• Aucun résultat trouvé

Demonstration of a unified and flexible coupling environment for nonlinear fluid-structure interaction

N/A
N/A
Protected

Academic year: 2021

Partager "Demonstration of a unified and flexible coupling environment for nonlinear fluid-structure interaction"

Copied!
21
0
0

Texte intégral

(1)

Demonstration of a unified and flexible

coupling environment for nonlinear

fluid-structure interaction problems

David THOMAS, Marco Lucio CERQUAGLIA, Romain BOMAN,

Grigorios DIMITRIADIS, Vincent E. TERRAPON

Collaborative Conference on Physics Series CCPS 2018 – Fluid Dynamics September 11-13, 2018, Barcelona, Spain

(2)

Motivations

Flutter

VIV - Galloping

Fluid-structure interaction

• Nonlinear behavior

• Large range of physics

• High fidelity models

• Development of a computational

environment for research and design

(3)

Computational approach

3

Monolithic

• One single framework to solve the coupled problem

Partitioned

• Coupling of independent codes

(4)

Computational approach

Monolithic

• One single framework to solve the coupled problem

Partitioned

• Coupling of independent codes

• Each code is optimized for a particular physics

➔ Need an interfacing tool

flexible

(5)

FSI : governing physics & formulation

Ωf Ωs Γ Coupling conditions 𝒅fΓ = 𝒅sΓ = 𝒅Γ 𝒕fΓ + 𝒕sΓ = 𝟎 Governing equations 𝓕 ⟷ Fluid operator 𝓢 ⟷ Solid operator Fixed-point formulation 𝒅Γ = 𝓢 −𝓕 𝒅Γ 𝒏s 𝒏f + = 𝜕𝑼 𝜕𝑡 + 𝛻 ⋅ 𝑭 c − 𝛻 ⋅ 𝑭v = 𝑸 𝜌𝑠 ሷ𝒖 − 𝛻 ⋅ ന𝝈 = 𝒇 𝒕fΓ = −𝑝𝒏f + ധ𝝉𝒏f 𝒕sΓ = ന𝝈𝒏s 𝑼 = 𝜌, 𝜌𝒗, 𝐸 T Interface loads : 𝜕Ωf 𝜕Ωs 5

(6)

Coupling simulations – strong coupling

𝑈

𝑝

𝜏

𝑤

𝒖, ሶ𝒖

FSI loop

CFD - 𝓕

𝓢 - CSD

Stresses

Structural loads

Displacements/velocities

(7)

Multi-codes coupling technology : CUPyDO

FLUID SOLVER

Manager Interpolator

Algorithm

Generic fluid Generic solid MPI functions C UP yDO C + + kern el

Interface data Interface matrix Linear solver

Fluid solver interface Solid solver interface PETSc OpenMPI Utility Core Interface SOLID SOLVER • Multi-languages • C++ for computationally intensive tasks

• Python for high-level management

(8)

Examples of coupled solver

Fluid solvers

• SU2 – FV unstructured (Stanford) • PFEM – particle FE (ULiège)

Structural solvers

• Metafor – NLFEM (ULiège) • GetDP – LFEM (ULiège) • RBM integrator (ULiège)

• Ready-to-use interfaces

• No technical restriction for coupling other software, even commercial packages

(9)

Isogai wing section

“K. Isogai. AIAA Journal, 17, 1979”

• Determine flutter conditions as a function of 𝑀 • Transonic dip is captured

• S-shape curve is well recovered • Inviscid fluid

9

𝑉∗ = 𝑈∞ 𝑏𝜔𝛼 𝜇

(10)

Isogai wing section

• Moving shock interacting with the motion of the airfoil • Existence of a LCO due to nonlinear aerodynamics

Mach [-]: 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

𝑀 = 0.875 𝑉∗ = 1

(11)

Stall flutter of a flat plate

“X. Amandolese et al., Journal of Fluids and Structures, 43, 2013.”

• Airfoil motion rapidly turns into stall flutter • Induced by dynamic flow separation

• Nonlinearities lead to LCO

11

||U|| [m/s]: 0 2 4 6 8 10 12 14 16 18 20

(12)

VIV of a flexible cantilever

“C. Habchi et al. , Computer & Fluids, 71, 2013.” 12

• Solid motion is generated by vortex shedding • Large displacement amplitude (nonlinear) • Laminar flow at Re = 333

(13)

VIV of a flexible cantilever

• From dense to light material

• Low mass ratios = numerical coupling instabilities ➔ relaxation needed in coupling • Number of coupling iterations per time step increases

𝜌𝑠 𝜌𝑓 ≈ 100 13 𝜌𝑠 𝜌𝑓 ≈ 10 𝜌𝑠 𝜌𝑓 ≈ 1 ||U|| [m/s]: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ഥ 𝑁𝐹𝑆𝐼 = 2.7 𝑓 = 3.14 Hz ഥ 𝑁𝐹𝑆𝐼 = 6.9 𝑓 = 7.26 Hz ഥ 𝑁𝐹𝑆𝐼 = 31.9 𝑓 = 6.2 − 9.8 Hz

(14)

AGARD 445.6 wing

“E.C. Yates, AGARD Report 765, 1988.” 14

• Determine flutter conditions at 𝑀 = 0.96 • Consider inviscid fluid

• Literature : 𝑉𝑓= 0.243 − 0.327 • Computed : 𝑉𝑓= 0.281 X Y Z 𝑉∗ = 𝑈∞ 𝑏𝑟𝜔2 𝜇

(15)

AGARD 445.6 wing

• Post-critical conditions at 𝑀 = 0.96 and 𝑉∗ = 0.300

• Significant motion of the supersonic region

Supersonic region

15

“E.C. Yates, AGARD Report 765, 1988.”

P [Pa] 6500 6000 5500 5000 4500 4000 3500 3000 2500 2000

(16)

Bending of a flat plate submitted to cross flow

• Inspired from drag reconfiguration of aquatics plants

• Laminar flow at Re = 1600

• Relatively soft and light solid material :

𝜌𝑠

𝜌𝑓 = 0.678

➔transient response is numerically unstable

16

||U|| [m/s]: 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

(17)

Cantilever flat wing

17

• Material : aluminium | Fluid : air

• High aspect ratio plate with very small thickness • Very flexible structure

||V|| [m/s]: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ||V|| [m/s]: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 𝑈 = 17.1 m/s 𝑡∗ = 0.01 s 𝑓 = 6.2 Hz 𝑈 = 17.1 m/s 𝑡∗ = 0.1 s 𝑓 = 9.8 Hz

• Two perturbation amplitudes • Two distinct limit cycles

(18)

Cantilever swept flat wing

||V|| [m/s]: 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Wind tunnel test under the same conditions

𝑈 = 15 m/s 𝑡∗ = 0.01 s 𝑓 = 4.1 Hz

(19)

Dam break with flexible obstacle

M.L. Cerquaglia (ULiège) 19

• Incompressible free-surface flow computed with PFEM • Large structural displacement

(20)

Conclusions

• Developed for research and design

• Interfacing tool for strong coupling of independent solvers

• High fidedility models for nonlinear FSI

• Flexible partitioned tool for large range of physics

• Validated on typical benchmarks

(21)

Acknowledgements

Références

Documents relatifs

We present a hybrid solution strategy for the numerical solution of the two-dimensional (2D) partial differential equations of Green-Nagdhi (GN), which simulates fully nonlinear,

Ces dernières sont obligées de respecter et mettre en place des mesures comme Bâle III ou Mifid, alors que les sociétés Fintech n’auront pas à tenir compte

The paper is concerned with an efficient partitioned coupling scheme developed for dynamic fluid–structure interaction problems in turbulent flows predicted by eddy–resolving

Using an flexible orthog- onal frequency division multiplexing (OFDM) based im- plementation example, we describe the tool and show the performance of the transmission on a

Figure 2: Addition of fixed point movements Mathematically, the equation (9) represents the general equation of vibration, where a.. n is the number of modes

Dans ce travai l , nous avons mis en œuvre avec succès u n système de localisation en intérieur basé sur Wi-Fi n'utilisant pas CSI au lieu de RSS , mais

Pour étudier l’influence de la prise en compte de la polarisabilité de l’eau sur la structura- tion de l’eau dans des pores d’argiles insaturés nous avons tout d’abord

Dissolved and total organic carbon and metal concentrations in the rivers considered were comparable to values observed for other small coastal Mediterranean rivers, surpassing