• Aucun résultat trouvé

Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

N/A
N/A
Protected

Academic year: 2021

Partager "Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell"

Copied!
8
0
0

Texte intégral

(1)

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 11013

To link to this article : DOI : 10.1016/j.nucengdes.2013.11.085

URL :

http://dx.doi.org/10.1016/j.nucengdes.2013.11.085

To cite this version :

Bertron, Alexandra and Jacquemet, Nicolas

and Erable, Benjamin and Sablayrolles, Caroline and Escadeillas,

Gilles and Albrecht, Achim Reactivity of nitrate and organic acids

at the concrete–bitumen interface of a nuclear waste repository cell.

(2014) Nuclear Engineering and Design, vol. 268 . pp. 51-57. ISSN

0029-5493

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Reactivity

of

nitrate

and

organic

acids

at

the

concrete–bitumen

interface

of

a

nuclear

waste

repository

cell

A.

Bertron

a,∗

,

N.

Jacquemet

a

,

B.

Erable

b

,

C.

Sablayrolles

c,d

,

G.

Escadeillas

a

,

A.

Albrecht

e

aUniversitédeToulouse;UPS,INSA;LMDC(LaboratoireMatériauxetDurabilitédesConstructions);135,avenuedeRangueil;F-31077;ToulouseCedex04,

France

bUniversitédeToulouse;INPT,UPS;CNRS;LaboratoiredeGénieChimique;4,AlléeEmileMonso,F-31030Toulouse,France

cUniversitédeToulouse;INP;LCA(LaboratoiredeChimieAgro-Industrielle);ENSIACET,4alléeEmileMonso,BP44362,31432ToulouseCedex4,France dINRA;LCA(LaboratoiredeChimieAgro-Industrielle),F-31029Toulouse,France

eAndra,1-7,rueJean-Monnet,92298Châtenay-Malabry,France

h

i

g

h

l

i

g

h

t

s

•Interactionsofcementpasteandorganicacid–nitratesolutionswereinvestigated.

•CementleachingimposedalkalinepH(>10)veryrapidlyintheliquidmedia.

•Aceticacidactiononcementpastewassimilartothatofclassicalleaching.

•OxalicacidattackformedCa-oxalatesalts;organicmatterinsolutiondecreased.

•Nitratewasstableunderabioticconditionsandwithorganicmatter.

a

b

s

t

r

a

c

t

Thisstudyinvestigatesthefateofnitrateandorganicacidsatthebitumen–concreteinterfacewithin repositorycellforlong-lived,intermediate-level,radioactivewastes.Theinterfacewassimulatedbya multiphasesysteminwhichcementitiousmatrices(CEMVcementpastespecimens)wereexposedto bitumenmodelleachatesconsistingofnitratesandaceticacidwithandwithoutoxalicacid,chemical compoundslikelytobereleasedbybitumen.Leachingexperimentswereconductedwithdailyrenewalof thesolutionsinordertoacceleratereactions.Theconcentrationsofanions(acetate,oxalate,nitrate,and nitrite)andcations(calcium,potassium)andthepHweremonitoredovertime.Mineralogicalchanges ofthecementitiousmatriceswereanalysedbyXRD.Theresultsconfirmedthestabilityofnitratesinthe abioticconditionsoftheexperiments.Theactionofaceticacidonthecementitiousmatrixwassimilarto thatofordinaryleachingintheabsenceoforganicacids(i.e.carriedoutwithwaterorstrongacids);no specificinteractionwasdetectedbetweenacetateandcementitiouscations.Thereactionofoxalicacid withthecementitiousphasesledtotheprecipitationofcalciumoxalatesaltsintheouterlayerofthe matrix.Theconcentrationofoxalatewasreducedby65%insidetheleachingmedium.

1. Introduction

InFrance,asignificantfractionoflong-lived,intermediate-level, radioactivewastes (bituminous wastes) consist ofa mixture of inorganicsaltsimmobilisedinabitumenmatrix.Theyarepoured incylindricalsteelcontainerscalledprimarypackages. Depend-ing onthedisposal concept, thesecontainers are groupedinto cuboidreinforcedconcreteoverpacks.Thesesecondarypackages

∗ Correspondingauthorat:LMDCINSAUPSGénieCivil,135avdeRangueil,31077 ToulouseCedex4,France.Tel.:+33561559931;fax:+33561559949.

E-mailaddresses:bertron@insa-toulouse.fr,alexandra.bertron@insa-toulouse.fr

(A.Bertron).

arethenplacedinsidewastecellsbuiltatadepthof450–550m within a Callovo-Oxfordian clay rock formation, using signifi-cantamountsofadditionalconcrete(i.e.lining,shotcrete)(Andra, 2005).

Afterclosureofthecells,waterresaturationthatprobablyfills thewastecellsfromthebottomup(bathtubeffect),reaching near-saturationwithinafewthousandyears,shouldenhancetherelease ofchemicalspecies.Amongthecompoundsprobablyreleasedinto theinterstitialaqueousmediumaresolublesalts(notablynitrates) andorganicmattersuchasorganicacids,phenols,etc.contained withinthebituminousmatrix(Walczaketal.,2001),togetherwith gas(mostlyH2)producedviaradiolysisoforganicmatterand/or

anaerobicsteelcorrosion(blackandstainlesssteelpresentin pri-marycontainersandconcretereinforcement).

(3)

Table1

CEMV/Acementcomposition.l.o.i.:lossonignition.

CaO SiO2 Al2O3 Fe2O3 MgO TiO2 Na2O K2O MnO SO3 l.o.i.

CEMV/A42.5N 46.4 30.0 11.2 3.6 2.8 0.6 0.2 1.2 0.1 2.8 2.1

Thepresenceofnitratesinthevicinityofwastepackagesmay resultinoxidisingconditionsfavourabletothemobilityofaseries ofradionuclides(Se,U,Tc,Pu,Np,etc.)Albrechtetal.(2013). How-ever,inthegeochemicalconditionsprevailinginthecell,different redoxreactionsarelikelytooccur,includingnitratereduction driv-ingthesystembacktoareducingenvironmentfavourabletosafe repository.Reductionofnitrate(NO3−)mayoccur(i)fromabiotic

processes,withironfromthesteeland/orH2 actingaselectron

donors,andsurface catalysisprovidedby thedifferenttypesof steelandcorrosionproductspresentinthewastecell,and/or(ii) frombiologicalcatalysisthroughbacterialactivity.Thereactions mayleadtotheformationofnitrite(NO2−),gaseousnitrogen(N2)

and/orammonium(NH4+),dependingonavarietyofparameters

notyetwellunderstood,particularlyinconcrete-dominated sys-tems(Devlinetal.,2000;Trucheetal.,2013a,b;Alquieretal.,2014; Libertetal.,2011; Bertronetal.,2013).Bothtypesofreactions (abioticandbiotic)involveelectrondonorsandnumerous inor-ganicandorganiccandidatesareavailableinthewastecellorin thehostrock(organicacids,H2,zero-valentmetals,etc.)Albrecht

etal.(2013).Allreactionsoccurinanenvironmentinfluencedby thealkalineconditionsimposedbytheconcretephases.Theoverall project,ofwhichthispaperisapart,aimstoinvestigatethe reduc-tionofnitrateswithinasystemcomparabletoa“real”waste-cell wherebacterialactivityislikelytooccur(denitrifyingalkaliphilic bacteria)andnotablytodeterminethephenomenologyand kinet-icsofreactionsandtheroleoftheelectrondonor(i.e.organicacids releasedbybitumen,suchasaceticoroxalicacids)inthereactions (Alquieretal.,2012,2013,2014).

However,previousstudieshaveshownthatstronginteractions occurbetweencementitiousmaterialsandorganicacids(Bertron etal.,2005a,b;Bertronetal.,2007;Larreur-Cayoletal.,2011a,b; OueslatiandDuchesne,2012;BertronandDuchesne,2013).These reactionscouldmodifynotonlythebioavailabilityoforganic mat-ter – and thus influence thereactivity of nitrates under biotic conditions–butalsothecompositionoftheconcreteanditsability tobufferthechemicalsystem(i.e.pH).

An important prerequisite was therefore to investigate the interactionsoforganicacidswiththecementitiousmatrixinthe presenceofnitratesunderaerobicconditionsandwithoutbacteria. Reactionsandtherelatedequilibriaofmultiphasesystems repre-sentativeofthebitumen–concreteinterfacewereinvestigatedin simplifiedbatchsystemsandinshorttermexperiments.CEMV pastespecimenswereimmersedinsolutionsmadeofaceticand/or oxalicacidsandnitratesthatsimulatedbitumenmodelleachates. Changesinthecementpastesandliquidphasecompositionswere investigated.

2. Materialsandmethods 2.1. Materials

2.1.1. Cementpastes

ThespecimenswereCEMV/A42.5(S-V)NCEPM-ES-CP1cement pastes(slagandflyashcementfromtheAirvaultCalciafactory, chemicalcompositiongiveninTable1)withawater/cementratio of0.40.Theywerecastincylindricalplasticmoulds50mmhighand 27mmindiameter(volume=28.6cm3andsurfacearea=53.9cm2)

withoutdemouldingoilandwerevibratedtoevacuateairvoids. Thespecimensweretakenoutoftheirmoulds24hafterpouring andstoredinwaterat20◦Cfor28days.Theywerethensubjectedto

theleachingtestsdescribedbelow.Inparallel,somecontrol speci-menswerekeptinwaterat20◦C.

2.1.2. Bitumenmodelleachatesolutions

Uncertainties remain on the release of organic and inor-ganicmatterbybitumen–saltmixtures.Experimentalstudieshave shownthatthedegradationofbitumengivesrisetotherelease oforganicmatter(naphthalene,alcohols,linearcarboxylicacids, aromaticsandglycols)andsalts(NaNO3,Na2SO4,etc.)(Walczak

etal.,2001;VanLoonandKopajtic,1990;LibertandWalczak,2000; Nakayamaetal.,2003;Marienetal.,2008;Walczak,2000;Kagawa etal.,2000).

Onthebasisofthisliteraturedata,leachingofbitumenwas sim-ulatedbyaqueoussolutions madeoforganicacidsandnitrates. Linearcarboxylic acids were considered(i) since theyare eas-ily assimilatedby (Ma etal., 2012;Daniel etal., 2007) and(ii) becauseoftheirprobablestronginteractionswithcementphases. Experimentsofbitumendegradationbywateruptakeand/or radi-olysishaveshownthepresenceofacetic,formicandoxalicacids in the leachates (Walczak et al., 2001; Van Loon and Kopajtic, 1990;Walczak,2000;Kagawaetal.,2000).Amongexperimental parametersinfluencingthequantityandnatureofacidsare:pH oftheleachingsolution,irradiation,temperatureanddurationof experimentand presenceor lackofoxygen. Inleaching experi-mentsperformedatambientormoderatetemperature(≤45◦C),

concentrations ofacids of theorder of tenmilligrams perlitre havebeenfoundintheleachates.Oxalicacidwasnotablydetected afterradiolysisofbitumeninthepresenceofoxygen;incoherence withexperimentsyieldingoxalateproductionduringirradiationof formicacidunderoxygen.VanLoonandKopajtic(1990)concluded thattheproductionofoxalateintheabsenceofoxygenwas ques-tionable.Oxygeninitiallypresentinthewastecellsafterclosure willberapidlyconsumedeitherreactingwithcomponentsofthe clayhostrockorwithmetalspresentinthereinforcedconcrete, butitmustbekeptinmindthatthewastecontainerswillbestored forseveraldecadesinanoxygen-bearingatmosphere.

Calciumsaltsofformic andacetic acidsbeinghighlysoluble inwater(LangeandDean,1985),itislikelythatbothacidshave similareffectsonthecementitiousmatrix(BertronandDuchesne, 2013).Incontrast,calciumoxalatesaltsareonlyslightlysolublein water(Seidell,1919;Streitetal.,1998)andarethuslikelytobe producedduringtheattackofcementitiousmatrixbyoxalicacid. Aceticandoxalicacidswerethereforeconsideredinthepresent study.

Twotypesofmodelleachatesolutionswereconsidered.Thefirst typewasmadeofaceticacid(0.50mMto30mg/L)andsodium nitrate(32.3mM).TheinitialpHofthissolution,notedasN+OA1, was4.Thesecondtypewasamixofaceticacid(0.33mM),oxalic acid(0.17mM)(sametotalconcentrationofacidsof0.50mM)and sodiumnitrate(32.3mM).ThepHofthissolution,notedasN+OA2, was3.6.Thenitrateconcentration(32.3M)wasonlyanestimateof thelikelyconcentrationinawastecell(resultsofcoupled chemi-calandtransfermodelling)(Sercombeetal.,2006;Gwinneretal., 2006).Table2summarisesthecompositionofthetestsolutions.

2.2. Experimentalset-upandleachingprocess

TheexperimentaldeviceisshowninFig.1.Batchsystemswere implemented.

(4)

Table2

Compositionsofbitumenmodelleachates.

Solutions Concentration pH

Aceticacid Oxalicacid NitrateNO3−

mg/L mM mg/L mM mg/L mM

N+OA1 30 0.50 – – 2000 32.3 4.0

N+OA2 20 0.33 15 0.17 2000 32.3 3.6

Fig.1.Experimentalset-up.

Thereactor,filledwith1Lofnitrateandorganicacidsolution (N+OA1orN+OA2)wasequippedwithanoutletforsolution sam-pling,agasinletwithcheckvalve(usedforN2bubblingtoimpose

anoxicconditionsinsidethereactorsimilartothosethatwill pre-vailinsidearepositorycell),agastighttapforapHprobe,anda hermeticallyclosedlidfittedwithagasvent.

ThepHprobewasconnectedtoadataacquisitionsystem (Con-sort,D230DataAcquisitionSystem,v1.1.13).Thesolutioninthe reactor was continuously stirred using a magnetic barrel. The cementpastespecimenwassuspendedinthesolutionbyaPTFE thread. The solid/liquid volume ratio wasabout 3% (similar to thatimplementedin thebiotic partof thestudy(Alquieretal., 2012)).Theexperimentaldevicewaskeptinanair-conditioned room(20◦C)duringthewholeexperiment.

N+OA1 (acetic acid 0.5mM; NO3− 32.23mM) and N+OA2

(acetic0.33mMandoxalic0.17mMacids;NO3−32.23mM)

solu-tionswerereneweddailyfor5days.Theseshorttermexperiments werechosenbecausethekeyphenomenaimpactingbacterial reac-tion(exploredinthebioticpartoftheoverallstudyofwhichthis paper is partof (Alquier et al., 2013,2014)) occurin the very shorttermoftheexperiment(becauseoftheverysevere condi-tionsrapidlyimposedbythecementitiousmaterialsintheliquid medium).Moreover,itshouldbenotedthattheseshortterm leach-ingexperimentswerefavouredwiththeviewtolimittheseverityof themediaandensuremicrobialgrowth(andthusmicrobial activ-ity)inthecorrespondingbiotictesting(Alquieretal.,2013,2014).

Table4

Detectionandquantificationlimits(DLandQL)ofions(mmol/L)(S/N=Signal/Noise). Acetate Oxalate Nitrite Nitrate Potassium Calcium DL(3<S/N) 0.68 0.79 1.74 2.42 0.402 0.764 QL(10<S/N) 2.04 2.61 6.09 8.06 1.339 2.546

Duringthefirstdayofexposure,thesolutionwassampled4times (20–25mLeachsample).Thesolid/liquidratiochangedverylittle. Ondays2–5,aliquidsamplewastakenfromthesolutionjustbefore renewal.ConcentrationsofCa,K,acetate,nitrateandnitritewere measuredoneachsample.

Controlexperimentswerecarriedouttoinvestigatethe possi-blesorptionofnitratesonthecementpasteinthesameconditions (NO3−32.3mM,solid/liquidratio3%,durationoftheexperiment:

15dayswithnorenewalofthesolution).Nodecreaseofnitrate concentrationwasobservedinthesolution.Moreover,the cemen-titiousspecimenswererinsedthreetimesandtherinsingsolutions wereanalysedbyHPICtodeterminenitrateandnitrite concentra-tion.Theconcentrationswerelowerthanthedetectionlimitsofthe equipment(Table3).

2.3. Analyticalmethods

2.3.1. Methodsfordeterminingionconcentrationsofsolutions Concentrationsofanions(acetate,oxalate,nitrateandnitrite) andofcations(calciumandpotassium)weremeasuredbyHigh PerformanceIonChromatography(HPIC)coupledtoa conducti-metricdetectorfittedwithchemicalsuppressor(DionexICS-2000 andICS-3000).TheanalyticalconditionsaresummarisedinTable3. Quantificationwasperformedbyexternalcalibrationoverthe concentration range 1–40mg/L witha regression coefficient of 0.999calculatedfrompeakareas.Repeatabilitywasassessedon 5injectionsandwasbetterthan98%.Biaserrorwasbetween5and 10%.Thedetectionlimit(definedasinjectedquantitygivinga sig-nal/noiseratioof3)andquantificationlimit(definedasinjected quantitygivingasignal/noiseratioof10)werecalculatedforeach compound(Table4).

Liquidsampleswerefilteredat0.2mm(MinisartPES,Fisher Sci-entific)toremovesuspendedsolidmatter.

2.3.2. Mineralogicalanalysesofcementitiousspecimens

To explore the mineralogical changes, cement paste sam-pleswereanalysedbyX-Raydiffraction(SiemensD5000;copper cathode;anodevoltage40kV;currentstrength30mA)afterthe leachingtests.Themeasurementswereperformedaccordingtothe distanceinwardsfromtheplanecylindersurfaceincontactwiththe solutions.Thefirstanalysiswasmadeontheplaneexternalfaceof thespecimen,whichwasthenabradedwithapolishingdiscand subjectedtothenextanalysis.Thedepthofanalysiswasmeasured usingacallipersquare.Thelastanalysis,whichwasonthecoreof thespecimen,wascarriedoutatadepthof5mm(afterthe speci-menhadbeensawnperpendicularlytoitsaxis).Acontrolspecimen wasalsoanalysed5weeksafterpouring.

Table3

HPICtestconditions.

Eluant(1mL/min) Precolumn Chromatographic

column

Suppressor

Anions KOH(1×10−3mol/L)

elutiongradient:10%mobilephaseto 60%mobilephasein25min

NG1(4mm×50mm, Dionex)+IonPacAG11-HC (4mm×50mm,Dionex) IonPacAS11-HC (4mm×250mm, Dionex) ASRS300(4mm, Dionex)+CRD200 (4mm,Dionex) Cations Methylsulfonicacid(3010−3mol/L)

isocratic(30min) NG1,(4mm×50mm, Dionex)+IonPacCG16 (4mm×50mm,Dionex) IonPacCS16 (4mm×250mm, Dionex) SuppressorCSRS300 (4mm,Dionex)

(5)

Fig.2.Macroscopicobservationofthecementpastespecimens.(a)Control spec-imenkeptinwater,(b)specimenafter5daysofleachingbyN+OA1(aceticacid 0.50mM,nitrate32.3mM)solutionand(c)specimenafter5daysofleachingby N+OA2(acetic0.33mMandoxalic0.17mMacids,nitrate32.3mM)solution.

3. Resultsanddiscussion 3.1. Macroscopicobservations

Thecementitiousmatrix,initiallygrey,hadturnedtoayellowish colourattheendoftheleachingexperiments(Fig.2).Thisis charac-teristicoftheleachingofacementitiousmatrixbyacidicsolutions whereFe(III)ofhydratedandor/anhydrousphasesprecipitatesin theformoforangey-colouredironhydroxide.InCEMV-type anhy-drouscement,ironiscontainedinflyashesandintheC4AF-phase

(brownmillerite)ofclinker.Iron-bearingphasesofcementhydrate moreslowlythansilico–calcicphases.Inahydratedcementitious matrix,ironisfoundinanhydrousresidualphasesandaspartial substitutioninhydrates.TheouterlayerofleachedCEMIandCEM Vpastesisenrichediniron(relativeenrichment)(Bertronetal., 2007;Moudilou,2000;Pavlík,1994).Ironintheouterlayeris prob-ablycontainedinresidualanhydrousflyashes,inC4AF(thisphase

ismoreresistanttoleachingthanotherhydratedandanhydrous phasesofPortlandmatrix(Bertronetal.,2005a)andinthesilica gel,issuedfromleachedcalciumsilicatehydrates(mainhydrated phaseofcementitiousmatrices).

3.2. CompositionandpHofthetestsolutions

Concentrationsof K+ and Ca2+of N+OA1 and N+OA2

solu-tionsincementpasteimmersiontestsareshownversustimein

Figs.3and4.ConcentrationsofOH−ions,calculatedfrom

contin-uousmeasurementofpHarealsorepresented.Concentrationsof

Fig.3. ConcentrationsofK+,Ca2+andOHinN+OA1(aceticacid0.50mM;nitrate

32.3mM)leachingsolution.Thesolutionwasreneweddaily.Solidarea/liquid vol-ume≈50cm2/L.ConcentrationofOHwascalculatedfromthepHvalues.Fordays

2–5,variationsofKandCaconcentrationsarebasedonthefinalconcentrationand anevolutionsimilartoday1.

Fig.4.Concentrations ofK+, Ca2+ andOH

in N+OA2 (acetic 0.33mM/oxalic 0.17mMacids;nitrate32.3mM)leachingsolution.Thesolutionwasreneweddaily. Solidarea/liquidvolume≈50cm2/L.ConcentrationofOHwascalculatedfromthe

pHvalues.Fordays2–5,variationsofKandCaconcentrationsarebasedonthefinal concentrationandanevolutionsimilartoday1.

nitrate,nitrite,acetateand oxalateofthesolutionsaregiven in

Table5.

ThevariationsofpHweresimilarforthefive24-hcycles:from theinitialvaluesof4.0forN+OA1and3.6forN+OA2,pHincreased rapidlyduringthefirst6hofleaching,toreachabout9.5, then increasedslowly toreach 10.6 in N+OA1 and 10.5 in N+ OA2 after24h(Figs.3and4).LongerreactiontimeswouldallowpHto increaseevenfurther.Alkalineconditionswerethusveryrapidly imposedintheleachingmedium.TheincreaseinpHwasmostly duetothereleaseofhydroxideionsbythedissolvingcementpaste matrix.

Concentrationsof K+ and Ca2+ variedthe sameway.During

thefirstleachingcycle,variationsfollowedthoseofpHand con-centrationsreached[Ca2+]0.25mmol/L and[K+]0.15mmol/L

in N+OA1 and [Ca2+]0.33mmol/L and [K+]0.17mmol/L in

N+OA2. For leaching days 2–5, concentrations at the end of thecycle decreased progressivelytoreach [Ca2+]0.25mmol/L

and [K+]0.09mmol/L in N+OA1and [Ca2+]0.22mmol/L and

[K+]0.08mmol/LinN+OA2attheendofthe5thleachingcycle.

Concentrations of nitrates in N+OA1 and N+OA2 (Table 5) remainedequivalenttotheinitialvalue(32.3mM).Nitriteswere notdetectedineithersolution.Moreover,cationchromatograms didnot reveal anypeak due toammonium NH4+ produced by

abioticreductionofnitratesunderanoxicconditions.Ammonium hasnotablybeenobservedby(Alquieretal.,2012;Trucheetal., 2013a,b)inthepresenceofvarioustypesofsteelactingas reac-tioncatalysts.Resultsobtainedinthisstudyindicatethatnoabiotic reductionofnitrateoccurredintheconditionsoftheexperiment.

Table5

Evolutionofconcentrations(mmol/L)ofanionsinN+OA1andN+AO2solutions withtimeofcementpasteimmersion.Solutionreneweddaily.Solidarea/liquid volume≈50cm2/L.<DL:lowerthanthedetectionlimit.

Time(day) N+OA1solution N+OA2solution

[Ac] [NO3] [NO2] [Ac] [Ox] [NO3] [NO2]

0.00 0.57 31.6 <DL 0.37 0.17 31.8 <DL 0.08 0.53 31.9 <DL 0.30 0.05 32.1 <DL 0.67 0.62 31.4 <DL 0.26 0.07 31.7 <DL 0.79 0.60 31.7 <DL 0.34 0.07 31.7 <DL 1.00 0.61 31.6 <DL 0.34 0.06 31.8 <DL 2.04 0.55 31.8 <DL 0.32 0.05 31.7 <DL 3.04 0.52 31.7 <DL 0.28 0.06 31.9 <DL 3.99 0.47 31.7 <DL 0.31 0.05 31.7 <DL 4.97 0.56 31.6 <DL 0.30 0.05 31.8 <DL

(6)

70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4

2

θ

-

C

0

K

α Ca

Core

or zone1

Zone 2

150 => 1000

μm

Ca Ca Ca Ca Ca Ca Ca Ca Ca Et A Po Et Et Po : portlandite (04-0733) Et : e=ringite (41-1451) A : C4AHX(02-0077) Hy : hydrotalcite (35-0964) Po + C3S Po Po Po Ca + Et Po C2S + C3S Mu+ Et C3S+ C2S+ Mu+ Et Q C3S (31-0301) β-C2S (33-0302) Mu : mullite (15-0776) Q : quartz (33-1161) Ca : calcite (05-0586) Mu Mu Q A Q Q Q Et Et Et Ca Ca + Et Mu+ Et C3S+ C2S+ Mu+ Et Ca Ca Q C2S + C3S Ca Ca Hy Mu Q Hy

Zone 3

Surf. => 150

μm

Fig.5. XRDmineralogicalanalysesofCEMVpastespecimenafter5-dayleachinginN+OA1(aceticacid0.5mM,nitrate)solutionatvariousdistancesinfromthesurfaceof thespecimen.

ConcentrationsofacetateinN+OA1andN+OA2werealmost constant throughouttheexperiment and weresimilartoinitial concentrations(Table2).Incontrast,theconcentrationofoxalate, whichwasinitially0.17mmol/L,haddecreasedatthefirst sam-plingtime(0.08day∼2h)andremainedrelativelystable(equalto 0.06±0.01mmol/L)inthefollowingsamples.

3.3. Mineralogicalchangesinthecementpastes

Figs. 5 and 6 present the mineralogical characterisation by XRD ofthe CEM Vpaste specimens atthe end of theleaching experimentsbyN+OA1andN+OA2solutionsrespectively. Diffrac-togramsarepresentedaccordingtothedistancefromthesurfacein contactwiththetestsolution.Theanalysesshowedthatalterations ledtoamineralogicalzonationofthespecimens.

Diffractogramsofcontrolzones(“coreorzone1”onFigs.5and6) performedat5mmdepthpresenttypicalpeaksofanhydrous(C3S

or3CaO·SiO2,C2Sor2CaO·SiO2,mullite3Al2O3·2SiO2)andhydrated

(ettringite 3CaO·Al2O3·3CaSO4·32H2O, portlandite or Ca(OH)2,

hydratedcalciumaluminatesC4AHxor4CaO·Al2O3·×H2O)

cemen-titiousphasesandofquartz.

The peripheral part of cement pastes immersed in N+OA1 (aceticacid)solutionshowedtwozoneswithdifferent mineralog-icalcompositions (zones 2and 3 inFig. 5).Thetotal thickness of thetwo zoneswas about1mm. In zone 2(from 150mmto 1000mm from the surface) portlandite had disappeared and a hydrotalcite-type (Mg4Al2(OH)14·3H2O) compound had

precipi-tated.Precipitation of hydrotalcite(carbonated ornot)hasalso beenobservedbyFauconetal.(1996)indegradedzonesofcement pastespecimensleachedatpH7.Calcitealsoprecipitatedinzone 2,probablybecauseofa re-combinationofcalciumreleasedby portlanditedissolutionwithcarbonatereleasedbythedissolution of carbonatedAFm.Zone 3(from thesurface to150mm deep), wasmorestronglycarbonated.Allcrystallisedcementitiousphases

haddisappeared.Thisthincarbonatedlayerwasalsoobservedon controlspecimenskeptinwater(carbonationofspecimen’sskin becauseofambientCO2 dissolvedin repositorywater).Neither

Ca-acetatenorNa-acetatecharacteristicpeakswerefoundonthe diffractogram.

The peripheral zone of the specimen immersed in N+OA2 (acetic/oxalicacids)solutionshowed3zoneswithdifferent min-eralogicalcharacteristics(zones2–4onFig.6).Thesethreezones togethermadeup atotal a thicknessof approximately1.3mm. As for specimens immersed in N+OA1, portlandite had disap-peared in zone 2 (from 400mm to 1300mm deep) where a hydrotalcite-likecompoundhadprecipitatedtogetherwithcalcite. Zone3(300–400mmdeep)wascharacterisedbyettringite disso-lution.Calciteand calciumoxalatemono-hydrateorwhewellite (CaC2O4·H2O)hadprecipitated.Theouterlayerofthespecimenor

zone4(fromthesurfaceto300mmdeep)showedtypicalpeaks ofcalcite,whewelliteand calciumoxalatetri-hydrateorcaoxite (CaC2O4·3H2O).NeitherCa-orNa-acetatenorNa-oxalatesaltpeaks

werefoundinthediffractograms.

Precipitation of whewellite in cement paste specimens immersed in oxalic acid solutions (0.28M) has been observed experimentallyby Larreur-Cayolet al.(2011a,b).Ca-oxalate tri-hydrate, mentioned by Streit et al. (1998) is not very stable (Deganelloet al., 1981)and is veryeasily transformedinto di-or mono-hydrate Ca-oxalate (Echigo et al., 2005; Tomazic and Nancollas,1979).Nevertheless,theprecipitationofCa-oxalate tri-hydrate jointly with mono-hydrate has already been observed (Heijnenetal.,1985;Opalkoetal.,1997).

Finally,theresultsofcementpastemineralogicalanalyses cou-pled with those of chemical analyses of the solutions showed thattheexposureofCEMVpastespecimenstoN+OA1solution wassimilartoaleachingofcementpaste(BertronandDuchesne, 2013;Fauconetal.,1996;Moranvilleetal.,2004;Duchesneand Bertron,2013).Acetateiondidnotcombinewithcationsreleased

(7)

70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4

2

θ

-

C

0

K

α

Core

zone 1

or

Et A Po Et Et Po : portlandite (04-0733) Et : e=ringite (41-1451) A : C4AHX(02-0077) Hy : hydrotalcite (35-0964) Po + C3S Po Po Po Ca + Et Po C2S + C3S Mu+ Et C3S+ C2S+ Mu+ Et Q Ca Ca Ca+ Wh+ Co Ca Ca Ca Ca + Wh Ca Ca Q Et Et Et Ca Ca + Et Ca Ca Ca Ca Ca + Wh Ca Ca Ca Ca + Wh Ca Ca Q Ca Wh Wh Wh+ Co Wh Wh Wh Wh Wh Wh Wh Co Co Co Co Co Q Co C3S (31-0301) β-C2S (33-0302) Mu : mullite (15-0776) Q : quartz (33-1161) Ca

Zone 2

=> 1300

(400

μm)

Zone 3

(300 =>

40

0

μm)

Zone 4

(Surf.

=>

30

0

μm)

Wh Wh Q Ca : calcite (05-0586) Wh : whewellite (13-0601) Co : Calcium oxalate hydrate (20-0232)

C3S C2S + C3S Ca Ca Hy Mu Mu Mu Mu Mu A Q Q Q Q Q Hy Mu+ Et C3S+ C2S+ Mu+ Et

Fig.6. XRDmineralogicalanalysesofCEMVpastespecimenafter5-dayleachinginN+OA2(acetic0.33mM/oxalic0.17mMacids,nitrate)solutionforvariousdistancesin fromthesurfaceofthespecimen.

bythecementitiousmatrix.Thisresultisinaccordancewiththose obtainedbyotherauthorswhohaveworkedontheattackofacetic acidbutwithdifferentconcentrationsofacids(Bertronetal.,2007; OueslatiandDuchesne,2012;Pavlík,1994).Moreover,itshouldbe notedthatanumericalanalysisbyLarreur-Cayoletal.(2011a,b)

suggestedthatnoCa-acetateaqueouscomplexformsinsolutions withacetateconcentrationsrangingfrom10−5Mto0.3M.Thus,

regardingtheframeofthestudy,thereactionsbetweenaceticacid releasedbybitumenshouldnotmodifyacetatebioavailabilityfor bacteriathatmaybepresentinsidethewastecells.

Incontrast,whenoxalicacidwaspresentinsolution,reactions ofoxalateanionwithcementitiouscations(calciumatleast)did occurandledtotheformationofvariousformsofcalciumoxalate salts.Precipitationofcalciumoxalatesaltinoxalicacidsolution containingcalciumhasbeenconfirmednumericallyby Larreur-Cayol(2012)foralargerangeofoxalateactivity(10−5M–0.3M).

Inthepresentstudyconductedwithoxalicacidconcentrationof 0.17mM,65%ofoxalatewascombinedwithcementitiouscations. Consequently,withrespecttobioticstudiesconductedinthe pres-enceofcementitiousmatrices,oxalatecouldbelessbioavailableto bacteria.

4. Conclusion

The overall study, of which this paper is a part, aimed to investigatethereactivityofnitrateunderbioticconditions(biotic catalysis of nitrate reduction) in the context of repository of long-lived,intermediate-level,radioactivewastes.Theaimofthe presentpaperwastoinvestigatetheinteractionsbetweenthe var-iouschemicalspecies(nitrates,bitumenmodelleachates)andthe cementitiousmatrix underabiotic conditions,withtheviewto determiningthechemicalconditionstowhichbacterialcandidate speciescouldbeexposedinthebioticpartofthestudy.Leaching experimentswereconductedonbatchsystemscomprisingCEM

Vpastespecimensincontactwithsolutionsmadeofnitrateand aceticacidoraceticandoxalicacids(initialpHof4and3.6).Results showedthatanalkalinepH(>10)isveryrapidly(lessthan24h) establishedintheaqueousmedium.Theimpactofbitumenmodel leachatesmadeofaceticacid(0.50mM)wassimilartothosefound inclassicalleachingtestsofcementitiousmatrixasnoparticular interactionbetweencementitiouscationsandacetateanionswas observed.Thus,inexperimentsinvolvingbacteriaanda cementi-tiousmatrix,organicmatterwouldremaininsolutionandwould thereforemoreprobablybeavailableforoxidationandasacarbon sourceformicroorganisms.Incontrast,thestudyconductedwith themodelleachatemadeofacetic(0.33mM)andoxalic(0.17mM) acidsshowedastronginteractionbetweenoxalateanionsand cal-ciumcationsreleasedbythecement paste.65% ofoxalatewas combinedwithcalciumtoprecipitateascalciumoxalate mono-andtri-hydratesaltsintheperipheryofthematrix.Oxalatewould thusbelessavailableforbacteria.Finally,thestudyconfirmedthe stabilityofnitratesunderabioticconditionsinthepresenceofa cementitiousmatrixandorganicmatter.

Acknowledgements

TheauthorsthankAndra(FrenchNationalRadioactiveWaste ManagementAgency)foritsscientificandfinancialsupport.

References

Albrecht,A.,Bertron,A.,Libert,M.,2013.Microbialcatalysisofredoxreactionsin concretecellsofnuclearwasterepositories:areviewandintroduction.In:Bart, F.,Cau-di-Coumes,C.,Frizon,F.,Lorente,S.(Eds.),Cement-BasedMaterialsfor NuclearWasteStorage.Springer,NewYork,pp.147–159.

Alquier,M.,etal.,2012. Etudesexpérimentalesde laréactivitédesnitrates à l’interfacebitume–eaucimentaire–cimentenconditionsbiotiques,Rapport AndraLGC–LMDC–LCAnoCRPFSTR120031.

(8)

Alquier,M.,etal.,2014.Halomonasdesiderataasabacterialmodeltopredictthe possiblebiologicalnitratereductioninconcretecellsofnuclearwastedisposals. J.Environ.Manag.,http://dx.doi.org/10.1016/j.jenvman.2013.10.013. Alquier,M.,etal.,2013.Nitratereducingbacterialactivityinconcretecellsofnuclear

wastedisposal.In:L’Hostis,V.,Gens,R.(Eds.),EPJWebofConferences,vol.56, p.01003.

Andra, 2005. Dossier2005 Argile,Tome Architectureet Gestion dustockage géologique.RapportAndraC.RP.ADP.04.0001B.

Bertron,A.,Duchesne,J.,Escadeillas,G.,2005a.Acceleratedtestsofhardenedcement pastesalterationbyorganicacids:analysisofthepHeffect.Cem.Concr.Res.35 (1),155–166.

Bertron,A.,Duchesne,J.,Escadeillas,G.,2005b.Attackofcementpastesexposedto organicacidsinmanure.Cem.Concr.Compos.27(9–10),898–909.

Bertron,A.,Duchesne,J.,Escadeillas,G.,2007.Degradationofcementpastesby organicacids.Mater.Struct.40(3),341–354.

Bertron,A.,Duchesne,J.,2013.Attackofcementitiousmaterialsbyorganicacidsin agriculturalandagrofoodeffluents.In:Mark,A.,Alexandra,B.,Belie,N.D.(Eds.), PerformanceofCement-BasedMaterialsinAggressiveAqueousEnvironments. RILEMState-of-the-ArtReports.Springer,Netherlands,pp.131–173.

Bertron,A.,Erable,B.,etal.,2013.Catalysebiotiqueetabiotiquedelaréduction desnitratesenmilieualcalindanslecontextedustockageprofonddesdéchets radioactifs.Matériaux&Techniques101(1),104.

Daniel,S.L.,Pilsl,C.,Drake,H.L.,2007.Anaerobicoxalateconsumptionby microor-ganismsinforestsoils.Res.Microbiol.158(3),303–309.

Deganello,S.,Kampf,A.R.,Moore,P.B.,1981.Thecrystalstructureofcalciumoxalate trihydrate:Ca(H2O)3(C2O4).Am.Mineral.66(7–8),859–865.

Devlin,J.F.,Eedy,R.,Butler,B.J.,2000.Theeffectsofelectrondonorandgranulariron onnitratetransformationratesinsedimentsfromamunicipalwatersupply aquifer.J.Contam.Hydrol.46(1–2),81–97.

Duchesne,J.,Bertron,A.,2013.Leachingofcementitiousmaterialsbypurewaterand strongacids(HClandHNO3).In:Alexander,M.,Bertron,A.,DeBelie,N.(Eds.),

PerformanceofCement-BasedMaterialsinAggressiveAqueousEnvironments. RILEMState-of-the-ArtReports.Springer,Netherlands,p.22.

Echigo,T.,etal.,2005.Re-investigationofthecrystalstructureofwhewellite [Ca(C2O4)·H2O]andthedehydrationmechanismofcaoxite[Ca(C2O4)·3H2O].

Mineral.Mag.69(1),77–88.

Faucon,P.,etal.,1996.Leachingofcement:studyofthesurfacelayer.Cem.Concr. Res.26(11),1707–1715.

Gwinner,B.,etal.,2006.Modellingofbituminizedradioactivewasteleaching.Part II:Experimentalvalidation.J.Nucl.Mater.349(1–2),107–118.

Heijnen,W.,Jellinghaus,W.,Klee,W.E.,1985.Calciumoxalatetrihydrateinurinary calculi.Urol.Res.13(6),281–283.

Kagawa,A.,Fukumoto,M.,Kawamura,K.,2000.Influenceofchemicalandradiolytic degradationofbitumenonitsperformancefordisposal.J.Nucl.Sci.Technol.37 (10),934–937.

Lange,N.A.,Dean,J.A.,1985.Lange’sHandbookofChemistry.McGraw-Hill,New York,NY.

Larreur-Cayol, S., (Thèse de Doctorat. Doctoral thesis) 2012. Attaques des matériauxcimentairesparlesacidesorganiquesdeseffluentsagricoleset agro-alimentaires.UniversitéPaulSabatier,Toulouse.

Larreur-Cayol,S.,Bertron,A.,Escadeillas,G.,2011a.Degradationofcement-based materialsbyvariousorganicacidsinagro-industrialwaste-waters.Cem.Concr. Res.41(8),882–892.

Larreur-Cayol,S.,DeWindt,L.,Bertron,A.,Escadeillas,G.,2011b.Deteriorationof cementitiousmaterialsbyorganicacidsinagriculturaleffluents:experiments andmodelling.In:7thInternationalSymposiumonCementBasedMaterialsfor aSustainableAgriculture.CIGRInternationalSymposium,pp.38–46.

Libert,M.,etal.,2011.Molecularhydrogen:anabundantenergysourceforbacterial activityinnuclearwasterepositories.Phys.Chem.EarthPartsA/B/C36(17–18), 1616–1623.

Libert,M.,Walczak,I.,2000.Effectofradio-oxidativeageingandpHontherelease ofsolubleorganicmatterfrombitumen.In:ATALANTE2000Scientificresearch ontheback-endofthefuelcycleforthe21thcentury.Avignon,p.4.

Ma,J.,etal.,2012.AssimilableOrganicCarbon(AOC)insoilwaterextractsusing vibrioharveyiBB721anditsimplicationformicrobialbiomass.PLoSONE7(5), e28519.

Marien,A.,Smets,S.,Li,X.,Valcke,E.,2008.Processesrelatedtothewateruptake byEUROBITUMbituminisedradioactivewaste:Theoreticalconsiderationsand firstexperimentalresults.In:Lee,W.E.,Roberts,J.W.,Hyatt,N.C.,Grimes,R.W. (Eds.),ScientificBasisforNuclearWasteManagementXxxi.MaterialsResearch Society,Warrendale,pp.151–159.

Moranville,M.,Kamali,S.,Guillon,E.,2004.Physicochemicalequilibriaof cement-basedmaterialsinaggressiveenvironments—experimentandmodeling.Cem. Concr.Res.34(9),1569–1578.

Moudilou,E.,(ThèsedeDoctorat.Doctoralthesis)2000.Cinétiquesetmécanismes derelargagedesmétauxlourdsprésentsentracesdanslesmatricescimentaires. Universitéd’Orléans.

Nakayama,S.,Iida,Y.,Nagano,T.,Akimoto,T.,2003.Leachingbehaviorofasimulated bituminizedradioactivewasteformunderdeepgeologicalconditions.J.Nucl. Sci.Technol.40(4),227–237.

Opalko,F.J.,Adair,J.H.,Khan,S.R.,1997.Heterogeneousnucleationofcalciumoxalate trihydrateinartificialurinebyconstantcomposition.J.Cryst.Growth181(4), 410–417.

Oueslati,O.,Duchesne,J.,2012.TheeffectofSCMsandcuringtimeonresistanceof mortarssubjectedtoorganicacids.Cem.Concr.Res.42(1),205–214.

Pavlík,V.,1994.Corrosionofhardenedcementpastebyaceticandnitricacidspart II:formationandchemicalcompositionofthecorrosionproductslayer.Cem. Concr.Res.24(8),1495–1508.

Seidell,A.,1919.SolubilitiesofInorganicandOrganicCompounds:ACompilation ofQuantitativeSolubilityDatafromthePeriodicalLiterature.D.VanNostrand Company.

Sercombe,J.,etal.,2006.Modellingofbituminizedradioactivewasteleaching.Part I:constitutiveequations.J.Nucl.Mater.349(1–2),96–106.

Streit,J.,Tran-Ho,L.-C.,Königsberger,E.,1998.Solubilityofthethreecalciumoxalate hydratesinsodiumchloridesolutionsandurine-likeliquors.Monatsheftefür Chemie/ChemicalMonthly129(12),1225–1236.

Tomazic,B.B.,Nancollas,G.H.,1979.Astudyofthephasetransformationofcalcium oxalatetrihydrate-monohydrate.Invest.Urol.16(5),329–335.

Truche,L.,Berger,G.,Domergue,L.,Albrecht,A.,2013a.Abioticnitratereduction inducedbycarbonsteelandhydrogen:implicationsforenvironmental pro-cessesinwasterepositories.Appl.Geochem.28,155–163.

Truche,L.,Berger,G.,Albrecht,A.,Domergue,L.,2013b.Engineeredmaterialsas potentialgeocatalystsindeepgeologicalnuclearwasterepositories:Acase studyofthestainlesssteelcatalyticeffectonnitratereductionbyhydrogen. Appl.Geochem.35,279–288.

Van Loon,L.R., Kopajtic, Z., http://www.nagra.ch/en/shopproductdetail1.htm/s level/10390/sproduct/290181990.ComplexationofCu2+,Ni2+andUO

22+by

RadiolyticDegradationProductsofBitumen.Nagra.

Walczak,I.,(ThèsedeDoctorat.Doctoralthesis)2000.Determinationdesproduits organiquesd’altérationschimiquesetradiochimiquesdubitume:applications auxenrobesbitumes.INSA,Lyon.

Walczak,I.,Libert,M.,Camaro,S.,Blanchard,J.M.,2001.Quantitativeandqualitative analysisofhydrosolubleorganicmatterinbitumenleachates.Agronomie21(3), 247–257.

Figure

Fig. 1. Experimental set-up.
Fig. 2. Macroscopic observation of the cement paste specimens. (a) Control spec- spec-imen kept in water, (b) specimen after 5 days of leaching by N + OA1 (acetic acid 0.50 mM, nitrate 32.3 mM) solution and (c) specimen after 5 days of leaching by N + OA2
Fig. 5. XRD mineralogical analyses of CEM V paste specimen after 5-day leaching in N + OA1 (acetic acid 0.5 mM, nitrate) solution at various distances in from the surface of the specimen.
Fig. 6. XRD mineralogical analyses of CEM V paste specimen after 5-day leaching in N + OA2 (acetic 0.33 mM/oxalic 0.17 mM acids, nitrate) solution for various distances in from the surface of the specimen.

Références

Documents relatifs

We propose to employ a configurable-semantics approach, using feature dia- grams, to develop automatic model transformations which are correct by design and can be integrated

Titrated knock-down of dync1h1 indicated that outer segment morphogenesis was affected in photoreceptors that showed normal inner segments.. These observations, combined with

Keywords: Carbon capture and storage, capture ready, power generation, Vietnam,

Slow water addition to ABNPs dispersed in THF is found to induce one of two conformational rearrangements: (A) in the absence of salt, centrosymmetric condensation of PS chains

The beam of cesium atoms obtained on heating the oven was detected using a surface ionization detector (hot wire). The oven temperature was measured with an

successful results achieved with the Hansard and Government of Canada corpora, and the poor results searching for machine translated text in the Ontario web sites using models

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Au terme de cette première sous-partie, nous pouvons constater que les dispositifs de communication mis en place depuis une quinzaine d’années en France dans le but de lutter contre