom 1,thebetterwillbethelowerbound.Toobtainanindi ationonthe

variationof withrespe ttotherates and ,wehave omputed fordierent

ratios = max min min and = max min min

(0.1,0.5, 1) aswellasfor various

ratios

min

min

(0.1, 1, 10). Results are reported in table 1.It learly appears, as

ase min min   P n i=1 b  [i℄ 10.01 0.1 0.1 0.9023 20.1 0.1 0.1 0.8660 30.1 0.1 0.5 0.7995 40.1 0.5 0.1 0.5970 50.1 0.5 0.5 0.5585 60.1 1 0.1 0.4224 71 0.1 0.1 0.7596 81 0.5 0.1 0.3846 910 0.1 0.1 0.5660 1010 0.5 0.5 0.1453

Table 1.Summaryofnumeri alresults

expe ted, thattheloweris min

min

,thebetteristhebound.

i  b min s0 b  (s 0 ) max s0 b  (s 0 ) b  +  + 10.07660250.54074740.5856063 0.6039496 0.67475010.1172291 20.16404490.24579430.2940281 0.3005905 0.37979690.2635029 30.21277730.06620720.0841023 0.0922648 0.20020991.1699492 40.25554540.01170330.0157206 0.0186712 0.14570606.8037702 50.29423710.00141860.0020100 0.0025982 0.135421251.121 60.32982000.00011940.0001782 0.0002516 0.1341221532.16846 70.36287010.00000690.0000108 0.0000167 0.13400968012.1245 80.39376730. 4.306E-07 7.304E-07 0.1340029183468.89 90.42278130. 0. 0. 0.13400277083390.2 100.45011530. 0. 0. 0.13400276.073E+08

Table 2.Comparisonbetweenboundsandexa tvaluesforb( ase2)

Given these results, we have omputed the possibleexa t valuesb (s

0 )

or-responding to modied hain with entry point in s

0 2 S 1 . We obtain b (s 0 )

by rst omputing the matrix P and then visit-ratios matrix V (V[s;s 0 ℄ =  P k 0 P k  [s;s 0

℄)(allmatri esarejSjjSj;inourexample,jSj=220).Wehave

(12)

i  b mins 0 b  0 maxs 0 b  0 b   10.12016050.54074740.6145978 0.6326504 0.74566260.1786329 20.27472930.20448430.2819420 0.2896483 0.40939950.4134366 30.39780160.04339190.0720558 0.0795974 0.24830712.1195382 40.50553820.00588650.0119049 0.0142554 0.210801713.787473 50.59680590.00053920.0013374 0.0017443 0.2054544116.78769 60.67279500.00003400.0001038 0.0001479 0.20494921384.7932 70.73539480.00000150.0000055 0.0000086 0.204916723863.654 80.78659700. 0. 0. 0.2049153626920.53 90.82826210. 0. 0. 0.204915227810027. 100.86203580. 0. 0. 0.20491522.743E+09

Table 3.Comparisonbetweenboundsandexa tvaluesforb( ase3)

sultsarepresentedinTables2and3.Inthesetables, (i)= b  [i℄ mins 0 b  (s 0 ) [i℄ min s 0 b (s 0 ) [i℄

gives therelativeerror betweenmin

s02S1 b  (s 0 )

[i℄ and b [i℄.Likewise,  + (i)= b + [i℄ maxs 0 b (s 0 ) [i℄ maxs 0 b (s 0 ) [i℄

. We an observe that the relative error for the lower bound

in reaseswithi,andlessqui klyinthe ase2thanin the ase3.

Finally,letusnotethat,sin eweshouldobtainanonnulllowerbound,itis

ne essarythat,either r

1

6=0orN

1

6=0if r

1

=0,and moregenerally,N

i 6=0.

The ondition N

1

6= 0, also pointed out by other authors [7℄, means that, if

the reward rate is null in S

1

, the system must be able (i.e. with a non null

probability)toenterS

2

(beginningofthelast phaseofservi eforonerequest)

from ea h state of S

1

. Likefor S

n

(andL

n

) this maynot bealwaysthe ase.

This justiestheintrodu tionofanothermethod whi hrelaxesthis onstraint.

We make up for the weakening of the onditions on S

1

with more stru tural

informationaboutthestatespa eofthe hain.

4 A more elaborated method

Wederiveinthis se tionanotherlowerbound ofR

S =

P

s2S

r(s)(sjS) where

Sisasubspa eofthewholestatespa eS,partitionedinnsubspa esS

i ,sothat R S = P n i=1 r i (S i jS).

Inmanysituations,weareinterestedinsystemsforwhi hthesequen e(r

i )

is in reasing: the moretherequest isin progress,thegreater isthe asso iated

reward.Hen e,in ontrastwiththerstmethod, wedonot omputea

ompo-nentwiseminorizationofb =S (b =S [i℄=(S i

jS)).Instead,wedeneaprobability

ve torb su hthat b <

st b  =S where< st

denotesthestrongsto hasti

order-ing.Thuswegetfrom<

st properties R S def = n X r i b  [i℄ n X r i b  =S [i℄=R S

(13)

ea hS

i

isnowitselfpartitioned into (S

i;j )

1jni

.Using theforwardequations

ofthe hainonS,andfromresultsofthepreviousse tion,wedeneindu tively

b

 [i℄ startingwithi=1.

Herealso,we ouldintrodu edierentpartitions(S

i;j

)ofagivenS

i

forupper

andlowerboundingofprobabilities.Wekeeponlyonepartitionforbothbounds

forreadability.

4.1 Dis rete strong sto hasti ordering

We restate in ourspe i ontext, the equivalen e of two of the denitions of

strongsto hasti orderingbetweentwoprobabilitydistributionsoverf1;:::;ng

(proofsofthelemmasareomittedduetola kofspa eandmaybefoundin[4℄).

Lemma3. Letpandqbetwoprobabilitydistributionsoverf1;:::;ngandm

n, su h that 81  i  m; P i j=1 p j  P i j=1 q j and P m j=1 p j = P m j=1 q j .

Then, for any in reasing sequen e (r

i ) 1im of positive numbers: P m i=1 p i r i  P m i=1 q i r i

Asu ient onditiontoensurethehypothesisofthepreviouslemmaisgiven

bythe lassi al omparison riterionforsumsofpositivenumbers.

Lemma4. Letpandqbetwoprobabilitydistributionsoverf1;:::;ngsu hthat

P m j=1 p j = P m j=1 q j (m n). If, 81<j m, pj pj 1  qj qj 1 then 81i m, P i j=1 p j  P i j=1 q j .

Applyingtheselemmastoourproblem,weonlyneedtondaprobability

distri-butionb su hthat b  [i+1℄ b  [i℄  (S i+1 ) (Si) = (S i+1 jS) (SijS) .Infa t,to omputeb ,itis

su ienttodeneasequen e(

i )su hthat  1 =1and81in 1;  i+1  (S i+1 ) (Si)

,sin ewe anthentakeb [i℄=  i  i 1  1 P n i=1 ii 11 .

4.2 Computation of theminorization ratios

In this se tion we provide an algorithm to ompute the ratios 

i

. Let us rst

set some notations: 

i

(row ve tor with jS

i

j omponents) is the restri tion of

 toS

i ; 

=i

(rowve torwith jS

i

j omponents) is the onditionalversionof

i :  =i [s℄ = [s℄ (Si) ; b =i

(row ve tor with dimension n

i

) is the onditional steady

stateprobabilityve torontheaggregatedstatesS

i;j ofS i :b =i [j℄=(S i;j jS i )= P s2S i;j [s℄ (S i )

;Qis thegeneratoroftheMarkov hain. Sin ethestatespa e S is

partitionedintodisjointsubsetsS

i

,sequentiallyvisited,atransitiono ursonly

insideS i orfromS i toS i+1

.WemaythenviewQasablo kmatrixQ=[Q

i;j ℄.

Q

i;j

givesthetransitionratesfromstatesofS

i

to statesofS

j

(14)

 1 Q 12 + 2 Q 22 =0 . . .  i 1 Q i 1;i + i Q i;i =0 (6) . . .  n 1 Q n 1;n + n Q n;n =0

Equation(6)mayberewritten(Q

i;i

isregularsin eQisagenerator):

 i =  i 1 :Q i 1;i :Q 1 i;i (7)

whi histhebasisfortheiterative omputationofthe

i .

Theith stepof the algorithm omputestwove torsb

=i and b + =i su h that b  =i b =i b + =i

andthe number

i 

(Si)

(Si 1)

from theset ofvaluespreviously

omputed: 81ji 1 ( b  =j and b + =j with b =j b =j b + =j  j with  j  (Sj) (Sj 1)

Notethat,although weonlywantto omputethe

i , weneed tointrodu e theboundsb =j andb + =j :asweshallsee,b =i 1 isrequiredtodene i andb =i 1 andb + =i 1

arerequiredto omputeb

=i .

Initial step Let P

1

bea"pseudouniformized"(sin e Q

1;1

is notagenerator)

substo hasti matrixasso iatedwithQ

1;1 andMmax s2S f q s;s g:P 1 =I jS1j + 1 M Q 1;1 ,withI jS 1 j thejS 1

jIdentitymatrix.We hoose b P 1 (n 1 n 1 matrix)su h that b P 1 [x;y℄min s2S1;x f P s 0 2S 1;y P 1 [s;s 0

℄gandwe omputeanupperadapted

(toP)matrix b

P +

1

.Likewiththerstmethod, usingthevisit-ratios( b

P

1 fullls

thehypothesisoflemma1and b

P +

1

fulllsthoseofproposition1withrespe tto

thepartition(S 1;j )ofS 1 ),weset b  =1 [j℄=  P k 0 ( b P 1 ) k  [1;j℄ P n1 l=1  P k 0 ( b P + 1 ) k  [1;l℄ and b + =1 [j℄=1 X l6=j b  =1 [l℄ sin eb =1 [j℄=1 P l6=j b  =1 [l℄.

Computations fora step i Letusrstgiveanotherexpressionof Q 1

(15)

If Q i;i =[q s;s 0 ℄wehave:q s;s = q s;s >0and q s;s 0 = q s;s 0 <0fors6=s, andq s;s  P s 0 6=s q s;s 0

,sin eQisagenerator.LetM

i max s2Si f q s;s gandP i thesubsto hasti (jS i jjS i

j)matrixsu hthat Q

i;i =M i ( I P i )sothat P i [s;s 0 ℄=  qs;s M i if s=s 0 1+ q s;s 0 M i otherwise Sin eQ i;i isregular, Q 1 i;i = 1 Mi : P k 0 P k i

So,from equation(7)

 i = 1 M i : i 1 :Q i 1;i : X k 0 P k i = (S i 1 ) M i : =i 1 :Q i 1;i : X k 0 P k i (8) Computationofb =i Sin e b =i [j℄ = 1 (Si) (S i;j

), we ompute a lower bound of (S

i;j ) and an upperboundof(S i ). Lowerbound of(S i;j ) From(8) (S i;j )= 1 M i : X s 00 2Si;j X s 0 2Si X s2Si 1  i 1 [s℄:Q i 1;i [s;s 0 ℄: 0  X k 0 P k i 1 A [s 0 ;s 00 ℄

Movingthesummation overs 00 (S i;j )= 1 M i : X s 0 2Si X s2Si 1  i 1 [s℄:Q i 1;i [s;s 0 ℄: X s 00 2Si;j 0  X k 0 P k i 1 A [s 0 ;s 00 ℄

Splitting thesummation overs 0

andmovingitpartially

(S i;j )= 1 M i : n i X v=1 X s2S i 1  i 1 [s℄: X s 0 2S i ;v Q i 1;i [s;s 0 ℄: X s 00 2S i;j 0  X k 0 P k i 1 A [s 0 ;s 00 ℄ Ifwehaveamatrix b P i (n i n i

,tobe omputed)su hthat b P i [x;y℄min s2Si;x f P s 0 2S i;y P i [s;s 0

℄gthen,fromlemma1

(S i;j ) 1 M i : n i X v=1 X s2S i 1  i 1 [s℄: X s 0 2S i ;v Q i 1;i [s;s 0 ℄: 0  X k 0 ( b P i ) k 1 A [v;j℄

Wenowsplitthesummationovers

(S i;j ) 1 M i : ni X v=1 ni 1 X u=1 X s2S  i 1 [s℄: X s 0 2S ;v Q i 1;i [s;s 0 ℄: 0  X k 0 ( b P i ) k 1 A [v;j℄

(16)

andweintrodu eamatrixQ i 1;i (n i 1 n i

,tobe omputed)su hthatQ

i 1;i [x;y℄ min s2Si 1;x f P s 0 2S i;y Q i 1;i [s;s 0 ℄g.Hen e (S i;j ) 1 M i : ni X v=1 n i 1 X u=1 X s2S i 1;u  i 1 [s℄: b Q i 1;i [u;v℄: 0  X k 0 ( b P i ) k 1 A [v;j℄

fromthepropertyoftheve torb

=i 1 weobtain (S i;j ) 1 M i : ni X v=1 n i 1 X u=1 (S i 1 )b =i 1 [u℄: b Q i 1;i [u;v℄: 0  X k 0 ( b P i ) k 1 A [v;j℄ that isto say (S i;j ) (S i 1 ) M i :b =i 1 : b Q i 1;i : 0  X k 0 ( b P i ) k 1 A [j℄ (9) Upperboundof(S i )

From(8), andwiththesamekindof derivation

(S i )= i (S i ) (S i 1 ) M i : X s2S i X s 0 2S i 1  =i 1 [s 0 ℄: X s 00 2S i Q i 1;i [s 0 ;s 00 ℄: 0  X k 0 P k i 1 A [s 00 ;s℄ (S i )= (S i 1 ) M i : n i X j=1 X s 0 2Si 1  =i 1 [s 0 ℄: X s 00 2Si Q i 1;i [s 0 ;s 00 ℄: X s2Si;j 0  X k 0 P k i 1 A [s 00 ;s℄ (S i )= (S i 1 ) M i : ni X j=1 ni X v=1 X s 0 2Si 1  =i 1 [s 0 ℄: X s 00 2Si;v Q i 1;i [s 0 ;s 00 ℄: X s2Si;j 0  X k 0 P k i 1 A [s 00 ;s℄ Let b P + i

(tobe omputed)beastri tlysubsto hasti andupperboundingn

i n

i

matrixwithrespe ttothepartition(S

i;j )ofS

i

,then, fromProposition1,

(S i ) (S i 1 ) M i : ni X j=1 ni X v=1 X s 0 2Si 1  =i 1 [s 0 ℄: X s 00 2Si;v Q i 1;i [s 0 ;s 00 ℄: 0  X k 0 ( b P + i ) k 1 A [v;j℄ (S i ) (S i 1 ) M i : ni X j=1 ni X v=1 n i 1 X u=1 X s 0 2S i 1;u  =i 1 [s 0 ℄: X s 00 2S i;v Q i 1;i [s 0 ;s 00 ℄: 0  X k 0 ( b P + i ) k 1 A [v;j℄ Let b Q + i 1;i (n i 1 n i

,tobe omputed)besu hthat b Q + i 1;i [x;y℄max s2Si 1;x f P s 0 2S i;y Q i 1;i [s;s 0 ℄g.Then, (S i ) (S i 1 ) M i : ni X j=1 ni X v=1 ni 1 X u=1 X s 0 2S  =i 1 [s 0 ℄: b Q + i 1;i [u;v℄: 0  X k 0 ( b P + i ) k 1 A [v;j℄

(17)

(S i ) (S i 1 ) M i : ni X j=1 ni X v=1 n i 1 X u=1 b  + =i 1 [u℄: b Q + i 1;i [u;v℄:  X k 0 ( b P + i ) k A [v;j℄

fromthepropertyoftheve torb +

=i 1

,whi h mayrewrittenas

(S i ) (S i 1 ) M i :b + =i 1 : b Q + i 1;i : 0  X k 0 ( b P + i ) k 1 A :1 T n i (10) with1 T ni

the olumnve torwithn

i

omponents,allequalto1.

Finally,by(9)and(10),weset

b  =i [j℄ def = b  =i 1 : b Q i 1;i :  P k 0 ( b P i ) k  [j℄ b  + =i 1 : b Q + i 1;i :  P k 0 ( b P + i ) k  :1 T n i (11) Computationofb + =i Sin eb =i [j℄=1 P l6=j b  =i [l℄, wesimplydene b + =i [j℄ def = 1 P l6=j b  =i [l℄. Computationof i From (9), wehave (S i ) (Si 1) Mi :b =i 1 : b Q i 1;i :  P k 0 ( b P i ) k  :1 T ni and we andene  i def = 1 M i :b =i 1 : b Q i 1;i : 0  X k 0 ( b P i ) k 1 A :1 T ni (12)

Note that we must have

2

6= 0to obtain non trivial lower bounds b [i℄.

From12,thisisequivalentto theexisten eofj and ksu h thatb

=1

[j℄>0and

b

Q

1;2

[j;k℄ >0.This meansthat there mustbeasubsetS

1;j ofS 1 andasubset S 2;k ofS 2

su hthatfromea hstateofS

1;j

(andnotofS

1

asintherstmethod),

thesystemmustbeableto jumpintoS

2;k .

4.3 Example

Thegoal ofthis se tionis toexplain howthe variousmatri es requiredbythe

algorithmjustpresentedmaybederivedfromthemodelofthesystem.

Numer-i al results are presented in the extended version [4℄ of the paper. We study

amodiedversionof the exampleof Se tion 3.5 and we on entrate ourselves

on the omputation phase of the request servi e in the sub-state spa e S

i of

S (n irequests in omputation phase,i 1requests in transmissionphase).

This omputation phaseis nowmade upof four steps,the transmissionphase

beingun hanged.An initialstage(rate

1

)isfollowedbyaforkprodu ingtwo

"sub-requests",withrate

2 and

3

.Thejoinofthesub-requests(rate

4 )ends

(18)

µ

2

/(µ

2

3

)

µ

1

µ

2

+

µ

3

µ

3

µ

2

µ

4

µ

3

/(µ

2

3

)

Fig.2.Distributionofthe omputationphaseservi e(method2)

The riti al hoi e of themethod is the denition of thepartitions S

i;j for

theminorizationandmajorizationinthealgorithm(thesamepartitionwasused

inthepresentationofthealgorithm).This hoi eisatradeobetweenthe

om-plexityofthe omputations, thefulllmentof thehypothesisof thetheorem1,

for thematri es b P i and b P + i

, thetightness ofthe bounds andthe information

dire tlyavailablefromthemodel.Alsonotethat thepartition orrespondingto

the minorization must be a renement of the one for themajorization due to

theboundexpressionsofSe tion3.3andthe omputationofb +

=i .

Inourexample,wemay hooseS

i;j

asthesetofstatesforwhi hj stepshave

beendonebythewholen irequestsandwe an omputequantitiesL

i;j andN i;j (theL i andN i

valuesofthemethod1)todeneab +

=i

asinmethod1.Forwhat

on ernstheminorization,theseS

i;j

areatoo oarsepartition,providingaweak

boundingve torb

=i

:weneedmoreinformationabouttheadvan eofrequestsin

thedierentstepstodeneavaluablelowerbound.Hen e weshalltakeS

i;| as

thepartitionfortheminorization,where|=(j

1 ;j 2 ;j 3 ;j 4 ), P 4 k =1 j k =n iand j k

isthenumberofrequestsinkthstep.Itisstraightforwardtoverifythatthis

partitionisarenementofthemajorizationpartition.Whateverthematrix,we

may hooseanyvalueM

i su hthatM i max s2S i f q s;s g.Forinstan e,wemay set M i =(n i)maxf 1 ; 2 + 3 ; 2 ; 3 ; 4 g+(i 1) max +x max +1. Minorization Here,S i;| =fsjj 1

requestsininitialstep,j

2

requestswithonestep

done,:::;j

4

requestswiththreestepsdoneg.

Re allingthatwemusthave b P i [x;y℄min s2S i;x P s 0 2Si;y P i [s;s 0 ℄,weset b P i [|;| 0 ℄= 8 > > > > > < > > > > > : j11 Mi if | 0 =(j 1 1;j 2 +1;j 3 ;j 4 ) j2(2+3) M i if | 0 =(j 1 ;j 2 1;j 3 +1;j 4 ) j3minf2;3g M i if | 0 =(j 1 ;j 2 ;j 3 1;j 4 +1) 1 r(|;| 0 ) Mi if | 0 =| 0 otherwise withr(| ;| 0 )=j  +j ( + )+j maxf ; g+j  +(i 1) +x .

(19)

Wemustalso have b Q i 1;i [x;y℄min s2Si 1;x s 0 2S i;y Q i 1;i [s;s 0 ℄sothat we dene b Q i 1;i [|;| 0 ℄=j 4  4 if| 0 =(j 1 ;j 2 ;j 3 ;j 4 1)and0otherwise. Majorization Here,S i;j

=fsjjstepshavebedoneg(0j3(n i)).

 We dene b

P +

i

as with method 1 (but applied to the S

i;j ), whi h ensures that b P + i

is astri tly substo hasti and upperbounding matrix. Sin eweneed

L i;j  min s2S i;l ;lj fLeave(s)g, we take L i;j = 4lnls(j) Mi , where lnls(j) is a

lower bound of the number of requests being in their last step of

omputa-tion: lnls(j)=maxf0;j 2(n i)g.ThenumbersN

i;j mustverify0<N i;j  min s2Si;j P s 0 2S i;j+1 P[s;s 0

℄. An a urate hoi e, whi h anbe omputed

with-outoverheadduring the omputation of b P i is: N i;j =min  |; P 4 k =1 (k 1)j k =j 1j1+(2+3)j2+minf2;3gj3 M i .  b Q + i 1;i must fullls b Q + i 1;i [j;j 0 ℄max s2Si 1;j P s 0 2S i;j 0 Q i 1;i [s;s 0 ℄, hen ewe dene b Q + i 1;i [j;j 0 ℄ =  4 unls(j) if j 0

= j 3 and 0 otherwise. unls(j) is an

upperboundofthenumberofrequestsbeingintheirlast stepof omputation:

unls(j)=jdiv3.

5 Con lusion

Inthis paperwehavepresentedanewapproa hto omputeboundsof

perfor-man emeasuresof Markov hainsfrequentlyen ountered insystemmodelling.

Thisapproa hprovidesimportantsavingsin omputationandmemory

require-ments with respe t to an exa t omputation of the steady state distribution.

Whenasubsetofthestatespa e ofthe hain may bepartitioned in subspa es

sequentiallyvisited,wehavedened bounds of onditionalsteady statereward

ratesonthesessubspa esoronthewhole subset.Twomethodshavebeen

pro-posed, orrespondingtodierentpropertiesofthemodel.Ourmethodsarebased

on a ombination of strong sto hasti ordering and aggregation. We have

ex-plained how to ompute these bounds and reported rst experiments showing

theinterestoftheapproa hwhenthesystemfulllssuited hypothesis.Workis

in progressto evaluate a urately the behaviourof the results for the se ond,

moreelaborated,method.Wearealsostudyingtheappli abilityofourmethod

todomainsusuallyinvolvingboundingmethods,likeperforman eevaluationof

fault tolerant and repairable systems, for whi h the reparation rates may be

seen,themselves,asrewards.Inparti ular,weareworkingonappli ationofour

resultstosystemswithmultipleentrypointsinthesubsetsvisited.

Referen es

(20)

tivematri es and for their approximationsby de omposition. Journal of ACM,

31(4):804825,O tober1984.

3. P.J.CourtoisandP.Semal.Computableboundson onditionalsteady-state

prob-abilities inlarge markov hainsand queueingmodels. IEEE Journal onSele ted

AreasinCommuni ation(SAC),4(6):926937,September1986.

4. S. Donatelli, S. Haddad, P. Moreaux, and M. Sene. A

om-bination of sto hasti ordering and Courtois bounding method.

http://www.lamsade.fr/ moreaux/nsm 99/extended.html, July1999.

5. L. Golub hik and John C.S. Lui. Bounding of performan e measures for a

thresholdbased queueing system with hysteresis. In ACM Sigmetri s

Interna-tionalConferen e onmeasurement &modelingof omputer systems,volume25of

Performan eEvaluationReview,spe ialissue,pages147157,Seattle,Washington,

USA,June15-181997.ACM.

6. JohnC.S.LuiandR.R.Muntz. Computingboundsonsteadystateavailabilityof

repairable omputersystems. JournalofACM,41(4):676707,July1994.

7. S.MahévasandG.Rubino.Bound omputationofdependabilityandperforman e

measures. Rapportdere her he3135,INRIA,Rennes,Fran e,Mar h1997.

8. R.R.Muntz,E.DeSouzaESilva,andA.Goyal.Boundingavailabilityofrepairable

omputer systems. In Pro eedings of 1989 ACM SIGMETRICS and

PERFOR-MANCE'89, May 1989. also inspe ialissue ofIEEE Trans.Computers,vol. 38,

no.12, pp.1714-1723, De .1989.

9. W.J.Stewart.Introdu tiontothenumeri alsolutionofMarkov hains.Prin eton

UniversityPress,USA,1994.

10. D.Stoyan. Comparison MethodsforQueueingandOtherSto hasti Models. John

Figure

Table 2. Comparison between bounds and exa
t values for b  (
ase 2)
Table 3. Comparison between bounds and exa
t values for b  (
ase 3)
Fig. 2. Distribution of the 
omputation phase servi
e (method 2)

Références

Documents relatifs