• Aucun résultat trouvé

Mechanism of metal dusting corrosion by pitting of a chromia-forming alloy at atmospheric pressure and low gas velocity

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanism of metal dusting corrosion by pitting of a chromia-forming alloy at atmospheric pressure and low gas velocity"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01488950

https://hal.archives-ouvertes.fr/hal-01488950

Submitted on 14 Mar 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Mechanism of metal dusting corrosion by pitting of a

chromia-forming alloy at atmospheric pressure and low

gas velocity

Aurélien Fabas, Daniel Monceau, Claudie Josse, Pascal Lamesle, Aurélie

Rouaix-Vande Put

To cite this version:

Aurélien Fabas, Daniel Monceau, Claudie Josse, Pascal Lamesle, Aurélie Rouaix-Vande Put.

Mech-anism of metal dusting corrosion by pitting of a chromia-forming alloy at atmospheric pressure and

low gas velocity. Corrosion Science, Elsevier, 2016, 107, pp.204-210. �10.1016/j.corsci.2016.02.033�.

�hal-01488950�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 16719

To link to this article : DOI:10.1016/j.corsci.2016.02.033

URL : http://dx.doi.org/10.1016/j.corsci.2016.02.033

To cite this version : Fabas, Aurélien and Monceau, Daniel and Josse,

Claudie and Lamesle, Pascal and Rouaix-Vande Put, Aurélie

Mechanism of metal dusting corrosion by pitting of a chromia-forming

alloy at atmospheric pressure and low gas velocity. (2016) Corrosion

Science, vol. 107. pp. 204-210. ISSN 0010-938X

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(3)

Mechanism

of

metal

dusting

corrosion

by

pitting

of

a

chromia-forming

alloy

at

atmospheric

pressure

and

low

gas

velocity

Aurélien

Fabas

a

,

Daniel

Monceau

a,∗

,

Claudie

Josse

b

,

Pascal

Lamesle

c

,

Aurélie

Rouaix-Vande

Put

a

aCIRIMAT,UniversitédeToulouse,CNRS,INPT,UPS,ENSIACET,4alléeEmileMonso,BP44362,31030ToulouseCedex4,France bUMSCastaing,UniversitédeToulouse,ECA,3rueCarolineAigle,31400Toulouse,France

cICA(InstitutClémentAder),UniversitédeToulouse,MinesAlbi,INSA,ISAE,UPS,CampusJarlard,F-81013Albicedex09,France

Keywords: A.steel

C.hightemperaturecorrosion C.carburization

C.internaloxidation

a

b

s

t

r

a

c

t

FeNiCrsamples(800HT)wereexposedat570◦C,1bartoa47.25CO-47.25H2-5.5H2Oatmosphere(ac=33)

flowingat18␮m/s.Pittingcorrosionwasobserved.Pitsshowedaflattenedmorphologyandaconstant pitdiametergrowthrate.Corrosionringsappearedsuccessivelyatthesurfaceduringpitgrowth.A four-stepmechanismisproposedwhichincludesinternaloxidationofcarbides,graphitisationandlocalised enhancedgraphitisation.Gasvelocityandthermalcyclingplaykeyrolesinpitmorphology.Thermal cyclinginducescircularcracks.Lowgasvelocityinducesthegastoevolveincrevices,duetolocaloxygen consumption.

1. Introduction

Metal dusting is a catastrophic form of corrosion affecting Ni-,Fe- and Co-based alloys when exposed tohighly carburis-ingatmospheres(ac>>1)[1,2].Thealloydisintegratesintoadust

of fine metallic particles and graphitic carbon, named “coke”. Althoughmultiple studies wereperformed to determinemetal dustingdegradationmechanism,thiscomplexprocessisstillnot wellunderstood[3,4].Thecombinedinfluenceofthecomposition ofthealloy[3,5,6],ofitsmicrostructure[7,8]andofthe

environ-ment[9–12]explainsthesedifficulties.Multiplemechanismswere

proposedforferritic[2,4,13,14]andaustenitic[5,15]materials.It isusuallyagreedthat acementitescale formsatthesurface of low-alloyedferriticmaterials.Hochman[1,2]andGrabke[10,16]

proposeditdecomposesintoironandcarbon,leadingtothescale andalloydegradation,whileYoungetal.[4]proposedthegraphite nucleationatthesurfaceandatthedefectsofthiscementitescale leadstometaldusting.Howevertheauthorscorrelatedthemetal dusting degradation rateof low-alloyed austenitic materialsto theepitaxialrelationshipbetweengraphiteandaustenite[17–19]. EarlyworksbyGrabkeandcoworkers[19,20],Pippeletal.[17]and Chunetal.[18]proposedthatmetaldustingoccursbytheinward growthofgraphitewhosebasalplanesareapproximatelynormal

∗ Correspondingauthor.

E-mailaddress:daniel.monceau@ensiacet.fr(D.Monceau).

tothesamplesurface.SeveralyearslaterZengandNatesan[15]

putforwardthatgraphitenucleationoccurredinside the metal-licalloysatthemostcatalyticinterfaces.Finally,Zhangetal.[21]

proposedthatmetaldustingoccurredbythegraphitenucleation andgrowthalongthecatalyticplansintersectingtheinitial sur-face.Althoughthereisnogeneralagreementonthemetaldusting corrosionmechanisms,theywereextendedtoCr2O3-andAl2O3

-formingalloysbutlocally,atdefectsoftheprotectiveoxidescale

[4,22,23].However,internaloxidationcouldalsoplayakeyrolein

thedegradation[24–26].Thestudyofthecorrosionmechanismsof Cr2O3-orAl2O3-formingalloysweremadeeitheratatmospheric

pressureattemperatureshigherthan600◦C[5,13,14,24–26]orat highpressureat540◦Ctoreproduceindustrialconditions[26,27]. Unfortunately,gasflowrateishardlyspecifiedinthestudies detail-ingcorrosionmechanisms,anditseffectisnotdeveloped,despite thefactthatthegasmixturesareoutofequilibrium.Combiningthe fewstudieswhichobservedtheinfluenceofgasflowrateonthe kineticsofcarbondepositionormetaldusting[28–30],itcan any-waybeconcludedthatgasvelocityinfluencesdegradationkinetics uptoamaximumflux.Indeed,whengasvelocityishighenough, thefrequentrenewalofthegasmixtureatthesurfaceofthe sam-plekeepsthereactivegasmixtureconstantlyequaltotheinputone atthereactionfront.However,thepossibleinfluenceofgasflow rateoncorrosionmechanismwasnotreported,particularlyat rel-ativelylowtemperature.Thepresentworktendstodeterminethe

(4)

Fig.1.Opticalmicrographsof(a)theexternaland(b)theinternalfaceofa800HTsampleafter4000hofexposure.

Fig.2.Opticalmicrographofthecrosssectionofa800HTsampleafterMurakami’setchingand4000hofexposure.

pittingcorrosionmechanismsoccurringatatmosphericpressure below600◦Cunderalowgasvelocity.

2. Experimentalprocedure

A metal dusting experiment was carried out in a 47.25CO-47.25H2-5.5H2Ogasmixtureat570◦Candatmosphericpressure

on800HTsamples.Thealloyisaustenitic.Itscompositionis 29Ni-45Fe-21Cr-1.3Si-0.9Al-0.7Ti-0.3C-0.2Cu-0.2Mo-0.2Pforthemain elements,inat.%.Watervapourpressurewasestablishedby sat-uratinga 50CO-50H2 mixturewithwaterat35◦C.Thegasflow

ratewasabout0.2␮L/s/cm2 ofsamplesurfaceareaand thegas

velocitywasabout18␮m/s.Theexperimentwasconductedina heatedhorizontalquartztube.Samplesrestedonanalumina sam-pleholder.Twoidenticalsampleswerepositionedupstreamand downstreamtoconfirmthatthegascompositiondidnotevolve duringitsflow.Consideringonlyequilibrium ofsyngasreaction (CO+H2=C+H2O)and water decomposition(H2O=H2+½O2), a

carbonactivity(ac)of33andanoxygenpartialpressure(PO2)of

2.1×10−27bar,weredetermined,respectively.Thesyngas reac-tionwasusedtodetermineac,asusualinmetaldustingstudies,

becauseofitsfasterkineticscomparedtoBoudouardreaction[29]. WaterdecompositionwasusedtodeterminePO2 insteadof

car-bonmonoxidedecompositionforthesamereason [31].Sample surfacewasgroundusingP600SiCgritpaperandtheedgeswere chamfered.Thesampleswereremovedevery500h,cleaned ultra-sonicallyinethanolandweighted.Picturesofbothsidesofeach sampleweretakenateverywithdrawalbyaKeyenceVHX-1000E digitalmicroscope.The imageresolutionwasabout4␮m/pixel. Ramanspectroscopywascarriedouteverytwowithdrawalsusinga LabramHR800YvonJobinspectrometerequippedwithaconfocal microscope(magnificationsare10×,50×and100×).Asthe dif-ferent800HTsamplesshowedsimilarbehaviour,onesamplewas removedafteratotalexposureof4000h.Itsnetmasschangewas −4.49mg/cm2.Topographicalmappingswerecarriedoutfor

sev-eralpitsonanextendedfieldconfocalmicroscopeAltiSurf520with a2-␮mstepusingachromaticsensorwitha10nmaxial resolu-tion.ThesamplewasalsoexaminedwithaSEM/FIBFEIHELIOS 600icoupledwithanEDXanalyserAztecAdvancedequippedwith aSDDdetector.Analyseswereperformedusinga5keVaccelerating voltage.

3. Resultsanddiscussion

Corrosionofthesampleswascharacterisedbypitting(Fig.1). Aspitting ismorepronounced attheedgeofthesample,mass lossdoesnotrepresenttherealmaterialdegradationbutrather thesampledegradationwithasizeandshapeeffect.This hetero-geneouspittingcouldbeexplainedbyanenhancedcarburisation, internaloxidationandCr-depletionattheedgesduetoahigher surface/volumeratio.Itisalsocertainlyduetoanoxidescale con-taining more defects due to higher mechanical stresses at this location.Thefollow-upofpittingisthenamoreaccuratewayto evaluatemetaldustingcorrosionofmaterialscapabletoforma protectiveoxidescale,asperformedin[32,33].

A carburisedzone composedofM7C3 carbideswasrevealed

below thepits byMurakami’setchingoncross section(Fig.2), accordingtoVanderVoort[34].Consideringthealloycomposition, itisassumedthatthiscarbidesareiron-chromiumcarbides.This carburisedzone wasthickeratthecentreofthepits.This mor-phologywasobservedforeveryanalysedpit.M23C6carbideswere

identifiedatgrainboundariesbyMurakami’setching[34].They werealsoassumedasiron-chromiumcarbides.

It wasfoundthat,atthesurfaceof thesample, pitdiameter growsataconstantrate(Fig.3a).Thiskineticscanbecharacterised byalateralpitgrowthrateconstantkdof0.82±0.02␮m/handof

1.05±0.04␮m/hontheexternalside(facingthequartztube)and ontheinternalside(facingthecentreofthequartztube), respec-tively.Alinearlateralpitgrowthkineticshasalreadybeenreported for800HTalloyathighpressureinapreviousstudy[33].Asall pitspresentasimilarmorphology,thefollowingcharacterisation ofasinglepitatthecentreoftheinternalfaceextendstoevery pit.Pitgrowthis characterisedbytheappearanceofsuccessive corrosionrings,notedCRAtoCRE(forCorrosionRingAtoE),on

Fig.3btheCRAwasvisibleafter2000hofexposure.TheCRBand theCRC,respectivelyatthecentreandaroundCRA,weredetected after2500hofexposure.StudyofotherpitsshowedthattheCRB appearedwhenthepitdiameterwasabout250␮m,whiletheCRC appearedwhenthedistancebetweenthepitedgeandtheCRBwas equal.TheCRDwasalsovisibleafter2500hofexposureandwasthe mostexternalring.After4000h,theCREwasdetectedaroundthe CRD.AthingrooveseparatestheCRDandtheCRE.Thisthingroove isalwaysatabout150␮mfromthepitedgeand100␮mfromthe

(5)

Fig.3.(a)EvolutionofthediameterofthepitatthecentreoftheinternalfaceonFig.1showingexperimentaldata(squares)andlinearregression(dottedline)and(b) opticalimagesofthepitevery500hbetween2000hand4000hofexposure.

Fig.4.TopographymappingofthepitofFig.3after4000hofexposure.#1,#2and #3indicatewhereFIBabrasionweremade.

CRC,asobservedonnumerouspits.Carbonand(Fe,Cr)3O4spinel

oxideweredetectedbyRamanspectroscopyovertheentirepit, exceptfortheCRAandtheCRBwhereonlycarbonwasdetected. Thealmostperfectcircularityofthepitsandthecorrosionrings showsthattheirgrowthdoesnotdependonthemicrostructureof thealloy.

Thestudyofthepittopography(Fig.4)revealedthattheCRB andtheCRCarebelowtheinitialsamplesurface,downtoabout 70␮m.TheCRDandtheCREareseveralmicrometresabovethe initialsurface,whereastheCRAisatabout20␮mabovetheinitial surface.Thethin groovebetweentheCRDandtheCREisa few micrometresbelowthem.Thesamecharacteristicswereobserved onotherpits,thenumberofcorrosionringsdependingonthetime spentsinceincubationofthepit.Theobservationsandassertions proposedfurtherinthispaperforasinglepitarethenextendable toeveryobservedpit.

FIB analysis carried out at the edge of the pit (see #1 on

Fig.4)showsinternaloxidationoccurringbelowaCr-depletedarea (Fig.5a).GraphitisationoftheCr-depletedalloyintheinternal oxi-dationzonebut alsobeneaththeoxidescaleisalsovisible.The Cr-depletedzonebeneaththeoxidescalehasathicknessofabout 1␮mandaveryfinerecrystallizedmicrostructure.Itisclearthat internaloxidation pushesthe protectivechromia scale upward. Thisis due to thelargevolume increase when Crcarbides are oxidised.Indeed,thevolumeexpansionofthealloyduetoCr7C3

formationisabout5%consideringallthechromiumreacted.The volumeexpansionofthealloyduetocarbideoxidationintoFeCr2O4

isabout48%,i.e.41%comparedtothecarburisedalloy.The inter-naloxidationthicknessbelowtheCr-depletedalloyincreasesas theresultofsolid-statediffusionofoxygeninthemetallicmatrix.

Thus,itfollowsaparaboliclaw[35].Inthesametime,theinternal oxidationthicknessdecreasesbythematerialremovalontopof itresultingfromthevolumeexpansionduetocarbideoxidation. Carbideoxidationoccursattheinternalcarburisation/internal oxi-dationinterface.Ontopofit,theremovaloftheCr-depletedalloy andtheoxidescale,consecutivelytovolumeexpansion,takesplace attheinternaloxidation/atmosphereinterface,wheretheinduced stressismaximised,seeFig.5aPitlateralgrowthoriginatesfrom thisremovalandischaracterisedbythelateralpitgrowthrate con-stantkd,explicatedearlier.Thecombinationofsolidstatediffusion

andmaterialremovalleadstothefollowingrateequation: dxox

dt = kox

xox −kd

(1) withxox theinternaloxidation thicknessbelowtheCr-depleted

zone,koxtheparabolicinternaloxidationconstantandtthe

dura-tion of exposure. This equation shows that the thickness xox

increasesuntilitreachesaconstantvalueatthesteadystate,xSS ox, i.e.whendxox/dt=0: xSS ox=k ox kd (2) Basedonobservationsthisthicknessiscomprisedbetween3and 5␮m. Combining the xSS

ox and kd values measured in the

cur-rentstudy,theparabolicinternaloxidationconstantiscomprised between 2.8×10−12 and 1.5×10−11cm2/s. This experimental

valueiscomparedwiththetheoreticalvaluecalculatedusingthe internaloxidationkineticmodel[35,36]andconsideringchromium andirondiffusionmuchslowerthanoxygendiffusionandFeCr2O4

astheinternaloxide.Thisleadtothefollowing: kox=ε3 4 Deff OC s O 1 3CFe0 + 2 3CCr0 (3) with␧alabyrinthfactor(takenequalto1)C0

FeandCCr0 thebulk

ironandchromiumconcentrationsrespectively,andCs

Othe

oxy-gen concentration within the Cr-depleted alloy at the internal oxidation/atmosphereinterface.Cs

OwascalculatedusingSievert’s

lawandafreeenergyofoxygensolubilisationof−129.5kJ/mol− obtainedwithamixturelawbetweenpureNi[37]andpure␥-Fe

[38]andconsideringtheFe/Niratioofthe800HTalloy.The effec-tiveoxygendiffusioncoefficient,Deff

O,wasdeterminedusingHart’s

formula[39]: Deff O =



1−q Lı



Db O+ q LıD gb O (4)

whereqistheshapefactorofgrains,consideredascubic(i.e.aq valueof3),Listhegrainsizeofthealloy(whichisabout500␮m),ı

(6)

Fig.5.SEMmicrographinBSEmodeofFIBcrosssections(a)#1attheedge(CRE),(b)#2betweenCRAandCRCand(c)#3atthebottomofCRCofthepitonFig.3after 4000hofexposure.

isthewidthofgrainboundaries(takenequalto1nm),Db

oisthe

oxy-gendiffusioncoefficientinthebulk.Itsvalueof1.2×10−10cm2/s

wasdeterminedbyalinearmixturelawbetweentheoxygen diffu-sioncoefficientsinpureNi[37]andpure␥-Fe[38]withtheFe/Ni ratiocorrespondingtotheoneof800HTalloy.Dgb

o wasestimated

consideringitwasabout5ordersofmagnitudehigherthanDb o.The

obtainedvalueofDeffo ,equalto2.0×10−10cm2/s,isabouttwotimes

higherthanDbo.BasedonEq.(3),avalueofkox=2.3×10−11cm2/s

isobtained.Thisvalueishigherbutinreasonableagreementwith theexperimentalone−2.8×10−12to1.5×10−11cm2/s,

consider-ingthefinermicrostructurebeneaththeoxidescaleisnottaken intoaccountin calculation,inadditionwiththelackof dataat thislowtemperature,particularlyfordiffusionatgrainboundaries. TheuseofalinearmixturelawtodetermineCsOandDeffo atthis

lowtemperatureisalsoasourceoferror.Moreovergraphitisation occursinthesametimeasoxidation,increasingpitlateralgrowth (Fig.5a).Finally,thetheoryusedtocalculatetheparabolicconstant kox considersprecipitationofinternaloxideandnotoxidationof

internalcarbides.Theagreementbetweencalculatedand experi-mentalparabolicoxidationconstantsallowstoconcludethatpit lateralgrowthkineticsisconsistentwithacontrolbythekinetics ofinternaloxidationofcarbidesbelowtheCr-depletedzone.The detectionof(Fe,Cr)3O4asinternaloxideinsteadofthemorestable

Cr2O3canbeexplainedbytheoxidationofthe(Fe,Cr)7C3carbides

inaCr-depletedmatrix.Thereleasedcarbonisexpectedtodiffuse inwardtoformnewcarbides,asobservedbyMeijeringetal.[40]

andotherstudies(seeRef.[31]).

Onecannotice that thecalculated parabolicconstant ofthe internaloxidationkineticsisclosetotheonesgenerallyobserved underanoxidescale.Indeed,theoxygenpartialpressuresusually observedinmetaldustingenvironmentsareclosetotheones corre-spondingtothemetal/oxideequilibrium.Forinstance,theoxygen

partialpressureof theinputgasmixtureis PO2=2.1×10−27bar

whichisonlyoneorderofmagnitudelowerthantheoxygenpartial pressureoftheFe/FeOequilibriumdeterminedviaanEllingham magnitudelowerthantheoxygenpartialpressureoftheFe/FeO equilibriumdeterminedviaanEllinghamdiagram:PFe/FeOO

2 ≈10

−26

bar.Theinternaloxidationkineticsinthisstudyisthenequivalent totheoneunderaFeOoxidescale,consideringtheNi/Feratioof the800HTforthematrix.

FIBanalysiscarriedoutattheinterfacebetweentheCRAandthe CRC(Fig.5b,#2onFig.4)showsa8␮m-thickcontinuousinternal oxidationlayerintheCRA.Althoughtheinnerzoneofthislayeris composedofspinelandCr-depletedalloy,theouterzoneis com-posedofspinelandcarbon.ItisconcludedthattheCr-depleted alloyisgraphitisedbythehighlycarburisingatmosphere.Athick carbon depositisvisible ontopofthealloy.Thisadherent car-bonexplainswhytheCRAishigherthantheothercorrosionrings, asobservedonFig.4.Itisalsoconsistentwiththecarbonsignal obtainedbyRamanspectroscopy.

AtthebottomoftheCRC(Fig.5c,and#3onFig.4)andonthe slopingcorrosionfrontvisibleonFig.5b,itcanbeseenthatthe thicknessoftheinternaloxidationlayeristhinnerthandescribed previouslyforothercorrosionrings.Itisalsodiscontinuous.Locally, carbondepositisindirectcontactwiththecarburisedalloy.This morphologyisverydifferentfromwhatisobservedfortheCRAand theCRB.Suchdifference,associatedwithafasterinwardgrowthof thecorrosionring,showsthatthedegradationmechanisminthe CRCdiffers.Thislocaliseddegradation,occurringonlyinthis“deep” ring,couldbeexplainedbythelackofatmosphererenewalinthis area.Oxygenconsumptionbyinternaloxidationcoupledwiththe lackofgasrenewalleadstoareducedoxygenconcentrationinthe gasphaseandatthemetalsurface.Thiscouldexplainwhythe inter-naloxidationlayeristhinnerthanattheplanarsurfaceofthepit

(7)

Fig.6.Schemeoftheproposedfour-stepmechanism:(a)oxidationofcarbides,thearrowsrepresenttheoutwardpushoftheoxidescaleduetointernaloxidation;(b) graphitisationoftheCr-depletedalloy;(c)enhancedgraphitisationatthebottomofthethermalcrack(themechanismisdetailedintheinset);(d)lateralgrowthbyinternal oxidationandinwardgrowthbyenhancedgraphitisationatthebottomofthecracks,leadingtonewdeepcorrosionrings.CorrosionringsA–Earerecalledforeasycomparison withFig.3.

andwhyitisdiscontinuous.Inaddition,thelackofoxygendoesnot allowtheformationofainhomogeneousinternaloxidationlayer. Thisresultsinadirectexposuretothecarburisingatmosphereof theCr-depletedalloyoftheinternaloxidationandofthecarburised alloy.TheCr-depletedalloyisthengraphitisedinagreementwith theFe-Cr-C phaseequilibrium.Moreover,thelocaloxygen con-sumptionleadstoahighersurfacefractionofalloyavailableforCO andH2adsorption,enhancingthegraphitisation.

TheFIBstudyofthethingroovebetweentheCRDandtheCRE showsamorphologysimilartotheoneobservedatthebottom oftheCRC.Asnoticedpreviously,this thin grooveis alwaysat about150␮mfromtheedgeofthepit,andatabout100␮mfrom theCRC.Asalreadyexplained,thealmostperfectcircularityofthe grooveanditssizelargerthantheoneofthealloygrainsreveal thegrooveshapeisnotcontrolledbythealloymicrostructure.One couldthinkthatthisgroovefindsitsorigininthethermalcycling every500h.Toconfirmorinvalidatethis,themechanical proper-tiesandtheevolutionofthecoefficientsofthermalexpansion(CTE) withtemperatureof800HTalloy[41]andof(Fe,Cr)3O4[42]haveto

beconsidered.Atthebeginningofthecooling,theCTEofthe inter-naloxidationzone−determinedusingamixturelawbetweenthe CTEsof800HTand(Fe,Cr)3O4–isinitiallyhigherthantheCTEofthe

800HTalloy.Thiscanbesurprising,butitisduetothefactthat theCTEofthespinelishigherthantheoneofthemetallicalloyat 570◦C.Samplecoolingthengeneratestensilestressintheinternal oxidationzone.Thistensilestressisexpectedtoreachits high-estvalueatatemperaturearound370◦C,whentheCTEsof800HT

andoftheinternaloxidationzonebecomeequal.Thisleadstothe localisedrupturewherethestressismaximised.Thetensilestress necessarytoinitiatethecrackwithintheinternaloxidationlayer happenswhenthewidthoftheCRD–i.e.thedistancebetweenthe edgesofthepitandtheCRC–islongenough.ForaCRDwidthof 250␮m,thestressismaximisedatabout150␮mfromtheedge ofthepit.ItsplitstheCRDintwonewcorrosionrings:aninner ring(theCRD)andanouterring(theCRE)—seeFig.3bafter3500h. Below370◦C,theCTEof800HTishigherthantheCTEofthe inter-naloxidationzone.Thestressthendiminishesduringtheresidual cooling.Thecrackclosesandresultsinthethingrooveobserved atroomtemperature.Attheendofthecooling,thereisalmost noresidualstress.Whenreheated,thedefectopensandexposes thecarburised alloybeneaththeinternal oxidelayerdirectlyto theatmosphere.Consequently,theenhancedgraphitisation phe-nomenondevelopsinthisgroove,creatinganewdeepcorrosion ring.Thiswasconfirmedforpitsexperiencingfurtherexposure.

Theproposedexplanationisvalidonlywhenthereisaperfect adhesionbetweentheoxideandthematrix.Yet,asinternal oxi-dationleadstocompressivestresses,whichcouldbemuchhigher thanthetensilestressobtainedbysamplecooling,andCTE mis-match,furtherstudyisnecessary.Nevertheless,itisreasonableto thinkthatthecompressivestressesduetointernaloxidationcan berelaxedbycreepduringthelongdwellsathightemperature, leadingtothethickeningoftheinternaloxidationzone perpendic-ularlytothesurface,whereastensilestressduetoCTEmismatch havenotimetorelaxduringcooling.

(8)

Asnoticedpreviously,theformationofthedeepCRBatthe cen-treoftheCRAonFig.3bissupposedtohappenwhenthepit−i.e. theCRAatthistime−reachesadiameterofabout250␮m.The mechanismgivenpreviouslyforthethingroovecouldalsoapply atthecentreofthepit,i.e.theCRA.TheCRCisalsoexpectedto originatefromthesamephenomenonoccurringtotheCRAonce itreachesagainawidthofabout250␮m.Theenhanced graphiti-sationmechanismexplainsthedepthoftheCRBandtheCRC.The CRB,theCRCandthethingroovearethenthreestatesofthesame degradationphenomenon.

4. Pittingcorrosionmechanism

Anoverall corrosionmechanisminfourmainstepscannow beproposedtoexplainourobservationsofthepitcorrosion fea-tures.First,carbondiffusesthroughthechromiascaledespitethe protectivepropertiesofthisoxide.Indeed,WolfandGrabke[43]

proposedcarbondiffusedthroughprotectiveoxidescalesinpores andcracks.ZengandNatesan[44]proposedthatdiffusionpaths forcarbonweremicro-channelsofmetallicorcementiteparticles withintheoxide,whileRöhnertetal.[23]proposedcarboncould diffusethrough graphite encapsulatedin the oxidescale. More recently,Youngetal.[45]showedcarbondiffusingthroughaCr2O3

scaleusingatomprobemicroscopy.Afteritsdiffusionthroughthe oxidescale,carboncontinuesitswayinthemetalandcarburises thealloybeneaththeCr-depletedzone–stemmedfromthe forma-tionoftheprotectiveoxidelayer–,forming(Cr,Fe)7C3carbides.As

suggestedbyRöhnertetal.[23],thevolumeexpansionofthealloy duetocarburisation(+5%)couldalsoinducecracksintheoxide scale,allowingthedirectaccessoftheatmospheretothemetallic surface.

Secondly,oxygendiffusesinthealloythroughthedefectsin the oxide scale and oxidises internal (Cr, Fe)7C3 carbides into

FeCr2O4spineloxide(Fig.6a).Thisstepisexpectedtohappenwhen

chromiumconcentrationinthematrixisloweredduetochromium trappingbycarburisation.Oncetheconcentrationistoolowto sup-portexternaloxidation,internaloxidationofcarbidestakesplace

[46].Theresultinglocalvolumeexpansionoftheinternal oxida-tionzone(+41%)disintegratestheoxidescaleandtheCr-depleted alloy.Thisstepcanbeconsideredasthenucleationofthepit.This removalofmaterialexposestheinternaloxidationzone,andthe Cr-depletedzonebeneaththeprotectiveoxidescale,attheedgeof thepitinitiationtotheexternalatmosphere.Thelateralgrowthof theinternaloxidationzonebelowtheprotectiveoxideinducespit lateralgrowth,pushingupwardtheexternaloxidescale.This phe-nomenonisaccentuatedbythegraphitisationoftheCr-depleted alloybeneaththeoxidescalebecauseitcausesanadditionalvolume expansion.ItalsoreducesthethicknessoftheCr-depletedalloy intowhichtheoxygenhastodiffusetoreactwithnon-oxidised carbides.

Thirdly,the Cr-depletedalloyin theinternal oxidation zone isalsographitised(Fig.6b).Moreover,acrackformsthroughthe internaloxidationzoneduetotensilestressduringsamplecooling, onlyifthepitwidthisgreaterthanacriticalsize.Whenreheated, thecrackopens,exposingthecarburisedzonebeneathit.The Cr-depletedalloyisthendirectlyexposedtotheatmosphere.Atthe surfaceofthenewlyexposedCr-depletedalloy,theatmosphere isnotrenewed,duetoamicroclimateinthecrevice.Thelackof gasrenewalresultsina loweroxygenpartialpressure, hencea lowerinwardoxygenflux.Thisgeneratesathinand inhomoge-neousinternaloxidationlayerexposingtheCr-depletedalloyof theinternaloxidationzoneandofthecarburisedalloy,tothelocal atmosphere.Inthesametime,oxygenconsumptionincreases par-tialpressuresofCOandH2.Theadditionofthetwophenomena

leadstoanenhanced graphitisation,hencea fasterlocalinward

degradation.Thisleadstotheformationofacentraldeep corro-siondiskatthecentre ofthepit(Fig.6c),correspondingtothe appearanceoftheCRBatthecentreoftheCRA(Fig.4).

Finally,ifthediameteroftheexternalringisgreaterthanthe criticalvalueduringafollowingcooling,anewcrackwilloccur duringcoolingatthetemperaturewhenthestressismaximised. Whenreheated,thecrackopensandthesameenhanced graphitisa-tionmechanismoccursatthebottomofthecrack,asexplainedfor theformationofthecentraldeepcorrosiondisk.Thisformsadeep corrosionring(Fig.6c).ThiscorrespondstotheCRConthestudied pit,theCRAbeingsplitinaninternal(CRAonFig.4)andanexternal corrosionring,attheedgeofthepit(CRDonFig.4).Theenhanced graphitisationmechanismfollowingcrackformationleadstothe formationofnewdeepcorrosionringsduringthecoolingifthe externalcorrosionringhasreachedacriticalwidth,asobservedon olderpits.Ithastobenoticedthatthe250␮mwidthmeasuredin thisstudyisnotthiscriticalsizebutcorrespondstothepitgrowth after500hofexposure.Thebeginningofathirddeepcorrosionring isthethingroovebetweentheCRDandtheCRE(thelatterbeingthe externalpartofthecrackedCRD)(Fig.4).Thefinalpitmorphology after4000hisschematisedonFig.6d,basedonFig.4.Fortheoldest pits,i.e.forthelongestdurationsofexposure,thedeepcorrosion ringsmergetoformamassivecentraldeepcorrosiondisk.

Theproposedmechanismcanbeviewedeitherasanentirely novelmechanismspecifictoourexperimentalconditions,oras theelementaryreactionstepsoftheoverallobserveddegradation mechanismsinvolvinginternaloxidation, withmuch highergas

flowrate[25,27].Ilhasalsotobenoticedthatasimilar

morphol-ogycanbeobservedinpreviousworks,althoughthishasnotbeen mentionednorstudiedintheconsideredpapers [30,47,48].The numberofringsthatcanbeobservedinthesearticlesare differ-entthaninthecurrentstudy.Thenumberofringsinthisliterature datacannotbequantitativelycomparedwithourmodellingsince pitincubationtimeandpitlateralgrowtharenotgiven.

5. Conclusion

Apittingmechanismisdescribedforsamplesof800HTtested undermetaldustingconditionsat1barinCO-H2-H2Omixture,and

withdrawnevery500hfor characterisation.The pitting mecha-nismisbasedoninternalcarbideoxidationandlocalisedenhanced graphitisationoftheCr-depletedalloy.Itcanbedividedin4steps: 1)Pitnucleationandgrowthduetothebreakdownoftheoxide scaleinducedbythelargevolumeexpansionresultingfromthe oxidationofpreviouslyformedcarbides.Thelocalisationofthe attackisduetothepresenceofdefectsintheprotectiveoxide scale.

2)GraphitisationoftheCr-depletedmatrixoftheinternal oxida-tionzoneandtheonethatstemmedfromtheexternaloxide scaleformation.

3)Enhancedgraphitisationduetoamicroclimateatmospherewith loweroxygenandhighercarbonactivitiesatthebottomofa crackinducedbytensilestressintheinternaloxidationzone duringcooling.

4)Pit lateral growth controlledby the kinetics of oxidation of thecarbideswhereasthepitinwardgrowthis controlledby theenhancedgraphitisationatthebottomofthecrack(whose mergingresultsinaninnerdeepcorrosiondisk).

Asitisexplainedintheproposedmechanism,themorphology ofthepitsismodifiedbythermalcycling.Indeed,thecrackfrom whichinwardgrowthoccursisformedduringsamplecooling car-riedoutforsamplecharacterisation.Thishighlightstheimportance oftheexperimentalprocedure.

(9)

Acknowledgements

ThisworkhasbeensupportedbytheFrenchnationalresearch agencythroughtheprojectANRSCAPAC11-RNMP-0016in part-nershipbetweenAirLiquide, Veolia,Sedis,University ofNancy, CIRIMATlaboratory.TheauthorsacknowledgeSabineLerouxofthe ICAlaboratoryfordailymonitoringoftheexperiment.

References

[1]R.F.Hochman,Metaldeteriorationincarbonmonoxideandhydrocarbonsat elevatedtemperatures,in:ThirdInternationalCongressonMetallic Corrosion,USSR,Mir,Mosow,1966.

[2]R.F.Hochman,Catastrophicdeteriorationofhigh-temperaturealloysin carbonaceousatmospheres,in:SymposiumonPropertiesofHigh TemperatureAlloyswithEmphasisonEnvironmentalEffects,LasVegas, Nevada,1976,pp.715–732.

[3]H.J.Grabke,Metaldusting,Mater.Corros.54(2003)746.

[4]D.J.Young,J.Zhang,C.Geers,M.Schütze,Recentadvancesinunderstanding metaldusting:areview,Mater.Corros.62(2011)7–28.

[5]H.J.Grabke,R.Krajak,E.M.Müller-Lorenz,S.StrauB,Metaldustingof nickel-basealloys,Mater.Corros.47(1996)495–504.

[6]S.Strauß,H.J.Grabke,Roleofalloyingelementsinsteelsonmetaldusting, Mater.Corros.49(1998)321–327.

[7]H.J.Grabke,E.M.Müller-Lorenz,B.Eltester,M.Lucas,D.Monceau,Resistance of9–20%Cr-steelsagainstmetaldusting,SteelRes.68(1997)179–185.

[8]H.J.Grabke,E.M.Müller-Lorenz,S.Strauss,E.Pippel,J.Woltersdorf,Effectsof grainsize,coldworking,andsurfacefinishonthemetal-dustingresistanceof steels,Oxid.Met.50(1998)241–254.

[9]R.A.Perkins,W.C.Coons,F.J.Radd,Metal-Dustingcorrosionin

coal-Gasificationenvironments,J.Electrochem.Soc.123(1976)733–749.

[10]H.J.Grabke,C.B.Bracho-Troconis,E.M.Müller-Lorenz,Metaldustingoflow alloysteels,Mater.Corros.45(1994)215–221.

[11]A.Schneider,H.Viefhaus,G.Inden,H.J.Grabke,E.M.Müller-Lorenz,Influence ofH2Sonmetaldusting,Mater.Corros.49(1998)339.

[12]E.M.Müller-Lorenz,H.J.Grabke,Cokingbymetaldustingofsteels,Mater. Corros.50(1999)621.

[13]P.Szakálos,Mechanismsanddrivingforcesofmetaldusting,Mater.Corros. 54(2003)762.

[14]H.J.Grabke,R.Krajak,J.C.NavaPaz,Metaldustingofhigh-temperaturealloys, Mater.Corros.44(1993)89–97.

[15]Z.Zeng,K.Natesan,Relationshipofcarboncrystallizationtothe metal-dustingmechanismofnickel,Chem.Mat.15(2003)872–878.

[16]H.J.Grabke,R.Krajak,J.C.N.Paz,Onthemechanismofcatastrophic carburization—metaldusting,Corros.Sci.35(1993)1141–1150.

[17]E.Pippel,J.Woltersdorf,R.Schneider,Micromechanismsofmetaldustingon Fe-baseandNi-basealloys,Mater.Corros.49(1998)309–316.

[18]C.M.Chun,J.D.Mumford,T.A.Ramanarayanan,Carbon-inducedcorrosionof nickelanode,J.Electrochem.Soc.147(2000)3680–3686.

[19]Q.Wei,E.Pippel,J.Woltersdorf,S.Strauss,H.J.Grabke,Orientation dependenceofmetaldustingnanoprocessesonnickelsinglecrystals,Mater. Corros.WerkstoffeKorros.51(2000)652–656.

[20]R.Schneider,E.Pippel,J.Woltersdorf,S.Strauss,H.J.Grabke,Microprocesses ofmetaldustingonnickelandNi-basealloys,SteelRes.68(1997)326–332.

[21]J.Q.Zhang,P.Munroe,D.J.Young,Microprocessesinnickelaccompanying metaldusting,ActaMater.56(2008)68–77.

[22]H.J.Grabke,Thermodynamics,mechanismsandkineticsofmetaldusting, Mater.Corros.49(1998)303–308.

[23]D.Röhnert,F.Phillipp,H.Reuther,T.Weber,E.Wessel,M.Schütze,Initial stagesinthemetal-dustingprocessonalloy800,Oxid.Met.68(2007) 271–293.

[24]P.Szakálos,R.Pettersson,S.Hertzman,Anactivecorrosionmechanismfor metaldustingon304Lstainlesssteel,Corros.Sci.44(2002)2270.

[25]M.Hansel,C.A.Boddington,D.J.Young,Internaloxidationandcarburisationof heat-resistantalloys,Corros.Sci.45(2003)967–981.

[26]P.Szakálos,M.Lundberg,R.Pettersson,Metaldustingonanaluminaforming Ni-basealloy,Corros.Sci.48(2006)1695.

[27]J.Z.Albertsen,Ã.Grong,J.C.Walmsley,R.H.Mathiesen,W.Beek,Amodelfor high-Temperaturepittingcorrosioninnickel-Basedalloysinvolvinginternal precipitationofcarbides,oxides,andgraphite,Metall.Mater.Trans.A39 (2008)1258–1276.

[28]P.L.Walker,J.F.Rakszawski,G.R.Imperial,Carbonformationfromcarbon monoxide-hydrogenmixturesoverironcatalysts.II—ratesofcarbon formation,J.Phys.Chem.63(1959)140–149.

[29]E.T.Turkdogan,J.V.Vinters,Catalyticeffectofironondecompositionof carbonmonoxide:i.carbondepositioninH2-COmixtures,Metall.Trans.5 (1974)11–19.

[30]J.C.Nava-Paz,H.J.Grabke,MetalDusting,Oxid.Met.39(1993)437–456.

[31]D.J.Young,HighTemperatureOxidationandCorrosionofMetals,Elsevier, Amsterdam,2008.

[32]S.K.Varma,A.Putrevu,M.Pasala,Z.Zeng,K.Natesan,Metaldustingand oxidationat593and704◦C,THERMEC2006(2007)4226–4231,Pts1–5.

[33]A.Fabas,D.Monceau,S.Doublet,A.Rouaix-VandePut,Modellingofthe kineticsofpittingcorrosionbymetaldusting,Corros.Sci.98(2015)592–604.

[34]G.VanderVoort,E.Manilova,J.R.Michael,Astudyofselectiveetchingof carbidesinsteel,Microsc.Microanal.10(2004)76–77.

[35]R.A.Rapp,Kineticsmicrostructuresandmechanismofinternaloxidation—its effectandpreventioninhightemperatureoxidation,corrosion,NACE21 (1965)382–401.

[36]C.Wagner,Reaktionstypenbeideroxydationvonlegierungen,Zeitschrift Elektrochem.63(1959)772–790.

[37]J.-W.Park,C.J.Altstetter,Thediffusionandsolubilityofoxygeninsolidnickel, Metall.Trans.A18A(1987)43–50.

[38]J.Swisher,E.T.Turdogan,Solubility,permeability,anddiffusivityofoxygenin solidiron,Trans.Metall.Soc.AIME239(1967)426–431.

[39]E.W.Hart,Ontheroleofdislocationsinbulkdiffusion,ActaMet.5(1957), 597–597.

[40]J.L.Meijering,Internaloxidationinalloys,in:H.Herman(Ed.),Advancesin MaterialsResearch,5thed.,Wiley-Interscience,NewYork,1971.

[41]INCOLOY®alloy800H&800HT®in,SpecialMetalsCorporationAlloy

specifications,(2004).

[42]J.Robertson,M.I.Manning,Criteriafortheformationofsingle,duplexand breakawayscalesonsteels,Mat.Sci.Technol.4(1988)1064–1071.

[43]I.Wolf,H.J.Grabke,Astudyonthesolubilityanddistributionofcarbonin oxides,SolidStateCommun.54(1985)5–10.

[44]Z.Zeng,K.Natesan,Initiationofmetal-dustingpitsandamethodtomitigate metal-dustingcorrosion,Oxid.Met.66(2006)1–20.

[45]D.J.Young,T.D.Nguyen,P.Felfer,J.Zhang,J.M.Cairney,Penetrationof protectivechromiascalesbycarbon,Scr.Mater.77(2014)29–32.

[46]C.S.Giggins,F.S.Pettit,Corrosionofmetalsandalloysinmixedgas environmentsatelevated-temperatures,Oxid.Met.14(1980)363–413.

[47]Y.Nishiyama,N.Otsuka,T.Kudo,MetaldustingbehaviourofCr-Nisteelsand Ni-basealloysinasimulatedsyngasmixture,Corros.Sci.48(2006) 2064–2083.

[48]C.Rosado,M.Schütze,Protectivebehaviourofnewlydevelopedcoatings againstmetaldusting,Mater.Corros.54(2003)831–853.

Figure

Fig. 1. Optical micrographs of (a) the external and (b) the internal face of a 800HT sample after 4000 h of exposure.
Fig. 3. (a) Evolution of the diameter of the pit at the centre of the internal face on Fig
Fig. 5. SEM micrograph in BSE mode of FIB cross sections (a) #1 at the edge (CRE), (b) #2 between CRA and CRC and (c) #3 at the bottom of CRC of the pit on Fig
Fig. 6. Scheme of the proposed four-step mechanism: (a) oxidation of carbides, the arrows represent the outward push of the oxide scale due to internal oxidation; (b) graphitisation of the Cr-depleted alloy; (c) enhanced graphitisation at the bottom of the

Références

Documents relatifs

L’enrichissement observé dans la MOL avant la formation de la glaze layer se retrouve maintenant dans la couche d’extrême surface (CoRL) avec un ratio attei- gnant 4,5,

Allerdings gilt zu berücksichtigen, dass auf Basis der in dieser Studie gewonnenen Resul- tate die H0-Hypothese (Eine stereoskopische Sicht in der First-Person View führt nicht zu

Les résultats obtenus ne sont fonction que des seules SEP dont l’amorce est syntaxiquement non correcte ou syntaxiquement correcte et complète (amorce de type 1 et 2,

and right bar halves, respectively, as seen in Fig. A density threshold of 50% is used. The mean bar half-length variation with time is shown by the black curve. Significantly

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..

Against the backdrop of competing theoretical and philosophical approaches, a number of issues are addressed: the interplay between disability and quality of life, questions of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

the design level to meet a new set of requirements. The key characteristics of a template are: 1) it is an existing system, 2) it has been built with a CASE tool, and 3) changes