• Aucun résultat trouvé

Study of the behavior of iron ore particles in spiral concentrators

N/A
N/A
Protected

Academic year: 2021

Partager "Study of the behavior of iron ore particles in spiral concentrators"

Copied!
118
0
0

Texte intégral

(1)



Study of the behavior of iron ore particles in spiral

concentrators

Mémoire

Maryam Sadeghi

Maîtrise en génie des mines- génie mines et minéralurgie

0DvWUHqVVFLHQFHV 06F 

4XpEHF&DQDGD

   

‹0DU\DP6DGHJKL

(2)
(3)

Résumé

/HV VSLUDOHV VRQW GHV DSSDUHLOV GH VpSDUDWLRQ JUDYLPpWULTXH SULQFLSDOHPHQW XWLOLVpV GDQV O¶LQGXVWULH GX WUDLWHPHQWGXPLQHUDLGHIHU/DFODVVLILFDWLRQGHVSDUWLFXOHVGDQVODSXOSHV¶HIIHFWXHORUVGHODGHVFHQWHGDQV OHVVSLUHVHQIRQFWLRQGHOHXUWDLOOHHWOHXUGHQVLWpGHVFRQGLWLRQVG¶RSpUDWLRQHWGHODJpRPpWULHGHODVSLUDOH /¶HIIHWGHVFRQGLWLRQVG¶RSpUDWLRQ SRXUFHQWDJHVROLGHGpELWG¶DOLPHQWDWLRQHWGpELWG¶HDXGHODYDJH HVWpYDOXp VXUODSHUIRUPDQFHGHVVSLUDOHVHQXWLOLVDQWXQHVSLUDOH::(LQVWDOOpHj&25(0SRXUWUDLWHUXQPLQHUDLGH IHUGH$UFHORU0LWWDO4XpEHF/HVUpVXOWDWVPRQWUHQWO¶HIIHWGRPLQDQWGXGpELWGHO¶HDXGHODYDJHHWVRQLPSDFW PDMHXUVXUOHVSDUWLFXOHVJURVVLqUHV8QFLUFXLWIHUPpGHWURLVVSLUDOHVSDUDOOqOHVDYHFHWWRXUVHVWXWLOLVp DILQ G¶pYDOXHU O¶LQIOXHQFH GX QRPEUH GH WRXUV /HV UpVXOWDWV SUpOLPLQDLUHV LQGLTXHQW TXH OD VSLUDOH WURLV WRXUV IRQFWLRQQHELHQSRXUOHQHWWR\DJHWDQGLVTXHODWRXUHVWUREXVWHSRXUO¶pEDXFKDJHHWO¶pSXLVDJH

(4)
(5)

Abstract

6SLUDOFRQFHQWUDWRUVDUHJUDYLW\VHSDUDWLRQGHYLFHVZLGHO\XVHGLQWKHLURQRUHLQGXVWU\6XVSHQGHGSDUWLFOHVLQ WKH VOXUU\ GHVFHQGLQJ D VSLUDO WURXJK DUH FODVVLILHG DFFRUGLQJ WR WKHLU VL]H DQG VSHFLILF JUDYLW\ 2SHUDWLQJ FRQGLWLRQVDQGVSLUDOJHRPHWU\LQIOXHQFHWKHFODVVLILFDWLRQ7KHHIIHFWRIRSHUDWLQJFRQGLWLRQVHJZDVKZDWHU IORZUDWHVOXUU\VROLGVFRQFHQWUDWLRQDQGIHHGUDWHLVVWXGLHGRQVSLUDOVSHUIRUPDQFH7KHWHVWVDUHFRQGXFWHG XVLQJ D SLORW VSLUDO ::(  DW &25(0 DQG DQ LURQ RUH IURP $UFHORU0LWWDO 4XHEHF 5HVXOWV FOHDUO\ GHPRQVWUDWHWKHGRPLQDQWHIIHFWRIWKHZDVKZDWHUDGGLWLRQZLWKLWVPDMRULPSDFWRQFRDUVHSDUWLFOHV$FORVHG FLUFXLWRISDUDOOHOVSLUDOVZLWKDQGWXUQVDW&25(0LVXVHGWRDVVHVVVSLUDOVSHUIRUPDQFHDVDIXQFWLRQ RIWKHQXPEHURIWXUQV,QLWLDOUHVXOWVIURPWZHOYHWHVWVLQGLFDWHWKDWWKHWXUQVSLUDOLVZHOOVXLWHGIRUFOHDQLQJ ZKLOHWKHWXUQVSLUDOLVUREXVWIRUURXJKLQJDQGVFDYHQJLQJGXW\

(6)
(7)

Table of Contents

5pVXPpLLL $EVWUDFWY 7DEOHRI&RQWHQWVYLL /LVWRI7DEOHV[L /LVWRI)LJXUHV[LLL $FNQRZOHGJHPHQWV[YLL  &KDSWHU,QWURGXFWLRQ  &KDSWHU/LWHUDWXUHUHYLHZ  6SLUDOFRQFHQWUDWRUV  6SLUDOJHRPHWU\  3URILOHRIWKHVSLUDOWURXJK  6SLUDOGLDPHWHU  3LWFK  &XWWHUV  1XPEHURIWXUQV  6OXUU\IORZLQWKHVSLUDOV  2SHUDWLQJYDULDEOHV  6OXUU\VROLGVFRQFHQWUDWLRQ  )HHGIORZUDWH  :DVKZDWHUDGGLWLRQ  )HHGFKDUDFWHULVWLFV  3HUIRUPDQFHLQGLFHVXVHGWRDVVHVVVSLUDOVRSHUDWLRQ  6XPPDU\  &KDSWHU'DWDUHFRQFLOLDWLRQ  0DVVFRQVHUYDWLRQQHWZRUNIRUWKHVSLUDO  0DVVFRQVHUYDWLRQDQGFRKHUHQF\FRQVWUDLQWV  'DWDUHFRQFLOLDWLRQFULWHULRQ  ,QGHSHQGHQWYDULDEOHVIRUWKHGDWDUHFRQFLOLDWLRQ  (VWLPDWLRQRIFKHPLFDOFRQWHQWVLQWKHVROLGVVWUHDPVRIWKHVSLUDO YLL

(8)

3-6 Estimation of the size distribution of the solids streams ... 20

3-7 Estimation of assays of size fractions in the streams of the spiral ... 22

3-8 Solution to the data reconciliation problem ... 23

3-9 Evaluation of the data reconciliation results ... 24

3-10 Evaluation of spiral performance indices from the reconciled data ... 24

3-11 Typical partition curves and spirals partition curves ... 25

4 Chapter 4: Effects of operating conditions on the performance of a WW-6E spiral ... 29

4-1 Test set-up ... 29

4-2 Test conditions and the 23 factorial design ... 31

4-3 Results analysis ... 32

4-4 Partition curves for iron and silica carriers ... 34

4-5 Factors influencing the Fe2O3 content and recovery to the concentrate ... 37

4-6 Grade-recovery curve of Fe2O3 carriers ... 38

4-7 Discussion ... 38

5 Chapter 5: Preliminary investigation on the effect of the number of turns on spirals performance ... 41

5-1 Introduction ... 41

5-2 Description of the spiral test rig ... 42

5-2-1 Test rig ... 42

5-2-2 Validation of the feed distributor ... 43

5-2-3 Wash water addition ... 46

5-2-4 Concentrate cutters ... 48

5-2-5 Dewatering hydro cyclones ... 48

5-2-6 Sampling the divided slurry flow at the last turn of the spirals ... 49

5-2-7 Main sampling system ... 49

5-3 Experimental procedure ... 50

5-3-1 The ore and the tests conditions ... 50

5-3-2 Sampling procedure ... 51

5-4 Data reconciliation ... 52

5-5 Reproducibility of the tests and feed characteristics ... 54

5-5-1 Slurry solids concentration ... 54

5-5-2 Slurry mass flow rate of the feed ... 55

5-5-3 Wash water flow rate ... 55

5-5-4 Chemical composition ... 55 viii

(9)

5-5-5 Size distribution ... 57

5-5-6 Size distribution of the chemical species ... 57

5-5-7 Summary ... 59

5-6 Effect of the number of turns on global performance indices ... 59

5-6-1 Reproducibility of the tests ... 59

5-6-2 Number of turns and spiral concentrate grade ... 60

5-6-3 Number of turns and mass split to the concentrate ... 61

5-6-4 Slurry solids concentration and flow rate in the concentrate stream ... 62

5-6-5 Number of turns and Fe2O3 carriers recovery ... 63

5-6-6 Number of turns and Fe2O3 grade-recovery curves ... 65

5-6-7 Number of turns and spiral selectivity ... 65

5-6-8 Multivariable analysis of the test results ... 66

5-6-9 Summary ... 68

5-7 Effects of the number of turns on the species partition curves ... 69

5-7-1 Effects of the number of turns on partition curves ... 69

5-7-2 Possible use of partition curves to associate the species with minerals ... 73

5-8 Particles stratification along the trough of the spirals ... 74

5-8-1 Solids characteristics within the reject flows ... 74

5-8-3 Distribution to the reject flows of the spiral discharge ... 82

5-9 Discussion ... 85

6 Chapter 6: Conclusion ... 87

Bibliography ... 91

Appendix ... 93

A-1 Method of standard deviation estimation for the measurements in a data reconciliation procedure 93 A-2 Measurements and the reconciled values from test 9 ... 94

A-3 Data related to the Figures presented in Chapter 5 ... 95

(10)
(11)

List of Tables

 7DEOH7\SLFDOFKDUDFWHULVWLFVRIWKHVSLUDOV 7DEOH'DWDUHFRQFLOLDWLRQUHVXOWVPHDVXUHPHQWVDUHIURPDWHVWRQD::(VSLUDO VHHVHFWLRQ  7DEOH7KHIDFWRULDOGHVLJQIRUWKHWHVWVFRQGXFWHGRQWKHVSLUDO 7DEOH3HUIRUPDQFHLQGLFHVREWDLQHGIURPWKHUHFRQFLOHGGDWD 7DEOH0DLQHIIHFWDQGLQWHUDFWLRQHIIHFWRIH[SHULPHQWDOIDFWRUVRQWKHSHUIRUPDQFHLQGLFHV 7DEOH0RGHOLQJRI)H2FRQWHQWRIWKHFRQFHQWUDWHDVDIXQFWLRQRIWKHH[SHULPHQWDOIDFWRUVDQGWKH)H FRQWHQWLQWKHIHHG WKHQXPEHUVZLWKLQWKHEUDFNHWVDUHWKHVWDQGDUGGHYLDWLRQVRIWKHPRGHOSDUDPHWHUV  7DEOH0RGHOLQJRIWKH)H2UHFRYHU\WRWKHFRQFHQWUDWHDVDIXQFWLRQRIWKHH[SHULPHQWDOIDFWRUVDQGWKH )HFRQWHQWLQWKHIHHG WKHQXPEHUVZLWKLQWKHEUDFNHWVDUHWKHVWDQGDUGGHYLDWLRQVRIWKHPRGHOSDUDPHWHUV  7DEOH$YHUDJHDQGUHODWLYHVWDQGDUGGHYLDWLRQRIWKHPHDVXUHGFKDUDFWHULVWLFVRIWKHIHHGSLSHV 7DEOH$YHUDJHVL]HGLVWULEXWLRQRIWKHVROLGVLQWKHIHHGSLSHV 7DEOH2UGHURIIHHGSLSHVSODFHGLQWRWKHVSLUDOVIHHGER[ 7DEOH:DVKZDWHUIORZUDWHPHDVXUHPHQWVWHVWVDQG 7DEOH3UHVVXUHWRWKHK\GURF\FORQHV 7DEOH7DUJHWWHVWFRQGLWLRQVIRUWKHWHVWVFRQGXFWHGRQWKHWKUHHVSLUDOVDW&25(0 7DEOH5HFRQFLOHGGDWDIURPWKHWXUQVSLUDOWHVW 7DEOH6OXUU\VROLGVFRQFHQWUDWLRQRIWKHWKUHHVSLUDOVIHHG 7DEOH7DUJHWDQGUHFRQFLOHGYDOXHVRIWKHVOXUU\IHHGIORZUDWHRIWKHWKUHHVSLUDOV 7DEOH7DUJHWDQGUHFRQFLOHGYDOXHVRIZDVKZDWHUIORZUDWH 7DEOH5HFRQFLOHGDQGPHDVXUHGYDOXHVRI6L2FRQWHQWLQWKHVSLUDOVIHHGWHVWVWR 7DEOH5HFRQFLOHGDQGPHDVXUHGYDOXHVRI)H2FRQWHQWLQWKHVSLUDOVIHHGWHVWVWR 7DEOH6L]HGLVWULEXWLRQRIWKHVSLUDOVIHHG FODVVHVRIPPPPDQGPP  7DEOH$YHUDJH6L2DQG)H2FRQWHQWVZLWKLQWKHVL]HLQWHUYDOVIRUWKHWKUHHVSLUDOVWHVWVWR 7DEOH5HSURGXFLELOLW\RI6L2FRQWHQWDQGUHFRYHU\WHVWVDQG [L

(12)

Table 5-16: Reproducibility of Fe2O3 content and recovery, tests 5 and 6 ... 60

Table 5-17: Independent and dependent variables used for the analysis (reconciled values) ... 67

Table A- 0-1: Measurements and reconciled values from test 9 conducted on the WW6E rougher spiral ... 94

Table A- 0-2: Spirals characteristics ... 95

Table A- 0-3: Hydro cyclones characteristics ... 95

Table A- 0-4: Fe2O3 carriers partition factors to the concentrate, tests 7 to 12 ... 95

Table A- 0-5: SiO2 carriers partition factors to the concentrate, tests 7 to 12 ... 95

Table A- 0-6: Solids split to the reject flows, tests 5 to 10 ... 96

Table A- 0-7: Solids concentration in the reject flows, tests 5 to 10 ... 96

Table A- 0-8: Volumetric flow rate of the reject flows, tests 5 to 10 ... 96

Table A- 0-9: SiO2 content within the reject flows, test 5 to 10 ... 96

Table A- 0-10: Fe2O3 content within the reject flows, test 5 to 10 ... 97

Table A- 0-11: Average size distribution of solids within the output flows, tests 5 to 10 ... 97

Table A- 0-12: Average size distribution of Fe2O3 carriers within the output flows, tests 7, 8 and 9 ... 97

Table A- 0-13: Average size distribution of SiO2 carriers within the output flows, tests 7, 8 and 9 ... 98

Table A- 0-14: SiO2 carriers distribution within the reject flows, tests 5 to 10 ... 98

Table A- 0-15: Fe2O3 carriers distribution within the reject flows, tests 5 to 10 ... 98

Table A- 0-16: Average partition factors of SiO2 carriers from the feed to the concentrate and the 4 reject flows, tests 7, 8 and 9 ... 99

Table A- 0-17: Average partition factors of Fe2O3 carriers from the feed to the concentrate and the 4 reject flows, tests 7, 8 and 9 ... 99

(13)

List of Figures

 )LJXUH$W\SLFDOVSLUDO )LJXUH$VLPSOLILHGVNHWFKRISDUWLFOHVFODVVLILFDWLRQDORQJWKHVSLUDOWURXJK )LJXUH&XWWHUSRVLWLRQLQWKHVSLUDODQGWKHZDVKZDWHUDGGLWLRQ )LJXUH6RPHNLQGVRIVSLUDOFXWWHUV )LJXUH)ORZEHKDYLRULQDFURVVVHFWLRQRIDVSLUDOFKDQQHO 5LFKDUGVDQG3DOPHU  )LJXUH)RUFHVDFWLQJRQSDUWLFOHVLQVSLUDOV )LJXUH$VSLUDOWURXJKFRQFHQWUDWLQJWKHLURQRUH )LJXUH1HWZRUNVXVHGIRUPDWHULDOEDODQFHLQVSLUDOV )LJXUH'DWDUHFRQFLOLDWLRQSURFHGXUHRQWKHVL]HGLVWULEXWLRQRIWKHPDVVZLWKLQWKHVL]HLQWHUYDOV )LJXUH7KHKLHUDUFKLFDOSURFHGXUHXVHGIRUWKHGDWDUHFRQFLOLDWLRQ )LJXUH7\SLFDOK\GUDXOLFFODVVLILHUVSDUWLWLRQFXUYHV %D]LQHWDO  )LJXUH6SLUDOVSDUWLWLRQFXUYHV %D]LQHWDO  )LJXUH2SHUDWLQJUDQJHRI::(VSLUDO 5RFKH0LQLQJ  )LJXUH([SHULPHQWDOWHVWVHWXS )LJXUH3DUWLWLRQFXUYHVRI)H2DQG6L2FDUULHUVDWWKHUHIHUHQFHFRQGLWLRQ WHVWVDQG  )LJXUH(IIHFWRIZDVKZDWHUDGGLWLRQRQWKHUHFRYHU\RI)H2DQG6L2FDUULHUV )LJXUH(IIHFWRIIHHGUDWHRQWKHSDUWLWLRQFXUYHVRI)H2DQG6L2FDUULHUV WKHDYHUDJHRIKLJKIHHGUDWH WHVWV DQGWKHDYHUDJHRIORZIHHGUDWH WHVWVDQG  )LJXUH(IIHFWRIVROLGVFRQFHQWUDWLRQRQWKHSDUWLWLRQFXUYHVRI)H2DQG6L2FDUULHUV DYHUDJHRIKLJK VROLGV WHVWVDQG DQGDYHUDJHRIORZVROLGV WHVWVDQG  )LJXUH7HVWVHWXSDW&25(0VSOLWWHUVDWGLVFKDUJHDQGWKHDXWRPDWLFVDPSOHU )LJXUH6FKHPDWLFWHVWVHWXSDW&25(0 )LJXUH6OXUU\IORZUDWHZLWKLQWKHSLSHV HDFKVDPSOLQJFDPSDLJQLVFRQGXFWHGDWDVSHFLILFVOXUU\VROLGV FRQFHQWUDWLRQLHDQG ZZ  )LJXUH$YHUDJHVOXUU\FRPSRVLWLRQLQWKHSLSHV [LLL

(14)

Figure 5-5: Auto-gauges to control wash water flow rate of the 3 spirals, feed distributor and feed boxes ... 46

Figure 5-6: Wash water distribution scheme along the channel of the spiral, spigots and cutters ... 47

Figure 5-7: Wash water flow rate via the spigots; total flow rate 16.6 L/min (spigots in the middle position) ... 48

Figure 5-8: Automatic sampler, 24 samples at the same time ... 50

Figure 5-9: Sampling configuration ... 50

Figure 5-10: Spirals network for the data reconciliation ... 52

Figure 5-11: Average SiO2 content in the feed of the three spirals, tests 5 to 12 ... 57

Figure 5-12: Average Fe2O3 content in the feed of the three spirals, tests 5 to 12 ... 57

Figure 5-13: Fe2O3 distribution within the size intervals, tests 9 to 12 ... 58

Figure 5-14: Concentrate grade as a function of the feed grade, for the three spirals, tests 5 to 12 ... 61

Figure 5-15: Upgrading ratio of the three spirals, tests 5 to 12 ... 61

Figure 5-16: Variation of the mass split as a function of the Fe2O3 content in the feed ... 62

Figure 5-17: Mass split as a function of the upgrading ratio ... 62

Figure 5-18: Solids concentration in the concentrate stream in the 3 spirals, tests 5 to 12 ... 63

Figure 5-19: Slurry flow rate to the concentrate stream in the three spirals, tests 5 to 12 ... 63

Figure 5-20: Recovery of the Fe2O3 to the concentrate as a function of the Fe2O3 content in the feed ... 63

Figure 5-21: Fe2O3recovery as a function of the upgrading ratio ... 64

Figure 5-22: Grade-recovery curve for the three spirals ... 65

Figure 5-23: Fe2O3 recovery versus SiO2 recovery (selectivity curves) for the three spirals ... 66

Figure 5-24: Selectivity factors as a function of the number of turns ... 66

Figure 5-25: Partition curves of Fe2O3 and SiO2 carriers for tests 7 and 8 (operating conditions: 35%solids, 2.2 t/h solids flow rate) ... 69

Figure 5-26: Partition curves of Fe2O3 and SiO2 carriers in tests 9 and 10 (28 L/min wash water flow rate) ... 70

Figure 5-27: Partition curves of Fe2O3 and SiO2 carriers for tests 11 and 12 (operation conditions: 37%solids, 2.6 t/h solids flow rate) ... 71

Figure 5-28: Fe2O3 partition curves obtained from the 3-turn-spiral, tests 7 to 12 ... 72

Figure 5-29: SiO2 partition curves obtained from the 3-turn-spiral, tests 7 to 12 ... 72

Figure 5-30Figure 5-30: Partition curves obtained from the 5-turn-spiral, tests 7 to 12 ... 72 xiv

(15)

Figure 5-31: Partition curves obtained from the 7-turn-spiral, tests 7 to 12 ... 73

Figure 5-32: Similar partition curves for species that may belong to the same mineral ... 73

Figure 5-33: Spiral channel division at discharge and the rejects numbering ... 74

Figure 5-34: Average solids split to the reject flows, tests 5 to 10 ... 75

Figure 5-35: Average slurry solids concentration in the reject flows, tests 5 to 10 ... 75

Figure 5-36: Average volumetric flow rate in the reject flows, tests 5 to 10 ... 75

Figure 5-37: Average chemical composition of the solids in the reject flows at the spirals discharge ... 76

Figure 5-38: Size distribution of the solids in the reject flows of the 3-turn-spiral ... 77

Figure 5-39: Size distribution of the solids in the reject flows of the 5-turn-spiral ... 77

Figure 5-40: Size distribution of the solids in the reject flows of the 7-turn-spiral ... 77

Figure 5-41: D80 of the solids within the reject flows of the three spirals, tests 5 to 10 ... 78

Figure 5-42: Size distribution of solids -0.106 mm in the reject flows of the three spirals, tests 5 to 10 ... 78

Figure 5-43: Average size distribution of Fe2O3 carriers in the output flows of the 3-turn-spiral ... 79

Figure 5-44: Average size distribution of SiO2 carriers in the output flows of the 3-turn-spiral ... 79

Figure 5-45: Average size distribution of Fe2O3 carriers in the output flows of the 5-turn-spiral ... 79

Figure 5-46: Average size distribution of SiO2 carriers in the output flows of the 5-turn-spiral ... 79

Figure 5-47: Average size distribution of Fe2O3 carriers in the output flows of the 7-turn-spiral ... 79

Figure 5-48: Average size distribution of SiO2 carriers in the output flows of the 7-turn-spiral ... 79

Figure 5-49: Size distribution of solids and SiO2 and Fe2O3 carriers in the concentrate ... 80

Figure 5-50: Size distribution of solids and SiO2 and Fe2O3 carriers in reject 1 (R1) ... 80

Figure 5-51: Size distribution of solids and SiO2 and Fe2O3 carriers in reject 2 (R2) ... 80

Figure 5-52: Size distribution of solids and SiO2 and Fe2O3 carriers in reject 3 (R3) ... 81

Figure 5-53: Size distribution of solids and SiO2 and Fe2O3 carriers in reject 4 (R4) ... 81

Figure 5-54: Average SiO2 and Fe2O3 distribution to the reject flows, tests 5 to 10 ... 82

Figure 5-55: SiO2 distribution to the reject flows in the three spirals, average of tests 7, 8 and 9 ... 83

Figure 5-56: Fe2O3 distribution to the reject flows in the three spirals, average of tests 7, 8 and 9 ... 84

(16)
(17)

Acknowledgements

)LUVWDQGIRUHPRVW,ZRXOGOLNHWRH[SUHVVP\GHHSHVWJUDWLWXGHWRP\VXSHUYLVRU3URIHVVRU&ODXGH%D]LQIRU KLV LQYDOXDEOH SDWLHQW GLUHFWLRQ DQG WHFKQLFDO VXSSRUW +H LV D JUHDW WHDFKHU DQG D JUHDW LQVSLUDWLRQ +H SHUVXDGHGPHWRGHYHORSDULJRURXVUHVHDUFKPHWKRGRORJ\+HWUXO\PDGHDGLIIHUHQFHLQP\OLIHDQGEHFDPH PRUHRIDPHQWRUDQGIULHQGWKDQDSURIHVVRU,GRXEWWKDW,ZRXOGEHDEOHWRZULWHWKLVPHPRLUZLWKRXWKLV SUHFLRXVFRQWLQXHGFRRSHUDWLRQ

, ZLVK WR DFNQRZOHGJH DQG WKDQN &25(0 IRU SURYLGLQJ WKH IXQGLQJ ZKLFK DOORZHG PH WR XQGHUWDNH WKLV UHVHDUFK 0\ VLQFHUH JUDWLWXGH JRHV WR P\ FRVXSHUYLVRU 0UV 0DULOqQH 5HQDXG , DSSUHFLDWH WKH WLPH DQG HQHUJ\WKDWVKHSXWWRWKHSURMHFW,WKDQNDOVRDOO&25(0VWDIIZKRLQYROYHGLQWKHSURMHFWSDUWLFXODUO\0U *DXWLHU0DKLHXIRUKLVJUHDWKHOSWRSURYLGHWKHUHTXLUHGLQIRUPDWLRQDQG0U-HDQ5RELWDLOOHIRUKLVH[FHOOHQW FRRSHUDWLRQWRUXQWKHH[SHULPHQWV ,WKDQNP\IULHQG0UV-DOQD/DPRQWDJQHIRUKHUJUHDWKHOSLQWKHODERUDWRU\DQG0UV9LFN\'RGLHUZKRZDV DOZD\VWKHUHWRIDFLOLWDWHP\WHVWZRUNDWWKHODERUDWRU\ 7KDQNVDUHDOVRH[WHQGHGWRP\IULHQGVDQGFROOHDJXHVLQWKH'HSDUWPHQWRI0LQLQJ0HWDOOXUJ\DQG0DWHULDOV (QJLQHHULQJIRUSURYLGLQJDVRSOHDVXUDEOHDQGIULHQGO\ZRUNLQJDWPRVSKHUH ,ZRXOGOLNHWRH[SUHVVP\KHDUWIHOWWKDQNVWRP\IDPLO\IRUWKHLUORYHDQGHQFRXUDJHPHQW,DSSUHFLDWHDOOWKHLU JUHDWVXSSRUWZLWKRXWZKLFK,FRXOGQRWKDYHFRPHWKLVIDU [YLL

(18)
(19)

1 Chapter 1: Introduction

2UHSURFHVVLQJXVXDOO\EHJLQVZLWKWKHH[WUDFWLRQRIWKHRUHIURPDPLQHVLWHIROORZHGE\DVL]HUHGXFWLRQRIWKH RUHIUDJPHQWVWROLEHUDWHYDOXDEOHPLQHUDOV7KHQH[WSURFHVVLQJVWHSLVWKHFRQFHQWUDWLRQRIYDOXDEOHPLQHUDOV LQWRDFRQFHQWUDWHE\YDULRXVPHDQVPDNLQJXVHRIWKHVXUIDFHSURSHUWLHVRIWKHPLQHUDOVWKHLUVSHFLILFJUDYLW\ DQGRU PDJQHWLF RU HOHFWULFDO FRQGXFWLYLW\ FKDUDFWHULVWLFV 7KH FRQFHQWUDWH LV VHOGRP µSXUH¶ DV XQZDQWHG PLQHUDOVIROORZWKHYDOXDEOHRQHVGXULQJWKHFRQFHQWUDWLRQSURFHVVDQGWKHUHFRYHU\RIYDOXDEOHPLQHUDOVLV UDUHO\  $Q\ UHVHDUFK SURMHFWV LQ PLQHUDO SURFHVVLQJ DLP DW UHGXFLQJ RSHUDWLQJ FRVWV LPSURYLQJ WKH TXDOLW\ RI WKH SURGXFW E\ LQFUHDVLQJ WKH FRQFHQWUDWH JUDGH DQGRU LQFUHDVLQJ WKH UHFRYHU\ RI WKH YDOXDEOH PLQHUDOV7KLVPHPRLUILWVLQWRWKHFDWHJRU\RIWKHUHVHDUFKSURMHFWVWKDWDLPDWXQGHUVWDQGLQJDFRQFHQWUDWLRQ HTXLSPHQWWRXOWLPDWHO\LPSURYHWKHTXDOLW\DQGTXDQWLW\RIWKHSURGXFHGFRQFHQWUDWH

$ ODUJH SRUWLRQ RI WKH &DQDGLDQ LURQ RUH LV H[WUDFWHG DQG SURFHVVHG LQ 4XpEHF IRU VWHHO SURGXFWLRQ 7KH YDORUL]DWLRQRILURQRUHIROORZVWKHVWDQGDUGSURFHVVLQJSDWKRIVL]HUHGXFWLRQDQGFRQFHQWUDWLRQRIYDOXDEOH PLQHUDOV 6L]H UHGXFWLRQ LV FRQGXFWHG LQ FUXVKHUV DQG DXWRJHQHRXV PLOOV WKDW EUHDN WKH RUH LQWR SDUWLFOHV VPDOOHUWKDQPPDGLPHQVLRQIRUZKLFKWKHYDOXDEOHPLQHUDOV LURQR[LGH DUHGHWDFKHGRUOLEHUDWHGIURPWKH JDQJXHPLQHUDOV7KHFRQFHQWUDWLRQRILURQR[LGHFDUULHUPLQHUDOVLVSHUIRUPHGXVLQJJUDYLW\FRQFHQWUDWRUVWKDW VHSDUDWHWKHYDOXDEOHPLQHUDOV 6*  IURPWKHJDQJXH 6*  DFFRUGLQJWRWKHLUVSHFLILFJUDYLW\6SLUDO FRQFHQWUDWRUVDUHJUDYLW\EDVHGVHSDUDWLRQGHYLFHVXVHGIRUWKHSUHSDUDWLRQRIFRDOLURQDQGKHDY\PLQHUDOV :LOOV DQG 1DSLHU0XQQ   7KH UHVHDUFK ZRUN SUHVHQWHG LQ WKLV PHPRLU LV GHYRWHG WR WKH DQDO\VLV RI VSLUDOVRSHUDWLRQLQRUGHUWRXOWLPDWHO\DFTXLUHDEHWWHUXQGHUVWDQGLQJRIWKHRSHUDWLRQRIWKLVHTXLSPHQWDQGWR SURSRVHRSHUDWLQJVWUDWHJLHVWRPD[LPL]HWKHUHFRYHU\RIYDOXDEOHPLQHUDOVZKLOHPDLQWDLQLQJDQHFRQRPLFDO FRQFHQWUDWHJUDGH

$OWKRXJKVSLUDOFRQFHQWUDWRUVKDYHEHHQLQRSHUDWLRQIRUPRUHWKDQ\HDUVZLWKWKHILUVWDSSOLFDWLRQUHSRUWHG LQV :LOOVDQG 1DSLHU0XQQ0LVKUD DQG7ULSDWK\ WKH FRPSOH[LW\RIWKHYDULRXVIRUFHVLQ DFWLRQWRVHSDUDWHWKHPLQHUDOVLVIDUIURPEHLQJXQGHUVWRRGDVUHFHQWSDSHUVVKRZWKDWDXWKRUVVWLOOVWUXJJOHWR GHYHORSDUREXVWPRGHOIRUWKHVSLUDORSHUDWLRQ,QGHHGIRUFHVVXFKDVJUDYLW\FHQWULIXJDOGUDJIULFWLRQDQGOLIW DVZHOODVWKHP\VWHULRXV%DJQROGIRUFHDUHDOOLQDFWLRQWRSHUIRUPWKHSDUWLFOHFODVVLILFDWLRQLQVSLUDOV %XUW DQG0LOOV$WDVR\DQG6SRWWLVZRRG%RXFKDUG 3DUWLFOHVFODVVLILFDWLRQLQVSLUDOVGHSHQGVRQ WKHRUHVSHFLILFJUDYLW\DQGVL]HGLVWULEXWLRQ$OWKRXJKWKHHIIHFWRIVSHFLILFJUDYLW\RQSDUWLFOHVVHSDUDWLRQLQ VSLUDOVLVZHOOUHFRJQL]HGLQWKHOLWHUDWXUH 6XEDVLQJKHDQG.HOO\$WHVRNHWDO WKHGLVFXVVLRQRI WKHHIIHFWRISDUWLFOHVL]HLVOLPLWHGDQGDOVRXQFOHDU $WDVR\DQG6SRWWLVZRRG 7KLVPHPRLUH[DPLQHVLQ PRUHGHWDLOWKHHIIHFWRISDUWLFOHVL]HRQWKHFRQFHQWUDWLRQSURFHVVDQGFOHDUO\VKRZVWKDWORVVHVRIYDOXDEOH PLQHUDOVGRQRWRFFXURQO\IRUILQHSDUWLFOHV VPDOOHUWKDQPP DVLWLVZHOOUHFRJQL]HG +\PDDQG0HHFK 

(20)

1989) but also in the coarse size fraction (larger than 0.25 mm). The complex behavior of gangue minerals as a function of their size is also highlighted in the memoir.

Particle classification in spirals depends also on the spiral geometry and operating variables. Spiral geometry is mainly defined by diameter of the channel and the number of turns (Bouchard, 2001). The main operating variables are the feed rate, slurry solids concentration, wash water addition and cutters position (Wills and Napier-Munn, 2006). Dallaire et al. (1978) examined the effect of feed rate and slurry solids concentration on a Humphrey spiral for iron ore. Their results indicate that increasing the slurry solids concentration is beneficial for the recovery of valuable minerals but deteriorates the concentrate grade. Wash water addition is an important variable that washes away light minerals from the concentrate band. It may also enhance the recovery of valuable minerals probably by breaking some build-up barrier of gangue particles in the inner part of the spiral trough (Ramotsabi et al., 2015). Significant benefits, however, were reported after the removal of wash water from spirals treating light minerals (Burt and Mills, 1984; Richards and Palmer, 1997; Bouchard, 2001), while higher concentration grades of heavy minerals are obtained at higher wash water flow rates (Sadeghi et al., 2014). Although wash water addition is recognized as a strategic operating variable for spirals, it was not possible to find any detailed analysis of the action of this variable in the literature. Results of a test work conducted on a pilot spiral show that wash water addition mainly influences the recovery of coarse particles. These results are published (Sadeghi et al., 2014) and are explained in details in Chapter 4.

Work is also carried out in this memoir to study the effect of the number of turns on spirals performance. Intuitively it is expected that recovery of the valuable minerals increases with the number of turns, as the residence time of the slurry in the spiral increases providing more opportunities for particles to be collected by the cutters. However, this was not observed from the conducted test work using a test rig consisting of three parallel spirals with 3, 5 and 7 turns, as the results show a maximum recovery from the 3-turn-spiral. Each spiral of the test rig is equipped with a splitter installed at discharge of the last turn. The splitter divides the slurry flow into 6 streams. The streams can be individually sampled to provide a further understanding of particles stratification along the spiral trough. These results are described in Chapter 5.

The project was financially supported by COREM that allows the test work on the pilot plant spirals and also provides the technical assistance to operate the equipments. Chemical assays of the collected samples were performed by COREM personnel. The ore used for the test work is provided by the Mount Wright mine of ArcelorMittal in Quebec.

All measurements collected during the sampling campaigns are reconciled using BILMAT (Hodouin and Everell, 1980). The reconciled data are used to assess performance indices and mineral partition curves. The data reconciliation algorithm is programmed in Ms. Excel. This algorithm is prepared following a demand from COREM to be able to balance the measurements collected through the sampling campaigns and to 2

(21)

characterize the optimal operation of the equipment. A special iterative method is used to ensure that the constraints of consistency for the size distributions, assays of size fractions and head assays are verified as well as the mass conservation constraints. The algorithm is described in chapter 3. The use of reconciled data facilitates the estimation of performance indices, particularly partition curves. Partition curves provide an excellent tool to study the effect of operating and design variables.

The memoir is divided into 6 chapters including the introduction and the conclusion. Chapter 2 presents a literature review of the design and operation of spirals. Chapter 3 describes the algorithm used for the data reconciliation and the calculation of the species partition curves. Chapter 4 reports the results of the investigation on the effect of wash water flow rate, feed rate and slurry solids concentration on the performance of a commercial spiral. Chapter 5 studies the effect of number of turns on spirals performance as well as the species classification along the spiral trough.

(22)
(23)

2

Chapter 2: Literature review

2-1 Spiral concentrators

6SLUDO FRQFHQWUDWRUV ILUVW LQWURGXFHG E\ +XPSKUH\V LQ  :LOOV DQG 1DSLHU0XQQ   DUH JUDYLW\ VHSDUDWLRQGHYLFHVXVHGIRUWKHSUHSDUDWLRQRIFRDO FDOOHGFRDOVSLUDOV LURQDQGVRPHRWKHUKHDY\PLQHUDOV PLQHUDO VSLUDOV  7KH RSHUDWLRQ SULQFLSOH RI WKH YDULRXV VSLUDO PRGHOV +XPSKUH\V 5HLFKHUW 9LFNHUV«  DUH VLPLODU %XUWDQG0LOOV 6SLUDOFRQFHQWUDWRUVFRQVLVWRIDQRSHQFKDQQHOWZLVWLQJGRZQZDUGLQDVSLUDO VKDSH DURXQG D FHQWUDO D[LV WR IRUP VHYHUDO LGHQWLFDO WXUQV 5LFKDUGV DQG 3DOPHU  0DWWKHZV HW DO  $W\SLFDOVSLUDOLVVKRZQLQ)LJXUH 6SLUDOVVHSDUDWHSDUWLFOHV DFFRUGLQJWRWKHLUVL]HDQGVSHFLILF JUDYLW\ 6OXUU\ ZKLFK LV D PL[WXUH RI ZDWHU DQG JURXQG SDUWLFOHV HQWHUV DW WRS RI WKH VSLUDO DV WKH IHHG 6XVSHQGHGSDUWLFOHVLQWKHVOXUU\VWUDWLI\DORQJWKHFKDQQHODVWKH\IORZGRZQWKHVSLUDO7KHLUSRVLWLRQLQWKH VSLUDOWURXJKFKDQJHVDFFRUGLQJWRWKHLUVL]HDQGVSHFLILFJUDYLW\+HDY\SDUWLFOHVPRYHWRZDUGWKHLQQHUSDUW RIWKHWURXJKZKLOHWKHOLJKWHURQHVPLJUDWHWRWKHRXWHUDUHDV)LJXUHLOOXVWUDWHVWKHGLVWULEXWLRQRISDUWLFOHV IORZLQJGRZQWKHVSLUDOWXUQV7KHLOOXVWUDWLRQLVTXLWHVLPSOLILHGDVDOOWKHSDUWLFOHVDUHRIWKHVDPHVL]HDQG VKDSHZKLOHLWLVQRWWKHFDVHLQSUDFWLFH3DUWLFOHVL]HDQGVKDSHLQIOXHQFHWKHVHSDUDWLRQ  )LJXUH$W\SLFDOVSLUDO  )LJXUH$VLPSOLILHGVNHWFKRISDUWLFOHVFODVVLILFDWLRQDORQJWKHVSLUDOWURXJK   ZZZPLQHHQJLQHHUFRP  'LDPHWHU 6SOLWWHU 3LWFK &RQF 0LGGOLQJV 5HMHFWV (QWU\ $IWHURQH WXUQ $IWHUWZR WXUQV +HDY\ 0HGLXP /LJKW $IWHUWKUHH WXUQV 6SOLWWHUWRFDSWXUHWKH KHDY\SDUWLFOHV  

(24)

 

3DUWLFOHVVHWWOHGLQWKHLQQHUSDUWRIWKHWURXJK PRVWO\KHDY\RQHV HQFRXQWHUFRQFHQWUDWHWUDSVRURSHQLQJV 7KH WUDSV FROOHFW WKHVH KHDY\ SDUWLFOHV OHDYLQJ WKH OLJKWHU RQHV LQ WKH WURXJK $ FXWWHU LV LQVWDOOHG RQ HDFK RSHQLQJWRFRQWUROWKHZLGWKRIWKHEDQGRIWKHWUDSSHGSDUWLFOHVZKLFKDUHFRQVLGHUHGDVWKHFRQFHQWUDWHIRU WKHFRQFHQWUDWLRQRIKHDY\PLQHUDOV)RUDFRDOVSLUDOWKHWUDSSHGSDUWLFOHVDUHFRQVLGHUHGDVWKHUHMHFW)LQDO VHSDUDWLRQLQWRKHDY\PHGLXPDQGOLJKWSDUWLFOHVLVSHUIRUPHGE\VSOLWWHUVDWGLVFKDUJH VHH)LJXUH 7KH UROHRIFXWWHUVLVGLVFXVVHGLQVHFWLRQ:DVKZDWHUFDQEHDGGHGSHUSHQGLFXODUO\IURPWKHFHQWHUWXEHWR WKH LQQHU SDUW RI WKH VSLUDO WKH FRQFHQWUDWH ]RQH  WR FOHDQ WKH SDUWLFOHV EDQG IURP WKH XQZDQWHG SDUWLFOHV :DVKZDWHUDGGLWLRQKDVDVLJQLILFDQWHIIHFWRQWKHVSLUDOSHUIRUPDQFHDQGLWVUROHLVGLVFXVVHGLQVHFWLRQ )LJXUHLOOXVWUDWHVDZDVKZDWHUDGGLWLRQVSLJRWIROORZHGE\DFXWWHULQWKHLQQHU]RQHRIWKHVSLUDO  )LJXUH&XWWHUSRVLWLRQLQWKHVSLUDODQGWKHZDVKZDWHUDGGLWLRQ  2QHVSLUDOFDQSURFHVVDIHHGUDWHRIWRWK :LOOVDQG1DSLHU0XQQ 7KHSURFHVVLQJRIWRQV SHUGD\RIRUHPD\UHTXLUHPRUHWKDQVSLUDOV8VXDOO\WKHWDUJHWFRQFHQWUDWHJUDGHLVQRWDFKLHYHGLQRQH VWDJHDQGVSLUDOVDUHRSHUDWHGLQPXOWLSOHVWDJHV)RULQVWDQFHIRUDKLJKWDUJHWUHFRYHU\DWKUHHVWDJHVRI URXJKHUFOHDQHUDQGVFDYHQJHUVSLUDOVDUHXVHGLQDWUHDWPHQWSODQW %XUWDQG0LOOV%RXFKDUG  7KH VSLUDO FLUFXLW RI /DF %ORRP 4XHEHF FRQVLVWV RI WZR SDUDOOHO OLQHV RI URXJKHU FOHDQHU DQG UHFOHDQHU VSLUDOV %D]LQHWDO 5RXJKHUVSLUDOVDUHXVHGWRSURYLGHKLJKHUUHFRYHULHVZKLOHFOHDQHUVSLUDOVDUH XVHGWRPHHWDWDUJHWILQDOJUDGHRISURGXFW %XUWDQG0LOOV 7KHFLUFXLWRIVSLUDOVDQGWKHQXPEHURI VWDJHVDUHGHVLJQHGUHJDUGLQJWKHIHHGFRPSRVLWLRQSDUWLFOHVL]HUDQJHHWF $WHVRNHWDO 

2-2 Spiral geometry

7KHJHRPHWU\RIWKHVSLUDOLVFKDUDFWHULVHGE\LWVWURXJKSURILOHGLDPHWHUSLWFKDQGQXPEHURIWXUQV

2-2-1Profile of the spiral trough

7KH SURILOH RIWKHWURXJKVKRXOGSURYLGH D SDWKIRUWKHSDUWLFOHVWRUROO DQG JOLGHLQ RUGHUWRVWUDWLI\ SURSHUO\ DORQJWKHFKDQQHO7KHUHDUHYDULRXVW\SHVRIWURXJKSURILOHVVXFKDVFRQWLQXRXVO\FXUYHGDQGIODWERWWRPHG 

(25)

6LYDPRKDQDQG)RUVVEHUJ 7KHSURILOHLVGHVLJQHGDFFRUGLQJWRSDUWLFOHVVL]HFXWVSHFLILFJUDYLW\IHHG FRPSRVLWLRQ DQG WKH VSLUDO FDSDFLW\ %XUW DQG 0LOOV  6LYDPRKDQ DQG )RUVVEHUJ  'DYLHV HW DO  $UHGXFHGVORSHSURILOHLVFRQVLGHUHGWRFRQFHQWUDWHDQRUHFRPSRVHGRIORZJUDGHRIKHDY\PLQHUDOV 6LYDPRKDQ DQG)RUVVEHUJ   $VZHOODZLGHIODWSURILOHLVVXLWDEOHWRSURFHVVILQHPLQHUDOV %XUWDQG 0LOOV 7KHFXUYHRIWKHSURILOHVKRXOGEHDGMXVWHGWRDFKLHYHDQDSSURSULDWHVHJUHJDWLRQRIWKHYDOXDEOH FRQFHQWUDWH PLGGOLQJDQGUHMHFWVWUHDPV 'DYLHVHWDO 

2-2-2Spiral diameter

7KH VSLUDO GLDPHWHU YDULHV IURP  P IRU WKH WUHDWPHQW RI KHDY\ PLQHUDOV VXFK DV JROG WR  P IRU WKH SUHSDUDWLRQRIOLJKWPLQHUDOVVXFKDVFRDO %RXFKDUG %XUWDQG0LOOV  VWDWHWKDWVSLUDOVZLWKVPDOO GLDPHWHUV WRP DUHVXLWDEOHWRWUHDWILQHPLQHUDOV WRPP DQGWKHRQHVZLWKODUJHUGLDPHWHUV WRP DUHFDSDEOHWRSURFHVVFRDUVHPLQHUDOV PP 6LYDPRKDQDQG)URVVEHUJ  VWDWHWKDWWKH VSLUDO GLDPHWHU VKRXOG EH VHOHFWHG RQ WKH EDVLV RI SDUWLFOHV VL]H GLVWULEXWLRQ RI WKH RUH VSLUDOV ZLWK ODUJH GLDPHWHUV DUH UHFRPPHQGHG WR SURFHVV D ZLGH VL]H GLVWULEXWLRQ PP   +ROODQG%DWW E  LQGLFDWH WKDWWKHFKRLFHRIWKHGLDPHWHUIRUDVSHFLILFPLQHUDOVL]HUDQJHLVPDLQO\EDVHGRQWKHVSLUDOIHHGIORZUDWH +ROODQG%DWW E H[DPLQHGWKHHIIHFWRIIHHGIORZUDWHRQWZRVSLUDOVZLWKDQGPGLDPHWHU+H DWWHPSWHG WR NHHS WKH HIILFLHQF\ DW  WKH WHUP ³HIILFLHQF\´ LV H[SODLQHG LQ VHFWLRQ   +ROODQG%DWW E UHSRUWHGDFDSDFLW\LQFUHDVHRIDERXWWKXVLQJWKHODUJHUGLDPHWHUVSLUDO+HDOVRVKRZHGWKDWWKH FRQFHQWUDWHJUDGHZDVLQIOXHQFHGE\WKHVSLUDOGLDPHWHU7KHVHOHFWLRQRIWKHVSLUDOGLDPHWHULVDFRPSOLFDWHG FRPSURPLVHEHWZHHQFDSDFLW\DQGSURGXFWTXDOLW\WKDWDOVRGHSHQGVRQWKHSDUWLFOHVL]HDQGPLQHUDOOLEHUDWLRQ +ROODQG%DWWE 

2-2-3Pitch

7KHVORSHRIWKHFKDQQHORU³SLWFK´LVWKHYHUWLFDOGLVWDQFHEHWZHHQWZRFRQVHFXWLYHWXUQV VHH)LJXUH 7KH SLWFK YDULHV IURP  WR  FP IRU GLIIHUHQW W\SHV RI VSLUDOV %RXFKDUG   DQG DIIHFWV WKH YHORFLW\ RI WKH VOXUU\IORZLQJGRZQWKHWURXJKDQGFRQVHTXHQWO\WKHFDSDFLW\RIWKHVSLUDO 6LYDPRKDQDQG)RUVVEHUJ  7KHSLWFKLVVHOHFWHGDFFRUGLQJWRWKHVL]HDQGVHWWOLQJYHORFLWLHVRIWKHSDUWLFOHV +ROODQG%DWWE 7KH VHWWOLQJYHORFLW\LVGHILQHGDVWKHUHODWLYHYHORFLW\DWZKLFKSDUWLFOHVVWDUWWRGHSRVLWRQWKHEHGLWGHSHQGVRQ SDUWLFOH VL]H VKDSH DQG GHQVLW\ DV ZHOO DV WKH IOXLG FKDUDFWHULVWLFV VXFK DV VOXUU\ VROLGV FRQFHQWUDWLRQ DQG YLVFRVLW\ %RXFKDUG   $ UHGXFHG SLWFK W\SLFDOO\ FP  LV VXJJHVWHG IRU WKH SURFHVVLQJ RI DQ RUH FRPSRVHGRIOLJKWSDUWLFOHV %RXFKDUG:LOOVDQG1DSLHU0XQQ DVWKHLUVHWWOLQJYHORFLW\LVORZ +RZHYHUWKHSLWFKVKRXOGEHGRXEOHGIRUWKHFRQFHQWUDWLRQRIDQRUHFRPSRVHGPDLQO\RIKHDY\ODUJHSDUWLFOHV +ROODQG%DWWE%RXFKDUG:LOOVDQG1DSLHU0XQQ 

(26)

 

2-2-4Cutters

7KHRSHQLQJRIFXWWHUVLQVWDOOHGRQWKHLQQHUWURXJKWUDSVLVDGMXVWHGDFFRUGLQJWRWKHWDUJHWFRQFHQWUDWHJUDGH LQ FDVH RI KHDY\ PLQHUDO FRQFHQWUDWLRQ %XUW DQG 0LOOV   0LVKUD DQG 7ULSDWK\   VWXGLHG WKH VHSDUDWLRQSURFHVVRIVSLUDOVDVDIXQFWLRQRIFXWWHUSRVLWLRQDQGFRQILUPHGWKDWWKLVYDULDEOHKDGDVLJQLILFDQW LPSDFWRQWKHJUDGHDQGUHFRYHU\RIWKHFRQFHQWUDWHGPLQHUDOVSHFLHV&XWWHUVDUHXVXDOO\FORVHGDWWKHILUVW WXUQWRDOORZWKHVHWWOLQJRIKHDY\SDUWLFOHV)ROORZLQJFXWWHUVDUHRSHQDFFRUGLQJWRWKHWDUJHWUHFRYHU\DQGWKH FRQFHQWUDWH JUDGH %XUW DQG 0LOOV  +ROODQG%DWW D 0LVKUD DQG 7ULSDWK\   7KH RSHQLQJ RI FXWWHUVLVGHFUHDVHGGRZQZDUGLQRUGHUWRSURYLGHDFRQVWDQWFRQFHQWUDWHJUDGHDWHDFKWUDS %XUWDQG0LOOV  7KHUHDUHGLIIHUHQWW\SHVRIFXWWHUVDQGVRPHPRGHOVDUHVKRZQLQ)LJXUH7KHUHDUHFXWWHUVSHU WXUQDQGDORQJHUGLVWDQFHEHWZHHQWKHRSHQLQJVLVIDYRUDEOHWRWKHFRQFHQWUDWHJUDGH %XUWDQG0LOOV  )RUKHDY\PLQHUDOVWUHDWPHQWSDUWLFOHVFDSWXUHGE\WKHFXWWHUVDUHWUDQVSRUWHGWRWKHFHQWUDOWXEHRIWKHVSLUDO DVFRQFHQWUDWH VHH)LJXUH 3DUWLFOHVWKDWDUHQRWH[WUDFWHGDVFRQFHQWUDWHH[LWWKHFKDQQHODWWKHODVWWXUQ ZKHUH WKH\ FDQ EH VHSDUDWHG LQWR FRQFHQWUDWH LQQHU SDUW RI WKH WURXJK  PLGGOLQJ LQWHUPHGLDWH  DQG UHMHFW RXWHUSDUW VWUHDPVHDFKVWUHDPLVVXEVHTXHQWO\SURFHVVHG VHH)LJXUH   D 5RXQGFXWWHU  E 6OLGHFXWWHU  F )LQJHUFXWWHU :ULJKW   G %DQDQD&XWWHU +ROODQG%DWWE  )LJXUH6RPHNLQGVRIVSLUDOFXWWHUV  

(27)

2-2-5Number of turns

7KHQXPEHURIWXUQVRIDVSLUDOXVXDOO\YDULHVIURPWR 6LYDPRKDQDQG)RUVVEHUJ%RXFKDUG :LOOVDQG1DSLHU0XQQ 5HVLGHQFHWLPHRUWKHQXPEHURIWXUQVKDVDFRPSOH[HIIHFWRQWKHVHSDUDWLRQ HIILFLHQF\RIVSLUDOV)HZDXWKRUVKDYHVWXGLHGWKHHIIHFWRIVSLUDO¶VOHQJWKRUQXPEHURIWXUQVRQWKHHTXLSPHQW SHUIRUPDQFH0LVKUDDQG7ULSDWK\  UHSRUWHGDPD[LPXPHIILFLHQF\REWDLQHGDWWXUQV7KHHIILFLHQF\LV XVHGWRFRUUHFWWKHUHFRYHU\RIWKHYDOXDEOHPLQHUDOIRUWKHVSLUDOIHHGFRPSRVLWLRQ7KLVQRUPDOL]HGUHFRYHU\ LVFDOOHGHIILFLHQF\DQGLWLVJLYHQE\ ܧ௜ = ோ೔ି஼ ଵି௑೔;ಷ(T :KHUH (L DQG 5L UHSUHVHQW WKH HIILFLHQF\ DQG WKH UHFRYHU\ RI VSHFLHV ³L´ & LV WKH PDVV WDNH VSOLW WR WKH

FRQFHQWUDWHVWUHDP DQG;L)VWDQGVIRUWKHFRQFHQWUDWLRQRIVSHFLHV³L´LQWKHIHHG )  +ROODQG%DWWD 

+ROODQG%DWW D UHSRUWHGWKDWDIWHUWXUQVWKHUHFRYHU\RILOPHQLWH GLGQRWLPSURYHZLWKLQFUHDVLQJWKH QXPEHURIWXUQV$WDVR\DQG6SRWWLVZRRG  H[DPLQHGWKHHIIHFWRIWKHQXPEHURIWXUQVRQWKHUHFRYHU\RI FRDO SDUWLFOHV 7KH\ VWDWH WKDW SDUWLFOH VL]H VKRXOG EH FRQVLGHUHG WR VHOHFW WKH UHTXLUHG QXPEHU RI WXUQV &RDUVHKHDY\SDUWLFOHVRQO\QHHGRQHWXUQWRVHWWOHLQWKHLQQHU]RQHZKLOHILQHGHQVHSDUWLFOHVUHTXLUHPRUH WKDQWXUQV $WDVR\DQG6SRWWLVZRRG %XUWDQG0LOOV  UHSRUWHGWKDWWRWUHDWDKLJKJUDGHIHHG PRVWRIWKHFRQFHQWUDWLRQRIYDOXDEOHPLQHUDOVRFFXUUHGLQWKHILUVWWZRWXUQVRIWKHVSLUDO6SLUDOVUROHLQWKH WUHDWPHQW FLUFXLW HJ URXJKHU FOHDQHU RU UHFOHDQHU  GHILQH WKH UHTXLUHG QXPEHU RI WXUQV 6LYDPRKDQ DQG )RUVVEHUJ ([SHULPHQWDOUHVXOWVREWDLQHGIURPWKHWHVWVFRQGXFWHGRQVSLUDOVZLWKDQGWXUQVZLOO EHSUHVHQWHGLQFKDSWHURIWKLVPHPRLU

2-3 Slurry flow in the spirals

7ZRW\SHVRIVOXUU\FXUUHQWVFRQWUROSDUWLFOHVPRWLRQLQVSLUDOFRQFHQWUDWRUVWKHSULPDU\DQGVHFRQGDU\IORZV .DSXUDQG0HOR\ 7KHSULPDU\IORZLVWKHGRZQZDUGIORZRIWKHVOXUU\GHVFHQGLQJWKHVSLUDODQGWKH VHFRQGDU\IORZLVWKHVOXUU\PRWLRQLQZDUGWKHWURXJKLQWKHORZHUOD\HUVDQGRXWZDUGWKHWURXJKDWWKHVXUIDFH +ROWKDP5LFKDUGV DQG3DOPHU  7KHFRQFHSWRI VHFRQGDU\IORZLVLOOXVWUDWHGLQ)LJXUH 7KH VHFRQGDU\ IORZ RULJLQDWHV IURP WKH UDGLDO GLVWULEXWLRQ RI WKH SULPDU\ IORZ 6XEDVLQJKH DQG .HOO\   +ROWKDP   LQGLFDWHG WKDW WKH FODVVLILFDWLRQ RI WKH SDUWLFOHV DORQJ WKH FKDQQHO LV JHQHUDWHG E\ WKH VHFRQGDU\ FXUUHQWV 5HJDUGLQJ WKH IORZ EHKDYLRU LQ D VSLUDO FRQFHQWUDWRU WKH FKDQQHO LV GLYLGHG LQWR WKUHH GLIIHUHQW]RQHV

x 7KHLQQHU]RQHZKHUHGHQVHSDUWLFOHVSDVVVORZO\LQDODPLQDUIORZGRZQWKHVSLUDO x 7KHWUDQVLWLRQ]RQHDUHJLRQZKHUHSDUWLFOHVPRYHIUHHO\ZLWKWKHVHFRQGDU\IORZ

(28)

• The outer zone, where dense particles move into the lower layers to return to the inner zone by the secondary flow as the concentrate.

The spiral feed flow rate directly affects the secondary flow and could contribute to a loss of classification capacity (Sivamohan and Forssberg, 1985; Holland-Batt, 1990; Holtham, 1990).

Figure 2-5: Flow behavior in a cross-section of a spiral channel (Richards and Palmer, 1997)

Particles classification results from a balance between a combined action of gravity, centrifugal, buoyancy, drag, and Bagnold forces (Atasoy and Spottiswood, 1995). Except the gravity force, all other forces depend on spiral geometry and operating variables. For instance, the circular movement of the slurry through the turns induces the centrifugal force which makes the light particles migrate outward (Bouchard, 2001). Friction force plays a role in low feed rate situations since in the laminar flow solids deposit quickly that leads to an inefficient separation of particles (Holland-Batt, 1995a). Bagnold effect occurs in high solids concentration and has an important effect on the classification of coarse particles in the vicinity of the inner part of the spiral (Matthews et al., 1998). The Bagnold effect is discussed in the following paragraph. Figure 2-6 shows a sketch of forces acting on the particles passing through the spiral. The combined action of the forces pull the heavy (coarse/dense) particles toward the inner part of the trough, while the lighter and finer ones migrate to the outer part of the trough (Wills and Napier-Munn, 2006). Figure 2-7 shows a spiral concentrating an iron ore. The large and heavy iron carrier particles form the gray area. Lighter and finer particles, mostly silica carriers, are transported to the outer part of the trough with the water.

Several authors (Holtham, 1992; Atasoy and Spottiswood, 1995; Bouchard, 2001; Mishra and Tripathy, 2010) tried to mathematically describe the effect of the Bagnold force in a spiral. The amplitude of the force depends on the slurry density which varies along the trough. Bagnold (1954) estimates that the Bagnold force for the particles finer than 0.2 mm is negligible. Bouchard (2001) used the shearing stress produced by the slurry to describe the force in a very simplistic way, although the explanation remains unclear on how the Bagnold force is generated. In a spiral the Bagnold force drives coarse particles to the outer part of the spiral trough while in 10

(29)

WKHRU\ WKHVH SDUWLFOHV VKRXOG UHSRUW WR WKH FRQFHQWUDWH :DVK ZDWHU DGGLWLRQ SOD\V DQ LPSRUWDQW UROH LQ WKH UHMHFWLRQ RI FRDUVH SDUWLFOHV WR WKH RXWHU SDUW RI WKH VSLUDO WURXJK DQG PD\ LQGXFH WKH %DJQROG IRUFH VHH &KDSWHU   )LJXUH)RUFHVDFWLQJRQSDUWLFOHVLQVSLUDOV  )LJXUH$VSLUDOWURXJKFRQFHQWUDWLQJWKHLURQRUH 

2-4 Operating variables

7KHPDLQRSHUDWLQJYDULDEOHVIRUVSLUDOVDUHWKHFXWWHUVSRVLWLRQ VHHVHFWLRQ WKHVOXUU\IHHGUDWHDQG VROLGVFRQFHQWUDWLRQDQGWKHZDVKZDWHUIORZUDWH 6LYDPRKDQDQG)RUVVEHUJ:LOOVDQG1DSLHU0XQQ  

2-4-1Slurry solids concentration

7KHVOXUU\VROLGVFRQFHQWUDWLRQLVH[SUHVVHGHLWKHUDVDYROXPHWULFRUZHLJKWUDWLRRIWKHVROLGVWRWKHVOXUU\ 8VXDOO\WKHVROLGVFRQFHQWUDWLRQRIWKHIHHGVOXUU\UDQJHVIURPWR ZZ  'DVHWDO *XOVR\ DQG .DGHPOL   H[DPLQHG WKH HIIHFW RI VROLGV FRQFHQWUDWLRQ DV DQ RSHUDWLQJ YDULDEOH RQ WKH UHPRYDO RI )H2 IURP D PLFDIHOGVSDU RUH DQG IRXQG WKDW UHFRYHU\ LQFUHDVHV ZLWK LQFUHDVLQJ IHHG VOXUU\ VROLGV

FRQFHQWUDWLRQDWWKHH[SHQVHRIWKHFRQFHQWUDWHJUDGH$WHVRNHWDO  VWXGLHGWKHHIIHFWRIYDULDWLRQRI VROLGVFRQFHQWUDWLRQDWDFRQVWDQWIHHGUDWHRQDFRDOVSLUDORSHUDWLRQ7KH\UHSRUWWKDWWKHFXWVSHFLILFJUDYLW\ RIWKHVHSUDWLRQSURFHVVGHSHQGVGLUHFWO\RQVROLGVFRQFHQWUDWLRQ,QFUHDVLQJVROLGVFRQFHQWUDWLRQLQFUHDVHV WKHYLVFRVLW\RIWKHVOXUU\DQGFRQFHQTXHQWO\LQGXFHVWKH%DJQORGHIIHFWOHDGLQJWRORVVHVRIUHFRYH\RIFRDUVH SDUWLFOHV +ROWKDP6XEDVLQJKHDQG.HOO\ 

 7KH %DJQROG IRUFH LV DUELWUDU\ GUDZQ LQ )LJXUH  7KH IRUFH GLUHFWLRQ LV WRZDUG WKH IOXLG GLUHFWLRQ DQG WKH IRUFH PDJQLWXGH GHSHQGV RQ WKH VL]H RI WKH SDUWLFOH DQG RQ LWV SRVLWLRQ LQ WKH WURXJK 8VXDOO\ WKH IRUFH SXVKHV WKH SDUWLFOH WRZDUGWKHRXWHUSDUWRIWKHVSLUDO &HQWULIXJDO 'UDJ 3DUWLFOH¶VGLUHFWLRQ ș *UDYLW\ %DJQROG %XR\DQF\ +HDY\3DUWLFOHV &XWWHU :DVK:DWHU(QWU\

/LJKW3DUWLFOHV Wash Water Channel

 

(30)

 

2-4-2Feed flow rate

*HQHUDOO\ D VSLUDO LV RSHUDWHG ZLWK D YROXPHWULF IHHG IORZ UDWH RI  WR  /PLQ %RXFKDUG   WKDW LV DGMXVWHGDFFRUGLQJWRWKHSDUWLFOHVL]HUDQJHWKHIHHGJUDGHDQGWKHVSLUDOGLDPHWHU %XUWDQG0LOOV  )HHGVOXUU\PXVWEHZHOOPL[HGLQRUGHUWRDYRLGORVVHVRIUHFRYHU\ :LOOVDQG1DSLHU0XQQ 'DOODLUHHW DO  LQYHVWLJDWHGWKHHIIHFWRIIHHGUDWHYDULDWLRQVRQD+XPSKUH\VSLUDORSHUDWLRQWRFRQFHQWUDWHDQLURQ RUH7KHLULQYHVWLJDWLRQLQGLFDWHVWKDWDWKLJKHUIORZUDWHVFHQWULIXJDOIRUFHGRPLQDWHVRWKHUIRUFHVDQGSXVKHV WKHPLGGOLQJDQGILQHSDUWLFOHVDZD\IURPWKHLQQHU]RQHRIWKHVSLUDOOHDGLQJWRDKLJKHUFRQFHQWUDWHJUDGHDQG D UHGXFHG UHFRYHU\ 5HFLSURFDOO\ ORZ IORZ UDWHV UHGXFH FHQWULIXJDO IRUFH ZKLFK LPSURYHV UHFRYHU\ EXW DGYHUVHO\DIIHFWVWKHFRQFHQWUDWHJUDGH %XUWDQG0LOOV +ROODQG%DWW  DQG0LOOHU  VKRZHG WKDW YDULDWLRQ RI WKH YROXPHWULF IHHG UDWH DIIHFWHG WKH FRQFHQWUDWH JUDGH +ROODQG%DWW   REVHUYHG WKLV SKHQRPHQRQIRUGLIIHUHQWW\SHVRIVSLUDOVDQGUHSRUWHGWKDWWKHVOXUU\SURILOHLQWKHLQQHU]RQHRIWKHFKDQQHO UHPDLQHGDOPRVWXQFKDQJHGZLWKYROXPHWULFIORZUDWHV)LQDOO\+ROODQG%DWW  GHPRQVWUDWHGWKDWWKHUH ZRXOGEHDQRSWLPXPIHHGIORZUDWHDWYDULRXVVROLGVFRQFHQWUDWLRQIRUDVSHFLILFUHFRYHU\RIVSLUDOVRSHUDWLRQ +ROODQG%DWW D REVHUYHGWKDWWKHHIILFLHQF\RIDVSLUDO VHHWKH(T GHFUHDVHGOLQHDUO\E\LQFUHDVLQJ WKHPDVVIORZUDWHRIWKHIHHG6LYDPRKDQDQG)RUVVEHUJ  UHFRPPHQGHGWKDWYDULDWLRQVLQWKHVSLUDO IHHG UDWH VKRXOG EH FRXQWHUDFWHG E\ PDQLSXODWLQJ WKH RSHQLQJ RI WKH FXWWHUV DQG ZDVK ZDWHU IORZ UDWH LI DSSOLFDEOH 

2-4-3Wash water addition

:DVK ZDWHU DGGLWLRQ LV XVHG LQ PRVW RI LQGXVWULDO VSLUDOV IRU WKH FODVVLILFDWLRQ RI KHDY\ PLQHUDOV :LOOV DQG 1DSLHU0XQQ   :DVK ZDWHU LV DGGHG WKURXJK WKH FHQWUDO D[LV RI WKH VSLUDO DQG LV GLVWULEXWHG WR WKH YDULRXVWXUQVE\PHDQVRIVSLJRWV7KHWRWDOIORZUDWHRIZDVKZDWHUFDQEHUHDGLO\DGMXVWHGEXWLWVIORZUDWHLV QRWDFFXUDWHO\FRQWUROOHGDWHDFKVSLJRW:DVKZDWHUKHOSVUHSXOSLQJWKHVOXUU\FORVHWRWKHLQQHUSDUWRIWKH WURXJK :DVK ZDWHU FOHDQV WKH FRQFHQWUDWH EDQG IURP XQZDQWHG PLQHUDOV OHDGLQJ WR D EHWWHU FRQFHQWUDWH JUDGHDWWKHH[SHQVHVRIUHFRYHU\ %D]LQHWDO 

7KH WRWDO IORZ UDWH RI ZDVK ZDWHU LQ D VSLUDO YDULHV IURP  WR  /PLQ %RXFKDUG   )HZ DXWKRUV GLVFXVVHG TXDQWLWDWLYHO\ WKH HIIHFW RI ZDVK ZDWHU DGGLWLRQ RQ WKH RSHUDWLRQ RI VSLUDOV 5LFKDUG DQG 3DOPHU   GHPRQVWUDWHG VLJQLILFDQW EHQHILWV IROORZLQJ WKH UHPRYDO RI ZDVK ZDWHU IRU WKH FRQFHQWUDWLRQ RI OLJKW PLQHUDOV 6LYDPRKDQ DQG )RUVVEHUJ   GR QRW UHFRPPHQG XVLQJ ZDVK ZDWHU IRU WKH WUHDWPHQW RI ILQH SDUWLFOHV DV LW GHWHULRUDWHVWKHUHFRYHU\7KHVHVWXGLHV XVHG JOREDO SHUIRUPDQFH LQGLFHVVXFK DV JUDGH DQG UHFRYHU\WRDVVHVVWKHHIIHFWRIZDVKZDWHU7KHHIIHFWRIZDVKZDWHUDGGLWLRQRQWKHUHFRYHU\RISDUWLFOHVDVD IXQFWLRQRIWKHLUVL]HDQGVSHFLILFJUDYLW\LVQRWGLVFXVVHGLQWKHOLWHUDWXUH&KDSWHUSUHVHQWVWKHH[SHULPHQWDO UHVXOWVRQWKLVDVSHFWRIVSLUDORSHUDWLRQ

 

(31)

2-4-4Feed characteristics

)HHGFKDUDFWHULVWLFVDUHGHILQHGE\WKHIHHGJUDGHVL]HGLVWULEXWLRQDQGVSHFLILFJUDYLW\RISDUWLFOHV3DUWLFOHV VKDSHDQGOLEHUDWLRQRIYDOXDEOHPLQHUDOVDOVRDIIHFWVSLUDOVRSHUDWLRQ+RZHYHUWKHOLWHUDWXUHFRQWDLQVYHU\ OLWWOHLQIRUPDWLRQFRQFHUQLQJWKHWZRODVWYDULDEOHVWKDWWKH\DUHQRWGLVFXVVHGKHUH

2-4-4.1 Feed composition

'DOODLUH HW DO   H[DPLQHG WKH HIIHFW RI IHHG FRPSRVLWLRQ PLQHUDO FRQWHQWV  RQ WKH HIILFLHQF\ RI D +XPSKUH\¶V VSLUDO XVHG IRU WKH FRQFHQWUDWLRQ RI DQ LURQ RUH 7KH\ UHSRUW WKDW DW KLJK VOXUU\ VROLGV FRQFHQWUDWLRQV DQG IORZ UDWHV RI WKH IHHG DQ LQFUHDVH LQ WKH LURQ FRQWHQW RI WKH IHHG LV GHWULPHQWDO WR LURQ UHFRYHU\ DV WKHUH LV QR VXIILFLHQW WLPH WR FDSWXUH WKH LURQ PRYLQJ WKURXJK WKH UHFRYHU\ ]RQH RI WKH WURXJK +RZHYHUWKHVHDXWKRUVVWDWHWKDWDWORZHUVROLGVFRQFHQWUDWLRQV ZZ DQLQFUHDVHRILURQFRQWHQWLQWKH IHHG LPSURYHV WKH UHFRYHU\ DQG WKHUHIRUH WKHUH LV DQ RSWLPXP VROLGV FRQFHQWUDWLRQ IRU D JLYHQ IHHG FRPSRVLWLRQ

2-4-4.2 Particle size

6SLUDOVDUHZHOOGHVLJQHGWRSURFHVVSDUWLFOHVLQWKHVL]HUDQJHRIWRPP %RXFKDUG'DVHWDO   8QOLNH FRQYHQWLRQDO JUDYLW\ VHSDUDWRUV IRU ZKLFK WKH UHFRYHU\ RI WKH KHDY\ SURGXFW LQFUHDVHV ZLWK LQFUHDVLQJSDUWLFOHVVL]HDQGGHQVLW\PLQHUDOVSLUDOVH[KLELWDGURSRIUHFRYHU\IRUWKHFODVVLILFDWLRQRIFRDUVH SDUWLFOHV %D]LQHWDO /RVVRISDUWLFOHVFRDUVHUWKDQPPLVDOVRUHSRUWHGE\'DOODLUHHWDO   'DOODLUHHWDO  UHSRUWHGWKDWILQHSDUWLFOHVXQGHUPPEDUHO\VHWWOHLQWKHVOXUU\DQGWKH\PLJUDWHWR WKH RXWHUDUHDRIWKHFKDQQHOOHDGLQJWRORVVHV RIYDOXDEOHPLQHUDOV7KHUHFRYHU\ RIWKHVHILQH SDUWLFOHV LV HVWLPDWHGDWDERXW 'DOODLUHHWDO 0DWWKHZVHWDO  GLGQRWREVHUYHFKDQJHVLQWKHEHKDYLRU RIILQHSDUWLFOHVZLWKFKDQJLQJWKHVSLUDOIHHGIORZUDWH7KHORVVRIILQHLURQLVDOVRUHSRUWHGE\%D]LQHWDO   IRU WZR &DQDGLDQ LURQ RUH FRQFHQWUDWRUV $ PHWKRG ZDV SURSRVHG E\ +\PD DQG 0HHFK   WR LPSURYH WKH UHFRYHU\ RI ILQH LURQ SDUWLFOHV 7KH\ SURFHVVHG ILQH SDUWLFOHV XQGHU  PP  LQ D VHSDUDWH FLUFXLWDWDUHGXFHGIHHGUDWH RIWKHDYHUDJHIHHGUDWHRIWKHSODQW ,PSURYHPHQWVZHUHREVHUYHGLQWKH PDVVWDNHLURQUHFRYHU\DQGJUDGHRIFRQFHQWUDWHIRUWKHSURFHVVLQJRIWKLVIUDFWLRQ

$WHVRNHWDO  VWXGLHGWKHLPSDFWRISDUWLFOHVL]HUDQJHRQQXPEHURIFOHDQLQJVWDJHVIRUWKHSUHSDUDWLRQ RI FRDO 7KHVH DXWKRUV UHSRUW WKDW DV WKH SDUWLFOHV VL]H LQFUHDVHV WKH QXPEHU RI UHTXLUHG FOHDQLQJ VWDJHV GHFUHDVHV7KH\FODLPWKDWFOHDQLQJVWDJHVDUHVXIILFLHQWIRUWKHSUHSDUDWLRQRIWRPPSDUWLFOHVZKLOH IRUILQHJUDLQV OHVVWKDQPP WRVWDJHVRIFOHDQLQJLVUHTXLUHG+RZHYHUIRUWKHSUHSDUDWLRQRIFRDO SDUWLFOHDERYHPPIRXUFOHDQLQJVWDJHVDUHHVVHQWLDO7KHSHUIRUPDQFHRIVSLUDOVLVVWXGLHGDVDIXQFWLRQRI SDUWLFOHVVL]HLQFKDSWHUDQGE\WKHPHDQVRISDUWLWLRQRUSHUIRUPDQFHFXUYHV

(32)

 

2-5 Performance indices used to assess spirals operation

7KH XVXDO SHUIRUPDQFH LQGLFHV WR FKDUDFWHUL]H WKH RSHUDWLRQ RI VSLUDOV DUH REYLRXVO\ WKH FRQFHQWUDWH JUDGH DQGWKHUHFRYHU\RIYDOXDEOHVSHFLHVWRWKHFRQFHQWUDWH6RPHDXWKRUVHJ+ROODQG%DWW D DQG0LVKUD HWDO  SURSRVHXVLQJWKHHIILFLHQF\SHUIRUPDQFHLQGH[JLYHQE\(T7KLVSHUIRUPDQFHLQGH[KDVWKH DGYDQWDJH RI FRPELQLQJ JUDGH DQG UHFRYHU\ LQGLFHV LQWR RQH LQGH[ +RZHYHU LW LV QRW UHJXODUO\ XVHG OLNHO\ EHFDXVHRIVXEMHFWLYHLQWHUSUHWDWLRQRIWKHLQGH[,QSUDFWLFHWKHEHVWLGHDOSHUIRUPDQFHLQGH[VKRXOGJLYHWKH UDWLRRIUHYHQXHVJHQHUDWHGE\WKHSURFHVVWRWKHSRWHQWLDOYDOXHRIWKHRUH7KHLQGH[LQFOXGHVPHWDOSULFHV DQGVPHOWHUFRQWUDFWWHUPV+RZHYHUVXFKHFRQRPLFSHUIRUPDQFHLQGH[FDQEHDSSOLHGIRUDQRYHUDOOSODQW DQGLWLVQRWDSSOLFDEOHWRWKHLQWHUPHGLDWHFRQFHQWUDWLRQXQLWVVXFKDVURXJKHURUFOHDQHUXQLWV)HZDXWKRUV XVHWKHSDUWLWLRQFXUYHVRUPLQHUDOVL]HUHFRYHU\FXUYHVWRDVVHVVVSLUDOVSHUIRUPDQFHWKLVODVWSHUIRUPDQFH LQGH[ LV XVHG LQ FKDSWHU  DQG  7KH HVWLPDWLRQ DQG WKH LQWHUSUHWDWLRQ RI SDUWLWLRQ FXUYHV DUH GHVFULEHG LQ FKDSWHU  3HUIRUPDQFH LQGLFHV DUH HVWLPDWHG IURP WKH UHFRQFLOHG GDWD LQ RUGHU WR SURYLGH PRUH FRKHUHQW UHVXOWV VHHFKDSWHU 

2-6 Summary

7DEOHVXPPDUL]HVVSLUDOFKDUDFWHULVWLFVZKLFKDUHSUHVHQWHGLQWKHSUHYLRXVVHFWLRQV 7DEOH7\SLFDOFKDUDFWHULVWLFVRIWKHVSLUDOV

Variable Typical value Variables to be considered for the selection

 6SLUDOSURILOH &RQWLQXRXVO\FXUYHG:LGHIODWSURILOH 3DUWLFOHVL]HFXWVSHFLILFJUDYLW\IHHGFRPSRVLWLRQDQGWKHVSLUDOFDSDFLW\  6SLUDOGLDPHWHU FP 'HQVLW\RIWKHPLQHUDOV  1XPEHURIWXUQV  )HHGFRPSRVLWLRQDQGSDUWLFOHGHQVLW\  3LWFK FP 3DUWLFOHVL]HGHQVLW\DQGVHWWOLQJYHORFLWLHVRISDUWLFOHV  &XWWHUVRSHQLQJ  7DUJHWJUDGHRIFRQFHQWUDWLRQ  )HHGIORZUDWH /PLQ 3DUWLFOHVL]HUDQJHIHHGFRPSRVLWLRQDQGVSLUDOV GLDPHWHU+LJKHUIHHGIORZUDWHVGHWHULRUDWHWKH UHFRYHU\

 6ROLGV  ZZ  $WDVSHFLILFIHHGIORZUDWHKLJKHUVROLGVFRQFHQWUDWLRQVLVEHQHILFLDOIRUWKHFRQFHQWUDWHJUDGH  3DUWLFOHVL]HUDQJH PP /RZUHFRYHU\RIILQHSDUWLFOHV PP   )HHGFRPSRVLWLRQ  /RZVROLGVFRQFHQWUDWLRQLVQHFHVVDU\WRLPSURYHWKH UHFRYHU\RIKLJKIHHGJUDGHVRIKHDY\PLQHUDOV  :DVKZDWHUIORZUDWH /PLQ 3DUWLFOHVL]HDQGGHQVLW\    

(33)

3 Chapter 3: Data reconciliation

7KHPHDVXUHPHQWVREWDLQHGIURPWKHVDPSOLQJFDPSDLJQV GHVFULEHGLQWKHIROORZLQJFKDSWHUV DUHSURFHVVHG XVLQJ D GDWD UHFRQFLOLDWLRQ DOJRULWKP SURJUDPPHG RQ 06 ([FHO 7KH GDWD UHFRQFLOLDWLRQ DOJRULWKP LV PDLQO\ GHYHORSHGIURPWKHRULJLQDO%LOPDWDOJRULWKPGHVFULEHGE\ +RGRXLQDQG(YHUHOO 7KHYHUVLRQSURSRVHG LQWKLVFKDSWHUGLIIHUVVOLJKWO\IURPWKHRULJLQDOYHUVLRQE\WKHPHWKRGXVHGWRSURFHVVWKHVL]HGLVWULEXWLRQGDWD DQGWKHDVVD\VRIWKHVL]HLQWHUYDOV7KHFKDSWHUFRQVLVWVRIVHFWLRQV7KHILUVWVHFWLRQGHVFULEHVWKHPDVV FRQVHUYDWLRQQHWZRUNDVVRFLDWHGZLWKVSLUDOVRSHUDWLRQ7KHVHFRQGVHFWLRQH[SODLQVWKHPDVVFRQVHUYDWLRQ HTXDWLRQVDQGWKHFRQVWUDLQWVWKDWIRUPWKHEDFNERQHRIWKHGDWDUHFRQFLOLDWLRQDOJRULWKP7KHFULWHULRQXVHG IRU WKH GDWD UHFRQFLOLDWLRQ PHWKRG LV GHVFULEHG LQ VHFWLRQ  6HFWLRQV  WR  SURYLGH WKH PHWKRGRORJ\ DQG HTXDWLRQV XVHG WR SHUIRUP WKH GDWD UHFRQFLOLDWLRQ 6HFWLRQ  VKRZV WKH PHWKRG WR HYDOXDWH WKH GDWD UHFRQFLOLDWLRQ6HFWLRQH[SODLQVWKHXVHRIUHFRQFLOHGGDWDWRDVVHVVVSLUDOVSHUIRUPDQFH7KHODVWVHFWLRQ FRPSDUHVW\SLFDOSDUWLWLRQFXUYHVRIK\GUDXOLFFODVVLILHUVWRWKRVHREWDLQHGIURPVSLUDOV

3-1 Mass conservation network for the spiral

7KH QHWZRUNV XVHG IRU WKH PDVV EDODQFH FRQGXFWHG RQ D VLQJOH VSLUDO DUH VKRZQ LQ )LJXUH  7KH VROLGV QHWZRUN FRQVLVWV RQO\ RI RQH QRGH ZLWK  EUDQFKHV FDUU\LQJ VROLGV ZKLOH WKH VOXUU\ QHWZRUN FRQVLVWV RI RQH QRGH ZLWK  EUDQFKHV FDUU\LQJ VOXUU\ DQG  EUDQFK RI ZDVK ZDWHU 7KH VROLGV QHWZRUN LV YDOLG IRU FKHPLFDO HOHPHQWV [ DQGVL]HIUDFWLRQV \ ZKLOHWKHVOXUU\QHWZRUNLVXVHGRQO\IRUWKHVOXUU\VWUHDPV  D  6ROLGVQHWZRUN  D  6OXUU\QHWZRUN )LJXUH1HWZRUNVXVHGIRUPDWHULDOEDODQFHLQVSLUDOV 

3-2 Mass conservation and coherency constraints

7KHPDVVFRQVHUYDWLRQDQGFRKHUHQF\FRQVWUDLQWVSURYLGHWKHHTXDWLRQVWKDWJHQHUDWHWKHGDWDUHGXQGDQF\ UHTXLUHG WR HVWLPDWH PLVVLQJ XQPHDVXUHG  YDULDEOHV DQG DGMXVW PHDVXUHG RQHV 7KH PDVV FRQVHUYDWLRQ HTXDWLRQRIWKHVROLGVLVZULWWHQDV

(34)

𝐷�𝐹 = 𝐷�𝑅+ 𝐷�𝐶 Eq.3-1 The variable D stands for a solids flow rate while the subscripts F, R and C indicate the feed, reject and concentrate streams of the spiral. The ^ indicates an estimate of the variable that verifies the constraint. The variable without the hat is used for the measurements. The slurry mass conservation equation is written as:

𝐷�𝐹 𝑆̂𝐹+ 𝑄�𝑊= 𝐷�𝑅 𝑆̂𝑅 + 𝐷�𝐶 𝑆̂𝐶 Eq.3-2 The variable S stands for the solids concentration of the slurry and QW for the flow rate of wash water. Mass

and volumetric flow rates of the slurry in any stream j of the spiral are given by:

𝑊�𝑗 =𝐷�𝑆̂𝑗𝑗 Eq.3-3 𝑄�𝑗= 𝐷�𝑗�𝑆𝐺1𝑗+1−𝑆̂𝑆̂𝑗𝑗� Eq.3-4 Where W denotes the mass flow rate and Q the volumetric flow rate of the slurry in stream “j”; the specific gravity of the solids in stream “j” is noted as SGj. The specific gravity of wash water is assumed as 1 g/cm3.

The mass conservation of any chemical species “i” is written as:

𝐷�𝐹𝑋�𝑖;𝐹 = 𝐷�𝑅𝑋�𝑖;𝑅+ 𝐷�𝐶𝑋�𝑖;𝐶 𝐹𝑜𝑟 𝑖 = 1, 2, … 𝑁𝑒 Eq.3-5 The concentration of species “i” in a stream “j” (j stands for the streams of F, R and C) is noted 𝑋𝑖;𝑗 and the number of chemical species in the samples is noted Ne. The uppercase “X”, i.e. 𝑋𝑖;𝑗 is used to indicate the

head assays. Similarly the mass conservation of the solids within a size interval “r” is written:

𝐷�𝐹𝑦�𝑟;𝐹 = 𝐷�𝑅𝑦�𝑟;𝑅+ 𝐷�𝐶𝑦�𝑟;𝐶 𝐹𝑜𝑟 𝑟 = 1, … 𝑁𝑠 Eq.3-6 The weight retained within the size interval “r” in the stream “j” is noted 𝑦𝑟;𝑗 and the number of size intervals is noted Ns. The retained mass fractions of any stream should sum up to 1.0, i.e.:

1.0 = ∑𝑁𝑟=1𝑠 𝑦�𝑟;𝑗 𝐹𝑜𝑟 𝑗 = 𝐹, 𝑅 𝑎𝑛𝑑 𝐶 Eq.3-7 The mass conservation of a chemical species “i” within the size interval “r” is given by:

𝐷�𝐹𝑦�𝑟;𝐹𝑥�𝑖;𝑟;𝐹 = 𝐷�𝑅𝑦�𝑟;𝑅𝑥�𝑖;𝑟;𝑅+ 𝐷�𝐶𝑦�𝑟;𝐶𝑥�𝑖;𝑟;𝐶 𝐹𝑜𝑟 𝑟 = 1, … 𝑁𝑠 𝑎𝑛𝑑 𝑖 = 1, 2, … 𝑁𝑒 Eq.3-8

The variable 𝑥𝑖;𝑟;𝑗 stands for the concentration of chemical species “i” within the size interval “r” in branch “j”. The chemical assays within the size intervals should be consistent with the head assays, i.e.:

𝑋�𝑖;𝑗 = ∑𝑁𝑟=1𝑠 𝑦�𝑟;𝑗𝑥�𝑖;𝑟;𝑗 𝐹𝑜𝑟 𝑖 = 1, 2, … 𝑁𝑒, 𝑟 = 1, … 𝑁𝑠 𝑎𝑛𝑑 𝑗 = 𝐹, 𝑅 𝑎𝑛𝑑 𝐶 Eq.3-9

(35)

3-3 Data reconciliation criterion

7KH FULWHULRQ XVHG IRU WKH GDWD UHFRQFLOLDWLRQ LV WKH VXP RI WKH VTXDUH RI ZHLJKWHG GLVWDQFHV EHWZHHQ WKH REVHUYHGDQGHVWLPDWHGYDOXHVRIDYDULDEOHLH

ܬ(ߠ) = σ ቀ௭ି௭Ƹ

ఙ೥ቁ

஺௟௟ ௠௘௔௦௨௥௘௠௘௡௧௦ (T

7KH DUJXPHQW ಉ LQGLFDWHV WKH LQGHSHQGHQW YDULDEOHV IRU ZKLFK YDOXHV VKRXOG EH SURYLGHG WR DOORZ WKH FDOFXODWLRQ RI DOO UHFRQFLOHG HVWLPDWHV 7KH LQGHSHQGHQW YDULDEOHV DUH LGHQWLILHG LQ WKH QH[W VHFWLRQ IRU WKH VSHFLDOFDVHRIWKHVSLUDOGDWDSURFHVVLQJ7KHYDULDEOH]VWDQGVIRUDPHDVXUHPHQWDQGݖƸIRUWKHUHFRQFLOHG YDOXH RI WKDW PHDVXUHPHQW 7KH YDULDEOH ߪ௭ LV WKH VWDQGDUG GHYLDWLRQ RI WKH PHDVXUHPHQW $ ODUJH UHODWLYH

VWDQGDUGGHYLDWLRQPHDQVWKDWWKHPHDVXUHPHQWLVZHDNO\UHSURGXFLEOHDQGUHFLSURFDOO\DVPDOOYDOXHRIWKH UHODWLYH VWDQGDUG GHYLDWLRQ LQGLFDWHV D UHSURGXFLEOH PHDVXUHPHQW 7KH XVH RI WKH LQYHUVH RI WKH VWDQGDUG GHYLDWLRQLQ(TSXWVZHLJKWRQUHSURGXFLEOHPHDVXUHPHQWVDQGGHFUHDVHVWKHVLJQLILFDQFHRIXQUHOLDEOH RQHV7KHUHIRUHODUJHVWDQGDUGGHYLDWLRQVIRULQDFFXUDWHPHDVXUHPHQWVDOORZWKHILOWHUHGYDOXHVWREHDZD\ IURP WKH PHDVXUHG YDOXHV +RZHYHU WKH DGMXVWHG YDOXHV RI UHSURGXFLEOH PHDVXUHPHQWV VKRXOG VWD\ UHDVRQDEO\FORVHWRWKHPHDVXUHGYDOXHV7KHPHWKRGWRHVWLPDWHWKHVWDQGDUGGHYLDWLRQ ı] LVSUHVHQWHGLQ

WKH$SSHQGL[ VHFWLRQ$ 

7KH FULWHULRQ RI (T FDQ LQGHHG EH VXEGLYLGHG LQWR VHYHUDO VXEFULWHULRQV FDOFXODWHG IURP WKH YDULRXV PHDVXUHPHQWVDYDLODEOHIURPDVDPSOLQJFDPSDLJQLH ܬ(ߠ) = ܬௐ+ ܬௌ+ ܬொ+ ܬௌீ + ܬ௑+ ܬ௬+ ܬ௫(T :KHUH  0DVVIORZUDWHFULWHULRQܬௐ= σ ቆ ௐିௐ෡ೈೕ ቇ ଶ ி,ோ,஼ ௝ୀ (T  6OXUU\VROLGVFRQFHQWUDWLRQFULWHULRQܬௌ= σ ቆ ௌೕିௌመೕ ఙೄೕ ቇ ଶ ி,ோ,஼ ௝ୀ (T  9ROXPHWULFIORZUDWHFULWHULRQܬொ = σ ቆ ொೕିொ෠ೕ ఙೂೕ ቇ ଶ ி,ோ,஼,ௐ ௝ୀ (T  6SHFLILFJUDYLW\FULWHULRQܬௌீ = σ ቆ ௌீೕିௌீ෢ೕ ఙೄಸೕ ቇ ଶ ி,ோ,஼ ௝ୀ (T  &KHPLFDOVSHFLHVFULWHULRQܬ௑= σ σ ቆ ௑೔;ೕି௑෠೔;ೕ ఙ೉೔;ೕ ቇ ଶ ி,ோ,஼ ௝ୀ ே೐ ௜ୀଵ (T  0DVVIUDFWLRQVZLWKLQWKHVL]HLQWHUYDOVFULWHULRQܬ௬= σ σ ቆ ௬ೝ;ೕି௬ොೝ;ೕ ఙ೤ೝ;ೕ ቇ ଶ ேೞ ௥ୀଵ ி,ோ,஼ ௝ୀ (T 

(36)

   &KHPLFDOVSHFLHVZLWKLQWKHVL]HLQWHUYDOVFULWHULRQܬ௫ = σ σ σ ቆ ௫೔;ೝ;ೕି௫ො೔;ೝ;ೕೣ೔;ೝ;ೕ ቇ ଶ ேೞ ௥ୀଵ ி,ோ,஼ ௝ୀ ே೐ ௜ୀଵ (T 0HDVXUHPHQWVDUHQRWQHFHVVDULO\DYDLODEOHIRUDOOWKHSRVVLEOHHVWLPDWHV:KHQWKHUHLVQRPHDVXUHGYDOXH IRUDYDULDEOHWKHFRUUHVSRQGLQJVWDQGDUGGHYLDWLRQLVVHWWRLQILQLW\WRHOLPLQDWHWKHHIIHFWRIWKLVYDULDEOHRQ WKHFULWHULRQYDOXH

3-4 Independent variables for the data reconciliation

7KHYHFWRUಉLVDVHWRIGDWDWKDWFDQEHXVHGWRHVWLPDWHWKHYDULDEOHVRIWKHGDWDUHFRQFLOLDWLRQSUREOHP)RU WKHVSLUDOGDWDUHFRQFLOLDWLRQSUREOHPಉFRQVLVWVRI x 6ROLGVIORZUDWHVLQWKHIHHGDQGFRQFHQWUDWHVWUHDPV(ܦ෡ி, ܦ෡஼)IURPZKLFKWKHVROLGVIORZUDWHLQWKH UHMHFW ܦ෡ோ LVFDOFXODWHGXVLQJ ܦ෡ோ= ܦ෡ிെ ܦ෡஼(T x 6OXUU\VROLGVFRQFHQWUDWLRQ(ݏƸி, ݏƸ஼, ݏƸோ)IURPZKLFKWKHZDVKZDWHUIORZUDWHLVFDOFXODWHGXVLQJWKH VOXUU\IORZUDWHV ܦ෡௝  ܳ෠ௐ= ஽෡ ௌመೃ+ ஽෡ ௌመ಴െ ஽෡ ௌመಷ(T x 7KHVROLGVVSHFLILFJUDYLW\³6*´IURPZKLFKWKHYROXPHWULFIORZUDWHRIVOXUU\ 4 LVFDOFXODWHG ܳ෠௝= ܦ෡௝൬ ଵ ௌீ෢+ ଵିௌመ ௌመೕ ൰ ܨ݋ݎ ݆ = ܨ, ܴ ܽ݊݀ ܥ(T 8VLQJYDOXHVIRUWKHVHHLJKWLQGHSHQGHQWYDULDEOHVRQHLVDEOHWRFDOFXODWHWKHFRUUHVSRQGLQJYDOXHVIRUWKH VROLGVVOXUU\ZDVKZDWHUDQGYROXPHWULFIORZUDWHVLQDQ\VWUHDPVRIWKHVSLUDOSURFHVV7KHVHYDULDEOHVDUH VXEVHTXHQWO\LGHQWLILHGDVPDFURVFRSLFYDULDEOHVDQGDUHXVHGWRFDOFXODWHWKHFULWHULRQYDOXHV-:-4DQG-V GHVFULEHGLQWKHVHFWLRQ $VLPLODUSULQFLSOHFDQEHXVHGWRHVWLPDWHFKHPLFDOFRQWHQWVZHLJKWUHWDLQHGIUDFWLRQVDQGFKHPLFDOFRQWHQW RI WKH PDVV IUDFWLRQV WKDW YHULI\ WKH PDWHULDO EDODQFH )RU LQVWDQFH IRU JLYHQ YDOXHV RI ܺ෠௜;ி DQG ܺ෠௜;஼ LW LV

SRVVLEOHWRHVWLPDWHWKHFRQWHQWRIVSHFLHV³L´LQWKHUHMHFWVWUHDPWKDWYHULILHVWKHPDWHULDOEDODQFHXVLQJ ܺ෠௜;ோ = (ܦ෡ிܺ෠௜;ிെ ܦ෡஼ܺ෠௜;஼)/ ܦ෡ோ(T

7RIROORZWKLVPHWKRGRIGDWDUHFRQFLOLDWLRQLWZRXOGEHQHFHVVDU\WRVHDUFKIRU[1HXQNQRZQYDULDEOHVWR

HVWLPDWH WKH FRQWHQW RI VSHFLHV LQ WKH VWUHDPV RI WKH VSLUDO 7KLV PHWKRG SURGXFHV D VLJQLILFDQW QXPEHU RI YDULDEOHV WR EH HVWLPDWHG E\ D QRQOLQHDU RSWLPL]DWLRQ DOJRULWKP DQG PD\ FDXVH QXPHULFDO SUREOHPV 7KH DSSURDFK IROORZHG KHUH XVHV WKH /DJUDQJLDQ RI WKH RSWLPL]DWLRQ SUREOHP XQGHU WKH PDVV DQG FRKHUHQF\ FRQVWUDLQWVWRILQGDQDQDO\WLFDOVROXWLRQWRWKHSUREOHP7KHUHFRQFLOLDWLRQPHWKRGIRUWKHFKHPLFDOFRQWHQWVRI VSHFLHVVL]HGLVWULEXWLRQDQGDVVD\VRIVL]HIUDFWLRQVLVGHVFULEHGLQWKHIROORZLQJVHFWLRQV



Figure

Figure  2-5: Flow behavior in a cross-section of a spiral channel (Richards and Palmer, 1997)
Figure  3-2: Data reconciliation procedure on the size distribution of the mass within the size intervals  21
Table  4-3: Main effect and interaction effect of experimental factors on the performance indices
Figure  4-4: Effect of wash water addition on the recovery of Fe 2 O 3  and SiO 2  carriers
+7

Références

Documents relatifs

In terms of continuous ranked probability skill score, spread calibration provides much more gain in skill than the traditional ensemble-mean calibration and extends for lead times

The numerical simulation of flows involving moving boundaries is of great interest in various engineering fields (e.g. aeronautics, transports, turbo-machinery, bio-fluid

Next, to evaluate the stability of the total number of evolutionary events inferred by parsimonious adjacency forests, we recorded two counts of evolutionary events for each

In the area of former production units, the variogram cloud (Figure 7) of subsurface concentrations shows that the spatial variability at short distances results mainly from

We prove that there is a unique solution if the prescribed curve is non-characteristic, and for characteristic initial curves (asymptotic curves for pseudo- spherical surfaces and

Via this social norm traditional mothers’ informal child care imposes an externality on career mothers, so that the market outcome is ine¢ cient.. Informal care is too large and

Assessment of Indoor Environment Quality and Schoolwork Performance in University Buildings loan Sarbu and Cristian Pacurar. Mobility, Sustainable Development

Partitive articles (du, de la, del') are used to introduce mass nouns, that is nouns that are conceived of as a mass of indeterminate quantity.. They are usually translated as