• Aucun résultat trouvé

Dark matter in a SUSY left-right theory

N/A
N/A
Protected

Academic year: 2021

Partager "Dark matter in a SUSY left-right theory"

Copied!
2
0
0

Texte intégral

(1)

Φ

T

P

2

Institute for Theoretical Physics and

Astrophysics

Dark matter in a SUSY left-right theory

J. N. Esteves, M. Hirsch, W. Porod, J. C. Romao, F. Staub and

A. Vicente

Avelino Vicente, Universit¨

at W¨

urzburg, supported by DFG project number PO-1337/1-1 and GRK 1147/2.

Dark matter and Supersymmetry

. Dark matter is one of the best evidences for physics beyond the SM

. ΩDMh2 ∼ 0.1

. WIMP miracle: A WIMP with m ∼ 100 GeV can naturally fit the picture

SUSY is the most popular extension of the SM. It provides a solution to the hierarchy problem and has room to accommodate new physics.

. The LSP is stable if R-parity is

conserved: DM candidate

. The lightest neutralino is the classic WIMP: cold, electrically neutral and colourless

However . . . open questions:

. Theoretical understanding for the conservation of R-parity

. Neutrino masses

. Link to unified models

A Left-Right symmetric model: ΩLR

Aulakh et al. PRL 79 (1997) 2188 and PRD 58 (1998) 115007 SU(3)c × SU(2)L × SU(2)R × U(1)B−L

Superfield SU(3)c SU(2)L SU(2)R U(1)B−L

∆ 1 3 1 2 ¯ ∆ 1 3 1 -2 ∆c 1 1 3 -2 ¯ ∆c 1 1 3 2 Ω 1 3 1 0 Ωc 1 1 3 0 W = YQQΦQc + YLLΦLc − µ 2 ΦΦ + fL∆L + f ∗ Lc∆cLc + a∆Ω ¯∆ + a∗∆cΩc∆¯c + αΩΦΦ + α∗ΩcΦΦ + M∆ ¯∆ + M∗∆c∆¯c + MΩΩ + M∗ΩcΩc . Parity conservation

. Two Higgs bidoublets

. Triplets with even charges under U(1)B−L

. mSUGRA-like boundary conditi-ons at the GUT scale

. Type-I seesaw mechanism

Symmetry breaking

Two steps breaking

SU(2)R × U(1)B−L −→ hΩc 0 i= √vR 2 U(1)R × U(1)B−L −→ h∆c 0 i= vBL√ 2 U(1)Y

Automatic R-parity conservation at low energies

Low energy phenomenology

. Many changes w.r.t. the CMSSM

. Interesting perspectives for LFV

(see Esteves et al. JHEP 1012 (2010) 077 )

. Deformed spectrum and invariant mass combinations. On the right:

m2 Q−m2u M21 , m2 L−m2e M21 , m2 d−m2L 10M21 and m2Q−m2e 10M21 1014 1015 1016 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 vR @ Ge VD I n v a r ia n ts

Dark matter in the ΩLR model

I) Disappearance of DM regions

Even slight changes in the SUSY spectra can lead to sizeable changes in the relic density of the lightest neutralino. Therefore, the usual CMSSM DM regions might vanish in the ΩLR model.

Example: ˜τ-coannihilation region

20 40 60 80 100 120 140 160 180 200 0 200 400 600 800 1000 m0 (GeV) m1/2 (GeV) ΩDMh2

tanβ=10, A0=0, µ>0, MSeesaw=1012 (GeV)

20 40 60 80 100 120 140 160 180 200 0 200 400 600 800 1000 m 0 (GeV) m1/2 (GeV) ΩDMh2

tanβ=10, A0=0, µ>0, MSeesaw=1012 (GeV)

vBL = vR = 1016 GeV vBL = vR = 1015 GeV 12 13 14 15 16 -100 -80 -60 -40 -20 0 log(vBL/[GeV]) m˜χ 0 1− m˜e 1

On the left: χ˜01 − ˜τ mass diffe-rence for vBL = vR = 1012

GeV, vBL = vR = 1014 GeV and

vBL = vR = 1016 GeV

For low vBL or vR the running of the soft gaugino mass parameters leads to a very

light bino, reducing the region where it can

be degenerate with the lightest ˜τ.

II) Flavoured coannihilation

Flavour contributions can reduce the ˜τ mass and enhance the ˜χ01 − ˜τ coannihilati-on x-secticoannihilati-on. This leads to new DM regions where flavour effects are essential to obtain the correct relic density, see Chowdhury et al. arXiv:1104.4467.

m2˜ τ1 ' m 2 ˜ τR(1 − δ) − mτµ tan β, with δ = ∆iτRR r m˜2 li R m2˜ τR

The ΩLR model has potentially large LFV in the R slepton sector and thus the DM constraint can also be fullfilled using the flavoured coannihilation solution.

MSeesaw= 3x1014 (GeV) tanβ=10, A0=-1000 (GeV)

800 1000 1200 M1/2 (GeV) 100 200 300 400 500 600 m 0 (GeV)

MSeesaw= 3x1014 (GeV) tanβ=10, A0=-1000 (GeV)

Ωh2 = 0.1 10-8 10-9 10-10 10-11 δ = π, θ13 = 4o 10-12 800 1000 1200 M1/2 (GeV) 100 200 300 400 500 600 m 0 (GeV)

On the left: Br(µ → eγ) and ΩDMh2

in the m0 − M1/2 plane.

A strong fine-tuning is required to reduce Br(µ → eγ) below the MEG limit (Br < 2.4 · 10−12).

. Flavoured coannihilation DM regi-ons can be found in ΩLR

. Large A0 values are required

. Large LFV signals at colliders and low energy experiments are expected

Intermediate scales between the GUT and SUSY scales can have a very strong impact on the low energy spectrum and lead to a DM phenomenology totally different from the one in the CMSSM. In the ΩLR model we found that some standard DM regions can disappear due to the stronger running of gaugino mass parameters. We also found regions in parameter space where the correct relic density is obtained thanks to flavoured coannihilation.

(2)

Références

Documents relatifs

In the protein identification problem, a first level of cooperation using swarm intelligence is applied to the comparison of mass spectrometric data with biological sequence

Assuming a specific SUSY model, the fundamental parameters (driving the mass spectrum) can be constrained:.. -  either by direct searches

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Applying realistic veto efficiencies for the low angle electromagnetic calorimeter located in the very forward direction of the future international linear collider, we revisited

Cette région présente une combinaison des caractéristiques trouvées dans les zones du champ proche et du champ lointain, mais les caractéristiques du champ lointain sont de plus

We utilized this feature to perform the statistical analysis of excitation energies, charge transfer, density delocalization, and multiconfigurational character for a large

• Deep Gaugino Chargino (µ &gt;&gt; M 2 ): This is the optimal scenario, the cross section production is the highest, the ∆M intermediate leading to the best sensitivity: the

In the MSSM, with Grand Unification assumption, the masses and couplings of the SUSY particles as well as their production cross sections, are entirely de- scribed once five