• Aucun résultat trouvé

Influence of the crystallization rate on the formation of gas hydrates from CH<sub>4</sub>-C<sub>3</sub>H<sub>8</sub> gas mixtures and extension to other mixtures

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of the crystallization rate on the formation of gas hydrates from CH<sub>4</sub>-C<sub>3</sub>H<sub>8</sub> gas mixtures and extension to other mixtures"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: emse-01267614

https://hal-emse.ccsd.cnrs.fr/emse-01267614

Submitted on 11 Feb 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of the crystallization rate on the formation of gas hydrates from CH4-C3H8 gas mixtures and

extension to other mixtures

Quang-Du Le, Baptiste Bouillot, Jean-Michel Herri

To cite this version:

Quang-Du Le, Baptiste Bouillot, Jean-Michel Herri. Influence of the crystallization rate on the for-mation of gas hydrates from CH4-C3H8 gas mixtures and extension to other mixtures. Journée Scientifique du CODEGEPRA 2015, Nov 2015, Clermont-Ferrand, France. �emse-01267614�

(2)

Conclusions

 Hydrate equilibria are given (T, P, gas and hydrate compositions) following two procedures.

 The two procedures used (high and low crystallization rates) highlight the kinetic effect on hydrate formation.

The most interesting observation is the comparison between the two procedures from the same initial conditions (same pressure, temperature, mass of water and gas mixture). The Pressures are different at each equilibrium point (temperature uncertainty ±0.5 oC, pressure uncertainty ± 0.1 bar). Figure 1 illustrates these observations.

GAS HYDRATES FORMATION

1 – Conditions needed for the gas hydrate to form

3 –Clathrate hydrate

COMPARING: Results from procedure at high driving force AND procedure at low driving force

INFLUENCE OF THE CRYSTALLIZATION RATE ON THE FORMATION OF

GAS HYDRATES FROM CH

4

-C

3

H

8

GAS MIXTURES AND EXTENSION TO

OTHER MIXTURES

Du LE-QUANG, Baptiste BOUILLOT, Jean-Michel HERRI*

FLOW ASSURANCE

Centre SPIN, École Nationale Supérieure des Mines de SAINT-ETIENNE, 158 cours Fauriel, 42023 Saint-Etienne Cedex 02, France

In this study, we present details on two different experimental procedures to form mixed hydrates. They are applied to measure the volume and composition of the crystallized hydrate from CH4-C3H8 gas mixtures at high and low crystallization rate, respectively. The results obtained from both methods reveal a difference in composition, final pressure and volume between the two procedures (quick and slow crystallization). Furthermore, this work aims at contributing to the global understanding of the coupling between kinetics and thermodynamics to provide some insight in the composition of the gas hydrate phase during its crystallization from an aqueous liquid and a mixed gas phase. In addition, we face new experimental facts that open questioning after comparing the modelling of clathrate hydrates following the classical approach (van der Waals and Platteeuw, 1959).

CO

2

CAPTURE

2 – Hydrate structure

Water droplet Hydrate particle

laboratory

Experimental procedure and set-up

 Experimental apparatus and laboratory

Experimental procedure at high driving force

Flow Loop Archimède (ENSM-SE)

Lasentec Probe: Chord Lengths Measurements

eff

eff



f p A eff

D

D

3

2 max

1

1

eff eff oil slurry

According to Camargo & Palermo (2002)

Hydra tes formation Hyrates dis so cia tion

decarbonised flue gases

Flue gases 15% vol. CO2

CO2

solvent with hydrates

Dissociation in Pressure MP = 5bars LT = 0 °C HP = 50 bars MT = 20-300C Water (KO drum) Condensates? P (10-100 bar) T (0-10 °C) Pure water

+

Gas

51262 large + 6 512 small 2 sI 512 small 16 51264 large + 8 sII 512 small 3 435663 medium + 2 51268 large + sH

Clathrate hydrate structures SI SII SH

Cavity Small Large Small Large Small Medium Large

Description 512 51262 512 51264 512 435663 51268

Number per unit cell (mj) 2 6 16 8 3 2 1

Average cavity radius (Å) 3,95 4,33 3,91 4,73 3,91c 4,06 c 5,71 c

Coordination number a 20 24 20 28 20 20 36

(a)The number of oxygen atom per cavity

1. Cryostat 2. Reactor 2L, 100bar 3. Windows 12 * 2cm 4. Gas bottles 5. Agitator 6. Temperature sensors Pt 100 7. Sampling liquid 8. HPLC pump

9. Sampling gas ROLSI 10. Gas chromatograph 11. Air supply, He

12. Display pressure and temperature 13. Computer recording data

Experimental procedure at low driving force

 The cavity formed by water molecules linked by hydrogen bonds  The cavities contain gas molecules

 The cavities are stabilized by Van der Waals forces

End of crystallization

Quickly Cooling rate

Cry stallizatio n Initial/end point L-H equilibrium curve P T

P–T evolution during equilibrium experiment at high crystallization rate.

Initial point LH equilibrium curve P T End of crystallization Low cooling Cooling rate: 0.1÷0,3°C/day

P–T evolution during equilibrium experiment at low crystallization rate.

Laboratory Experimental apparatus

P–T evolution during experiment at low crystallization rate.

* Corresponding author. Tel.: +33 4 77 42 02 92; fax: +33 4 77 49 96 92. E-mail address: herri@emse.fr (J.-M. Herri).

Gas mixtures Methods

CH4 C3H8 Pint Tint Reactor volume

Mass water injected

% % MPa oK lite gram

Gas 1 Slow 84.61 15.39 1.73 279.95 2.36 801.10 Gas 2 Slow 84.61 15.39 1.73 279.95 2.36 801.10 Gas 3 Slow 86.86 13.14 1.83 284.95 2.36 800.94 Gas 4 Quick 85.77 14.23 1.81 281.00 2.36 801.15 Gas 5 Quick 85.81 14.19 1.71 280.45 2.36 801.05 Gas 6 Quick 86.89 13.11 1.77 285.05 2.44 800.94 Gas 7 Quick 86.89 13.11 1.77 285.05 2.44 800.94

Molar

composition of the studied gas mixtures (standard deviation about 3%)

P–T evolution during experiment at high crystallization rate.

0,0

0,5

1,0

1,5

2,0

272

276

280

284

288

Pr

ess

ur

e (MP

a)

Temperature (oK)

slow 1

slow 2

slow 3

quick 1

quick 2

quick 3

quick 4

P

Références

Documents relatifs

Steady-state surface acoustic waves monitoring in a thin metal plate and calibration of the holographic probe against a single mode heterodyne laser probe are presented.. The

This study focuses on modeling the remediation process by foam injection to better understand the various interactions between foams and pollutants in porous media.. In this study,

The numerical simulations showed that different initial configurations of vortices having identical dynamical invari- ants, do not evolve to an universal axially symmetric

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Dans le cas de la plage du Truc Vert, le gradient de salinité et le front redox sont découplés et deux zones distinctes de modifications chimiques des eaux souterraines

Dans ce papier, nous nous int´eressons `a deux probl`emes, le k-accord et le renommage, dans des syst`emes asynchrones `a registres sujets `a des pannes non-contraintes

OXYGENES. Préparations de substrats de départ... Énynes-1,6 possédant un lien N-tosyle ... Ényne possédant un lien N-nosyle ... Ényne possédant un lien N-benzyle ...

former Ford assembly plant into a one-level 350,000 square foot shopping mall; build a 130,000 square foot office and retail structure by re-adapting parts of the