• Aucun résultat trouvé

Comment on Bybee et al. (2014): Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho.

N/A
N/A
Protected

Academic year: 2021

Partager "Comment on Bybee et al. (2014): Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho."

Copied!
3
0
0

Texte intégral

(1)

JID:EPSL AID:12722 /COR [m5G; v 1.134; Prn:2/07/2014; 15:08] P.1 (1-3) Earth and Planetary Science Letters•••(••••)•••–•••

Contents lists available atScienceDirect

Earth

and

Planetary

Science

Letters

www.elsevier.com/locate/epsl 1 67 2 68 3 69 4 70 5 71 6 72 7 73 8 74 9 75 10 76 11 77 12 78 13 79 14 80 15 81 16 82 17Q1 83 18Q2 84 19 85 20 86 21 87 22 88 23 89 24 90 25 91 26 92 27 93 28 94 29 95 30 96 31 97 32 98 33 99 34 100 35 101 36 102 37 103 38 104 39 105 40 106 41 107 42 108 43 109 44 110 45 111 46 112 47 113 48 114 49 115 50 116 51 117 52 118 53 119 54 120 55 121 56 122 57 123 58 124 59 125 60 126 61 127 62 128 63 129 64 130 65 131 66 132

Comment

on

Bybee

et

al.

(2014):

Pyroxene

megacrysts

in

Proterozoic

anorthosites:

Implications

for

tectonic

setting,

magma

source

and

magmatic

processes

at

the

Moho

Jacqueline

Vander

Auwera

a

,

,

Bernard

Charlier

a

,

Jean

Clair

Duchesne

a

,

Bernard

Bingen

b

,

John

Longhi

c

,

Olivier

Bolle

a

aDepartmentofGeology,UniversityofLiège,B-4000Liège,Belgium bNorwegianGeologicalSurvey,N-7040Trondheim,Norway cLamont-DohertyEarthObservatory,Palisades,NY10964,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1April2014 Accepted4June2014 Availableonlinexxxx Editor: T.M.Harrison

In their recent paper, Bybee et al. (2014) present new iso-topic and geochronological data on High-Alumina Orthopyrox-ene Megacryts (HAOM) sampled in three different Proterozoic massif-type anorthosites, namely, the Mealy Mountains Intrusive Suite (MMIS), the Nain Plutonic Suite (NPS) and the Rogaland AnorthositeProvince(RAP).TheSm–Ndisochronagesobtainedon HAOMfromthesethreeprovincesindicatethatthemost alumina-richsamples,i.e.thosethatcrystallizedatthehighestpressure,are 80–120 Maolder than their host anorthosites. Moreover, Sm–Nd isochrons between plagioclase lamellae, host orthopyroxene and whole-rockfromtheNPSandRAPhavedecompressedatagesthat correspondto the crystallization agesof the hostanorthosites at mid crustal level, as recorded by zircon U–Pb data (i.e. Emslie, 1990; Myers et al., 2008; Schärer et al., 1996). There is thus a 70–100 Ma gapbetween the crystallization of the HAOM at the baseofthecrust, onthe onehand,andtheir decompression and anorthosite crystallizationin the rising diapirs (or crystalmush), on the other hand. The authors interpret thesegeochronological data by proposing that HAOM crystallized from mantle derived magmaspondedatthebaseofthecrustsome100 Mabeforethe crystallization and emplacement of the anorthosite andthat the 100 Matimeintervalwasspentpartlyinaconvectingand recharg-inglowercrustal magmachamberandpartlyintheascentofthe anorthosite.AsthediapiricriseoftheRAPanorthositeswas mod-elledtolastforabout2.5 Ma(Barnichonetal.,1999),mostofthe

DOIoforiginalarticles:http://dx.doi.org/10.1016/j.epsl.2013.12.015, http://dx.doi.org/10.1016/j.epsl.2014.06.032.

*

Correspondingauthor.

100 Ma timespanisleft inthiscaseforthelifetimeofthelower crustalmagmachamber.

These new geochronological data bring very important con-straints on the petrogenesis of Proterozoic massif anorthosites (2.12–0.92 Ga: Hamilton et al., 1998; Ryan et al., 1999; Vander Auwera etal., 2011).Weagreewiththeauthorsthatseverallines of evidence support that their isochronsrecord crystallization of the HAOM. These evidences include the consistent ca. 100 Ma timespanbetweenHAOMcrystallizationandanorthosite emplace-ment obtainedinthreedifferentanorthositic provinces.However, we think that there is an alternative explanationto this 100Ma timespanthat hasnotbeenexplored bytheauthors.Wewill dis-cuss this alternative below with a focus on the RAP for which extensive datahavebeen presented onthe regionalgeology, iso-topicmeasurementsfortheanorthosite massifandthe surround-ing rocks, completed by extensive experimental study for phase equilibria.

There isan ongoing debateaboutthe mantleorlower crustal source of the anorthosite parent magma. Experimental data ac-quired on a high-Al basalt (HLCA), parent magma of Proterozoic anorthosites provide a strongconstraint asthey indicate that, at the lower crustal pressures (10–13 kbar) necessary to produce the characteristic HAOM, this high-Al basalt lies on a thermal divide of the plagioclase

+

pyroxene liquidus surface requiring that it was produced by partial melting ofa gabbronoritic lower crustalsource(Duchesneetal.,1999; Longhietal.,1999).Vander Auwera et al. (2011) identified several possible precursor mafic magmatic events in the Sveconorwegian orogen that could po-tentially have provided the lower crustal source of the younger RAP (0.93 Ga): the 1.05 Ga Feda suite mafic facies, the volcanic http://dx.doi.org/10.1016/j.epsl.2014.06.031

(2)

JID:EPSL AID:12722 /COR [m5G; v 1.134; Prn:2/07/2014; 15:08] P.2 (1-3)

2 J. Vander Auwera et al. / Earth and Planetary Science Letters•••(••••)••••••

1 67 2 68 3 69 4 70 5 71 6 72 7 73 8 74 9 75 10 76 11 77 12 78 13 79 14 80 15 81 16 82 17 83 18 84 19 85 20 86 21 87 22 88 23 89 24 90 25 91 26 92 27 93 28 94 29 95 30 96 31 97 32 98 33 99 34 100 35 101 36 102 37 103 38 104 39 105 40 106 41 107 42 108 43 109 44 110 45 111 46 112 47 113 48 114 49 115 50 116 51 117 52 118 53 119 54 120 55 121 56 122 57 123 58 124 59 125 60 126 61 127 62 128 63 129 64 130 65 131 66 132

Fig. 1. A.(206Pb/204Pb)ofRAPHAOMversustime(Ma).B.(207Pb/204Pb)ofRAPHAOMversustime(Ma)samesymbolsasinA.DatafromBingenetal. (1993),Bybeeetal. (2014)andWeis (1986).

sequencesofGjuve–Morgedal (1.16 Ga),Valldal(1.26 Ga) and Ve-mork (1.50 Ga). Vander Auwera et al. (2011) favoured the Feda suite because the Nd and Pb isotopic composition of the mafic facies of this suite is very close to the isotopic composition of the high-Al gabbros of the RAP. The 1.04 Ga age obtained by Bybee etal. (2014) forthecrystallizationofthe RAPHAOM with thehighestAl2O3 content(>8 wt.%)corresponds within errorto the age of the Feda suite of southern Norway (1.05 Ga: Bingen and van Breemen, 1998). Moreover, the Pb isotopic composition of the RAP HAOM recalculated back at 1.05 Ga (supplementary data of Bybee et al., 2014) (206Pb/204Pb1

.05 Ga

=

14.91–17.88; 207Pb/204Pb1

.05 Ga

=

15.32–15.53) perfectly overlaps the initial Pb isotopic composition of the Feda suite (206Pb/204Pb1

.05 Ga

=

16.92–17.32; 207Pb/204Pb1

.05 Ga

=

15.43–15.50) (Bingen et al., 1993; Vander Auwera et al., 2011) (Fig. 1). This is also clear when average compositions are compared: Feda (30 samples) (206Pb/204Pb1

.05 Ga

=

17.06; 207Pb/204Pb1.05 Ga

=

15.46), HAOM (13 samples) (206Pb/204Pb1

.05 Ga

=

17.03; 207Pb/204Pb1.05 Ga

=

15.47).Therangesof

ε

Nd1.05 GadisplayedbytheRAPHAOM(

0.9 to

+

3.4) (Bybee etal., 2014) and the Fedasuite (

0.7 to

+

3.8) (Bingenetal.,1993; VanderAuwera etal.,2011) perfectlyoverlap too.TheRAPHAOMwiththehighestAl2O3content(>8 wt.%)thus crystallizedatthesametimeastheFedasuiteandfromamagma thathadthesameisotopiccompositionthantheFedasuite. More-over,availableisotopicdataonthehigh-Algabbros(3 samples)of theRAP(VanderAuwera etal.,2011; Weis,1986) recalculatedback at 0.93 Ga display an isotopic composition (206Pb/204Pb0

.93 Ga

=

17.28–17.37; 207Pb/204Pb0

.93 Ga

=

15.48–15.49) that is in the range of the Pb isotopic composition of the RAP HAOM also calculated back at 0.93 Ga (206Pb/204Pb0

.93 Ga

=

15.39–18.21; 207Pb/204Pb0

.93 Ga

=

15.37–15.57)(Bybee etal.,2014) (Fig. 1).At 0.93Ga, theRAP HAOMwere thus inchemical, asshown bythe experimental data (Fram and Longhi, 1992; Longhi et al., 1999), andisotopicequilibriumwiththehigh-Albasalts(Fig. 1).

The new isotopic data of Bybee et al. (2014) combined with the experimental constraints (Fram and Longhi, 1992; Longhi et al.,1999) thussupportatwo-stepmodelfortheoriginoftheRAP Proterozoicanorthosites.Duringthefirststep,theHAOM(>8 wt.% Al2O3)crystallizedat1.05 Gaatthebaseofathickenedcrustmost probablyfromthe parentmagmaoftheFedasuite.120 Malater, during a second step, the lower crustal gabbronoritic cumulates including the HAOM were partially meltedto produce the high-Al basalts. According to this model, the HAOM could be restitic mineralsofthe lowercrustal source.Thiswouldsuggest thatthe HAOM displaying the highest Al2O3 content (and also possibly themega-plagioclasethatlocallydisplayophitictextureswiththe

HAOM)observedandsampledintheRAParerepresentative frag-ments of thesource, unmelted eitherbecause they were crystals too large (up to 1 m) to melt or they were originally incorpo-ratedinmonomineraliclayers.TheFedasuitehasbeeninterpreted as resulting from the crystallization of a mantle-derived magma ofcalc-alkaline affinitymixedwithcrustalmeltsproducedduring thelowercrustalunderplating ofthebasalts(Bingenetal.,1993). Experimental data (Müntener etal., 2001) and field observations (Hermannetal.,2001) indicatethatthistypeofmagmaproduces significant amountsofgabbronoritic cumulateswhencrystallizing atthebaseofthecrust. Asnotedby Bybeeetal. (2014),the ma-jor element composition ofthe HAOM isgenerallysimilar to the composition ofthe experimentally obtainedorthopyroxeneswith, however, significant differences in their Mg#s and FeO concen-trations, Mg#s (0.49–0.66: Bybee et al., 2014) and FeO concen-trations (11.65–19.6 wt.%: Bybee et al., 2014) of the HAOM are respectivelylowerandhigherthantheMg#s(0.88–0.77)andFeO (7.7–13.7 wt.%)concentrationsoftheexperimentalorthopyroxenes (Münteneretal.,2001).Thisdifferencecannotbeexplainedbythe early crystallizationofolivine asthismineralisnotablyabsent in theexperimental highpressurecumulates(Münteneretal.,2001) due to theshrinking of the olivine stability field withincreasing pressure.InagreementwithwhatwasinitiallyproposedbyLonghi etal. (1999),wesuggestthatHAOMwerepartofthemoreevolved cumulates,containingmoreferroanpyroxenestogetherwithFe–Ti oxidesandphosphate,thatwerepreferentiallyfounderedor down-thrustedbecauseoftheirhigherdensity.

AspreviouslymentionedbyLonghietal. (1999)andrecalledby Bybeeetal. (2014),theabovemodelrequiresextensivemeltingof the lower crustat hightemperature. The recentwork ofDrüppel et al. (2013) on thepetrology of sapphirine-bearing gneisses oc-curring just north of the RAP supports this interpretation. In-deed, zircon U–Pb geochronology, phase modelling and geother-mobarometryindicate thatthesapphirinegranulitesrecord ultra-hightemperaturemetamorphicconditionsofabout1000◦Candca. 0.75 GPaat1.01 Ga,i.e.afterintrusionoftheFedasuiteandbefore emplacementoftheRAP,followedbynearisothermal decompres-sionat0.55 GPa. Theseresultsthusindicatethatatthattime,the temperatureinthelowercrustwaswellabovec.1000◦C. Consid-ering a lower crustal pressure of 1.25 GPa (Charlier et al., 2010; Longhi et al., 1999) and a conservative geothermal gradient of 20◦C/km, the temperature at the base of the crust can be es-timated at 1390◦C. Clearly, improved geochronology of regional metamorphism is requiredto link pressure–temperaturepaths in thecrusttomagmaticeventsandpossibleheatsources.

(3)

JID:EPSL AID:12722 /COR [m5G; v 1.134; Prn:2/07/2014; 15:08] P.3 (1-3)

J. Vander Auwera et al. / Earth and Planetary Science Letters•••(••••)•••••• 3

1 67 2 68 3 69 4 70 5 71 6 72 7 73 8 74 9 75 10 76 11 77 12 78 13 79 14 80 15 81 16 82 17 83 18 84 19 85 20 86 21 87 22 88 23 89 24 90 25 91 26 92 27 93 28 94 29 95 30 96 31 97 32 98 33 99 34 100 35 101 36 102 37 103 38 104 39 105 40 106 41 107 42 108 43 109 44 110 45 111 46 112 47 113 48 114 49 115 50 116 51 117 52 118 53 119 54 120 55 121 56 122 57 123 58 124 59 125 60 126 61 127 62 128 63 129 64 130 65 131 66 132

Inconclusion, we think that the high-Al basalts,parent mag-masof massif-type anorthosites are product of meltingof a dry lower crustal protolith, in accordance with available experimen-tal data. The data of Bybee et al. (2014) can be interpreted to supportcrystallizationofa gabbronoriticlower crust followedca. 100 Malaterbyremeltingandproductionoftheanorthosite par-entmagma.Intermsofsecularevolutionoftheearth,itmaymean thattheProterozoicwasa timeweretemperatureandconvection ofthemantlewas favourableforthe remeltingoffreshly crystal-lizedcrustalunderplates.

EditorialAcknowledgement

TheEditor thanksthe reviewer,Carol Frost,forher thoughtful andbalancedreviewsofbothCommentaryandReply.

References

Barnichon,J.-D.,Havenith,H.B.,Hoffer,B.,Charlier,R.,Jongmans,D.,Duchesne,J.C., 1999.ThedeformationoftheEgersund–Ognamassif,SouthNorway:finite ele-mentmodellingofdiapirism.Tectonophysics 303,109–130.

Bingen, B., vanBreemen, O., 1998. Tectonic regimes and terrane boundaries in thehigh-gradeSveconorwegianbeltofSWNorway,inferredfromU–Pbzircon geochronologyandgeochemicalsignatureofaugen gneisssuites.J.Geol.Soc. (Lond.) 155,143–154.

Bingen,B.,Demaiffe,D.,Hertogen,J.,Weis,D.,Michot,J.,1993.K-richcalc-alkaline augengneissesofGrenvillianageinSWNorway:minglingofmantle-derived andcrustalcomponents.J.Geol. 101,763–778.

Bybee,G.M.,Ashwal,L.D.,Shirey,S.B.,Horan,M.,Mock,T.,Andersen,T.B.,2014. Py-roxenemegacrystsinProterozoicanorthosites:implicationsfortectonicsetting, magmasourceandmagmaticprocessesattheMoho.EarthPlanet.Sci.Lett. 389, 74–85.

Charlier,B.,Duchesne,J.C.,VanderAuwera,J.,Storme,J.,Maquil,R.,Longhi, J.,2010. Polybaricfractionalcrystallizationofhigh-aluminabasaltparentalmagmasin theEgersund–Ognamassif-typeanorthosite(Rogaland,SWNorway)constrained by plagioclase and high-alumina orthopyroxene megacrysts. J. Petrol. 51, 2515–2546.

Drüppel,K.,Elsäber,L., Brandt,S., Gerdes,A.,2013. Sveconorwegianmid-crustal ultrahigh-temperature metamorphisminRogaland,Norway: U–Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses.J.Petrol. 54,305–350.

Duchesne,J.C.,Liégeois,J.P.,VanderAuwera,J.,Longhi,J.,1999.Thecrustaltongue meltingmodelandtheoriginofmassiveanorthosites.TerraNova 11,100–105. Emslie, R.F., 1990. Ages and petrogenetic significance of igneous mangerite– charnockite suites associated with massif anorthosites, Grenville Province. J. Geol. 98,213–231.

Fram, M., Longhi,J., 1992. Phase equilibria ofdikesassociated with Proterozoic anorthositecomplexes.Am.J.Sci. 77,605–616.

Hamilton, M., Ryan, A., Emslie, R., Ernanovics, I., 1998. Identification of Paleo-proterozoic anorthositic and monzonitic rocks in the vicinity of the Meso-proterozoicNainPlutonicSuite,Labrador:U–Pbevidence.RadiogenicAgeand Isotopic Studies. Geological Survey of Canada, Report 11, current research 1998-F,pp. 23–40.

Hermann,J.,Müntener,O.,Günther,D.,2001.Differentiationofmaficmagmaina continentalcrust-to-mantletransitionzone.J.Petrol. 42,189–206.

Longhi,J.,VanderAuwera,J.,Fram,M.,Duchesne,J.C.,1999.Somephaseequilibrium constraintsontheoriginofProterozoic(massif)anorthositesandrelatedrocks. J.Petrol. 40,339–362.

Müntener, O., Kelemen,P., Grove, T., 2001. The role of H2O during crystalliza-tionofprimitivearcmagmasunderuppermostmantleconditionsandgenesis ofigneous pyroxenites:an experimentalstudy.Contrib. Mineral.Petrol. 141, 643–658.

Myers, J., Voordouw, R., Tettelaar, T., 2008. Proterozoicanorthosite–granite Nain batholith:structureandintrusionprocessesinanactivelithosphere-scalefault zone,northernLabrador.Can.J.EarthSci. 45,909–934.

Ryan,B.,Hamilton,M.,Emslie,R.,Connelly,J.,1999.Paleoproterozoicand Mesopro-terozoicanorthositicandgranitic plutonsintheNain–Okak region,Labrador: repetitiveanorogenicmagmatism.Eos,S366.

Schärer,U.,Wilmart,E.,Duchesne,J.C., 1996.Theshortdurationandanorogenic characterofanorthosite magmatism:U–Pb datingof theRogaland complex, Norway.EarthPlanet.Sci.Lett. 139,335–350.

VanderAuwera,J.,Bolle,O.,Bingen, B.,Liégeois,J.-P.,Bogaerts,B.,Duchesne,J.C., DeWaele,B.,Longhi,J.,2011.Sveconorwegianmassif-typeanorthositesand re-latedgranitoidsresultfrompost-collisionalmeltingofacontinentalarcroot. Earth-Sci.Rev. 107,375–397.

Weis,D.,1986. GeneticimplicationsofPbisotopegeochemistryintheRogaland anorthositiccomplex(southwestNorway).Chem.Geol. 57,181–199.

Figure

Fig. 1. A. ( 206 Pb/ 204 Pb) of RAP HAOM versus time (Ma). B. ( 207 Pb/ 204 Pb) of RAP HAOM versus time (Ma) same symbols as in A

Références

Documents relatifs

Multiplication Avec Les Chiffres Romains (A) Réponses.. Répondez à chaque question en

At such mantle depths, Rcc values are weakly dependent on the effect of grain growth by Ostwald ripening, except if the crystallization zone extends from the surface to deeper than

group produced under deformation, the latter clustering also at higher Mg#, around 87 ( Fig. Olivine composition issued from torsion experiments reproduces the

Tracing the magmatic/hydrothermal transition in regional low-strain zones: The role of magma dynamics in strain localization at pluton roof, implications for intrusion-related

interposition linguale entre les arcades et les lèvres lors de certaines fonctions (succion- déglutition et phonation notamment) [10]. Bien qu’il ne faille pas dramatiser

The values are consistent also over years for SO, but JO shows almost 1 K difference in bias val- ues for 2001 and 2002.. On an average, all the Finnish stations show very

In this study, we present phase relations, melt compo- sitions, and melting reactions on two carbonated peridotite compositions, i.e., ACP: alkali-rich peridotite with 5 wt % CO 2

We suggest that both the temperature of melting in the mantle and the pressure of mineral fractionation in the lithosphere control the chemical characteristics of mafic magma and