• Aucun résultat trouvé

Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media

N/A
N/A
Protected

Academic year: 2021

Partager "Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media"

Copied!
10
0
0

Texte intégral

(1)

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 6062

To link to this article

:

DOI:10.1016/J.ELECTACTA.2012.01.080

URL:

http://dx.doi.org/10.1016/j.electacta.2012.01.080

To cite this version

:

Rockombeny, L.C. and Féraud, Jean-Pierre and

Queffelec, Benoit and Ode, Denis and Tzedakis, Theodore (2011)

Electrochemical oxidation of oxalic acid and hydrazinium nitrate on

platinum in nitric acid media. Electrochimica Acta, vol. 66. pp. 230-238.

ISSN 0013-4686



O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes.diff.inp-toulouse.fr



(2)

Electrochemical

oxidation

of

oxalic

acid

and

hydrazinium

nitrate

on

platinum

in

nitric

acid

media

L.C.

Rockombeny

a

,

J.P.

Féraud

a

,

B.

Queffelec

b

,

D.

Ode

a

,

T.

Tzedakis

c,∗ aCommissariatàl’ÉnergieAtomique/Marcoule,DTEC/SGCS/LGCI,BP17171,30207BagnolssurCèze,France bSIER,16AvenuedupetitLac,95210St.Gratien,France

cLaboratoiredeGénieChimique,UMR5503CNRS,UniversitéPaulSabatier,118,routedeNarbonne,31062Toulouse,France

a

b

s

t

r

a

c

t

Severalstudiesintheliteraturehaveinvestigatedtheelectrochemicaleffectsofoxalicacidandhydrazine

onvariousmaterialsinneutral(pHbufferedto7),basicorweaklyacidicmedia(pH6).Thepresentwork

proposeselectrochemicaltechniquesthatallowforthestudyoftheelectrochemicalbehavior,onaPt

electrode,ofoxalicacidandhydraziniumnitratetobetterunderstandtheiroxidationmechanismsin

anitricacidmediumatapHbelow1;inaddition,someexperimentswerecarriedouttodefinean

electrochemicalmethodthatwouldallowforthesimultaneousdetectionofthesespecieswhenpresent

withinprocesseffluentinveryacidicsolutions.Somephysicaldataregardingoxalicacidandhydrazinium

nitratewerealsodetermined:anodicoxidationofhydraziniumnitrateandoxalicacidwereobservedat

0.2Vand0.7V(vs.Ag/AgCl),respectively.Thediffusioncoefficientsofhydraziniumnitrateandoxalic

acidwerefoundtobe5.2×10−6and2.9×10−7cm2s−1,respectively.Anexperimentaldesignapproach

demonstratedtheinfluenceofnitricacidconcentrationsonthediffusioncoefficientsofthesespecies.

1. Introduction

Numerouspapershaveaddressedtheelectrochemicalbehavior ofoxalicacidandhydrazine[1–20],oftenwithrespecttobiology. Oxalicacidandhydrazinearedetectedbyelectrochemicalmethods inaqueoussolutionforpHlevelsrangingfrom6to7.

Worksontheoxidationofoxalicacidhavefocusedon design-inganoxalate-specificsensor;theyhavestudiedthemechanism ofdegradationduringanodicoxidation.Cyclicorlinear voltamme-try[1,2,4–7,9–11]andchronoamperometry[3–5,8]arethemain electrochemicaltechniquesthathavebeenused.Variousmassive materials(Pt [1],glassy carbon[1,4],etc.)and modified metals (dimensionallystableanodes,DSA,TicoatedbyPtorIrO2orRuO2

[1],boron-dopeddiamond[7],etc.)areusedasanodes.Graphite modifiedbypalladiumnanoparticles[4,6]andrhodium[8,11]have alsobeenexaminedascatalystsfortheelectrochemicaloxidation ofoxalicacid.Theresultsshowthattheoxidationpotentialofoxalic acidisinfluencedbythetypeofelectrodeusedaswellasits sur-faceand composition.Adsorption(especially onPt),passivation andinteractionphenomenacaninfluencetherateofthisreaction. Cyclic voltammetry[12–18], amperometricdetection and/or differential pulse voltammetry [12] have been used to study

∗Correspondingauthor.Tel.:+33561558302;fax:+33561556139. E-mailaddress:tzedakis@chimie.ups-tlse.fr(T.Tzedakis).

theoxidationofhydrazineonmodifiedglassycarbonelectrodes [12–16].Zincoxide[17]andcarbonnanotubes[18]havealsobeen usedforthedevelopmentofahydrazineelectrochemicalsensor.As foroxalicacid,theoxidationofhydrazinemaybeinfluencedbythe typeofelectrodeusedaswellasitssurfacestateandcomposition andsolutionpH.

Abibliographicalreviewhasrevealednostudiesinvestigating thedevelopmentofamethodfordetectingbothoxalicacidand hydrazinepresentinthesamemedium.

Thepurposeofthepresentworkwastocarryoutvoltammetric measurementsonoxalicacidandhydraziniumnitrateona plat-inumelectrodeinaconcentratednitricacidmediumtoobtaina betterunderstandingoftheiroxidationmechanismsandtodevelop anelectrochemicalmethodfortheirsimultaneousdetectionwhen presentwithinprocesseffluentinveryacidicsolutions.Some phys-icaldataregardingoxalicacidandhydraziniumnitratewerealso obtained.

2. Experimentalprocedures

Thechemicalsusedwereofanalytical grade(purity>98.5%). SolidoxalicacidwasprovidedbySigmaAldrich(CAS:61353566). Nitric acid possessed a density =1.42gcm−3 (purity 65%).

Hydraziniumnitratewasalaboratory-preparedsolution. Concen-tratednitricacidwasaddedtohydrazinehydrate(CAS:78035378) until complete neutralization at pH 4.5, forming hydrazinium

(3)

Fig.1.[Ox.ac.]oroxalicacid’sconcentrationdependenceonthecurrent–potentialcurves,obtainedonPtrotatingdisk.ω=1000RPM:supportingelectrolyte2MHNO3;(1)

nooxalicacid;(2)1mM;(3)5mM;(4)10mM;(5)25mM;(6)50mM;(7)75mM;(8)100mM;potentialscanrate:0.005Vs−1.Inset:thevariationofanodiccurrentat1.1V vs.theoxalicacidconcentration.

nitrate;thisreactionishighlyexothermicandcanbeexplosive. Par-ticularcautionisrequiredwhenusinghydrazinehydratebecause itisaCMR(carcinogenic,mutagenicandreprotoxic)substance.

Allelectrochemicalmeasurementswerecarriedoutusingan AutolabPGSTAT30potentiostat/galvanostatcontrolledwithGPES 4.9softwareandathree-electrodesetupwitha saturatedsilver referenceelectrode(Ag/AgCl,3MKCl),aplatinumwire counter-electrodeandaplatinum-diskworkingelectrode.

3. Resultsanddiscussion

3.1. ElectrochemicalkineticsonPtrotatingdiskelectrode 3.1.1. Oxalicacid

Linearvoltammograms,obtainedatthesteadystate(5mVs−1)

withaPtrotating-diskelectrode(ω=1000RPM)andvarious con-centrationsof oxalic acidin 2MHNO3, are shown in Fig. 1. A

signalindicating the oxidation ofoxalic acidtocarbon dioxide onPtaccordingtoequation(3.1.1.1)wasobservedforpotentials higherthan0.7V;simultaneously,bubblesappearedatthe elec-trodesurface.Forlowconcentrations(curves(1)–(3)),theobtained signalshowsapracticallyconstant‘limitingcurrent’,withaslight decreaseforpotentialshigherthan1.4V.Forconcentrationsabove 10mM,apeak-shapedcurvewasobtainedandthemagnitudeofthe currentdecreasednearlytozeroforpotentialshigherthan∼1.2V; partialandreversiblepassivationoftheplatinumelectrodecaused bythegaseouscarbondioxideproducedontheelectrodesurface couldexplainthisdecrease.Indeed,allofthecurvesobtainedcanbe reproducedwithoutmechanicaltreatment.Theoxidationreaction canbewrittenasfollows:

HCOO COOH 2CO2+2H++2e− (3.1.1.1) Alinear dependence oftheanodic current(Imaxrecorded at

1.1V) vs. the oxalic acid concentration observed in the range 1–100mM(inset,Fig.1)reflectsamass-transferlimitation,even ifthemagnitudeofthecurrentdecreasesforhigherpotentials:

Imax at 1.1V (A)=1.77×10−5[Ox.Ac.](mmolL−1),

where R2=0.9975.

Tafelplots (lni=lni0+˛nF/RT)forcurves obtainedin 1mM

oxalicacidwereusedtodeterminetheexchange-currentdensityi0,

theelectron-transfercoefficient˛andtheintrinsicheterogeneous electron-transfer coefficient k0 (cms−1). The exchange-current

density (i0=nFk0C0) wasfound tobe 2×10−7Acm2. Assuming

n=2,˛andk0werefoundtobe0.3and10−6cms−1,respectively.

Thevalueof k0 indicates thatoxalic acidcan beconsideredan

irreversiblesystem. 3.1.2. Hydraziniumnitrate

LinearvoltammogramsobtainedatthesteadystatewithaPt rotating-diskelectrodeandvariousconcentrationsofhydrazinium nitratein2MHNO3areshowninFig.2(a).

ConsideringthatthefinaloxidationproductisN2,theoverall

oxidationreactionofhydraziniumnitratecanbewrittenasfollows: N2H+5 →N2+5H++4e− (3.1.2.1)

Thefollowingresultswereobtained:

• Forhydraziniumnitrateconcentrationslowerthan10mM, classi-callyshapecurveswereobtained,containingonewavebeginning at∼0.2–0.4V.Thewave“plateau”withalimitingcurrentclearly indicates amass-transfer limitation(diffusionlimitation). The magnitude of its limiting current increases linearlywith the hydraziniumnitrateconcentrationsaccordingtotherelationship (3.1.2.2).

I/A=7.37×10−5·[H Nitrate] R2=0.9991 (3.1.2.2) • Forhigherconcentrationsofhydraziniumnitrate(50–75mM),

thecurvesindicatethreeimportantmodifications:

-ThebeginningoftheI/Ecurveforhydraziniumnitrateoxidation shiftstolowerpotentials whentheconcentrationincreases, meaningthatthecorrespondingelectroactivespeciesis oxi-dizedmoreeasily.

-Increasingthehydraziniumnitrateconcentrationcausestwo signalstoappear,at0.2–0.6Vand0.7–1.2V.

-Afterthepotentialofthesecondsignalwasreached,the mag-nitudeofthecurrentdecreaseindicatesthepassivationofthe platinumelectrode.Nevertheless,thecurvesobtainedcanbe reproducedwithoutmechanicaltreatment,whichsuggeststhat this passivationis reversible.Thefinal oxidation product of hydraziniumnitrateisgaseous nitrogenandthepresenceof agaseouslayerattheinterfacecouldexplainthedecreasein themagnitudeofthecurrent.

Twopossibleexplanationscouldjustifythisbehavior:

Assumingthatoneelectronwasexchangedthroughan elemen-tarystep,forhydrazinium nitrateoxidation,theglobalreaction

(4)

Fig.2.(a)Hydraziniumnitrate’sconcentrationdependenceonthecurrent–potentialcurvesobtainedonPtrotatingdisk;ω=1000RPM:supportingelectrolyte2MHNO3;

(1)nohydraziniumnitrate;(2)1mM;(3)5mM;(4)10mM;(5)25mM;(6)50mM;(7)75mM;potentialscanrate:0.005Vs−1.(b)Hydraziniumnitrateconcentration dependenceofthemaximumanodiccurrent(1.1V).

(3.1.2.1)canbedecomposedaccordingtothefollowingsimplified scheme: H2N NH3+→H2N NH2++e– +H+ (3.1.2.1.a) H2N NH2+→HN NH2++e– +H+ (3.1.2.1.b) HN NH2+↔ HN NH+H+ (3.1.2.1.c) HN NH HN NH++e– (3.1.2.1.d) HN NH+N2+e– +2H+ (3.1.2.1.e)

(1)Forhydraziniumnitrateconcentrationslowerthan10mM,the curvesshowonlyonewave;thus,wecanassumethatthefirst electronicexchange((3.1.2.1.a)and/or(3.1.2.1.b))wasthe lim-itingstep;thismaycorrespondto1or2electronsexchanged andundertheseconditions,theexchangeoftheremaining elec-tronstoobtainN2((3.1.2.1.b)or(3.1.2.1.c)to(3.1.2.1.d))occurs,

during‘faster’steps.

Whenthehydraziniumnitrateconcentrationincreases,high current values ledto higher intermediate (HN NH2+)

con-centrations. In addition, high H+ concentrations, could be

disadvantageousfortheequilibrium(3.1.2.1.c),whichmaythen causetheintermediate(HN NH2+)toaccumulate.Underthese

conditions,theoxidationoftheseintermediates(HN NH2+)to

nitrogenmayoccurathigherpotentials(0.7–1.2V)andleadto thesecondsignal.

(2)Moisy et al. [21] presented the following chemical equilib-riumbetweenHNO3andhydraziniumnitrateforstronglyacidic

media:

N2H+5+HNO3↔N2H2+6 +NO−3 (3.1.2.3)

Forhydraziniumnitrateconcentrationslowerthan10mM, thesolutioncontainsmainlyN2H5+;thus,thecurvesshowonly

onewaveindicatingtheoxidationtonitrogenaccordingtothe previousstatements.Whenthehydraziniumnitrate concen-trationincreases,theequilibrium(3.1.2.3)shiftstotheright and N2H62+appears;itsoxidationatmoreanodicpotentials

(0.7–1.2V)canbeobservedseparatelyfromthewaveofN2H5+

oxidation.

Nevertheless,considering eitherexplanation((1) or(2)),the dependenceofthemaximumcurrent(at1.1V)onthehydrazinium nitrate concentration for concentrations higher than 10mM (Fig.2b)seemstobequasi-linearinspiteofacertaindispersion ofthepoints.

Icurrentat1.1VA=−6.13×10−5[HNitrate]mmolL−1, R2=0.979

(3.1.2.4)

Thislinearevolutionappearstobe‘normal’becausethefinal product(N2)and,consequently,theoverallelectronnumber(4e−)

are the same. In addition, according to either the first or sec-ondexplanation,theoverallconcentrationofhydraziniumnitrate remainsthesame;therefore,theoverallcurrent(at1.1V)changes linearlywiththeconcentration,inspiteofthepartialpassivation oftheelectrode.

Tafelplots(lni=lni0+˛nF/RT)forthecurvesobtainedin1mM

hydraziniumnitratewerealsousedtodeterminei0,˛andk0.i0was

foundtobe4.4×10−5Acm2,assumingn=2;˛andk0werefoundto

be0.2and10−4cms−1,respectively.Thisvalueofk0indicatesthe

slightlyirreversibleelectrochemicalbehaviorofthehydrazinium nitrate/nitrogensystem.

3.2. Electrochemicalcharacterizationofthesystemsby transient-statecyclicvoltammetryandsteady-statelinear voltammetry

3.2.1. Oxalicacid

Toobtainabetterunderstandingoftheoxalicacidoxidation mechanism,variouscyclicvoltammogramswererecorded with-outstirringatdifferentpotentialscanrates.ThePt-diskanodewas immersedina5mMsolutionofoxalicacidcontaining2Mnitric acid.Theanalysisofthevoltammograms(Fig.3(a))showsthatthe magnitudeofthenetcurrentoftheanodicpeakobservedat∼1V increaseslinearlywiththesquarerootofthepotentialscanrate (Fig.3(b)).ThisfindingindicatesthatoxidationonPtisnot lim-itedbyadsorptionphenomena[1]butratherisdiffusionlimited. Ontheotherhand,theanodiccurvecontainsonlyonesignal, indi-catingthatthetwoelectronsareexchangedsimultaneously.The cathodicpeaksatE=0.4Vwerealsoobtainedduringthestudyof thesupportingelectrolyteandarenotduetotheoxalicacid/carbon dioxidesystem.

Therepresentationofthepotentialoftheanodicpeak(Epeak) vs. thelogarithm of thepotential scan rateis indicative ofthe reversibilityofthesystem[22].Forasimpleelectrochemical sys-tem,Epeakvarieslinearlywithlnrinaccordancewith

Epeak=E0−˛ R×T ×n˛×F



0.78+lnD 0.5 k0 +ln ˛×n˛×F×r0.5 R×T



(3.2.1.1) whereE0isthestandardpotentialoftheelectroactivesystem(V),

n˛isthenumberofelectronsexchangedinthecharge-transferstep,

k0istheintrinsicheterogeneouselectronictransferrateconstant

(cms−1),Risthegasconstant(8.31Jmol−1K−1),Tistheabsolute

(5)

-0.0001 -0.00008 -0.00006 -0.00004 -0.00002 0 0.00002 0.00004 0.00006 0.00008 0.0001 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0

E (Volt vs SCE)

I / A

I = 0.0002.r

1/2

R

2

= 0.9992

0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.4 0.3 0.2 0.1 0

r

1/2

/ (V/s)

1/2

Ip / A

Ep = 0.018.ln(r) + 0.88 R2 = 0.992 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 5.5 4.5 3.5 2.5 ln (r) Ep / V

(a)

(b)

(c)

(5) (4) (3) (2) (1)

Fig.3.(a)PotentialscanratedependenceontheshapeofcyclicvoltammogrammsobtainedonaPtrotatingdiskelectrode(S=0.125cm2),immersedin5mMoxalicacid:

supportingelectrolyte2MHNO3withoutstirring;(1)20mVs−1;(2)50mVs−1;(3)75mVs−1;(4)100mVs−1;(5)150mVs−1;(b)theanodicpeakcurrentIpeakvs.r1/2and(c)

dependenceofthepeakpotentialEpeakvs.ln(r).

Fig. 3(c) shows the linear evolution of Epeak vs. lnr

(Epeak(V)=0.881+0.018lnr(Vs) with R2=0.992), indicating that

theoxidation ofoxalicacidtocarbon dioxideisanirreversible process.Theslopeofthisline,(RT)/(2˛n˛F)=0.018,indicatesthat

˛×n˛≈0.7.Becausetwoelectronsareexchanged,˛≈0.4.Onthe otherhand,thediffusivityofoxalicacidandthestandardpotential E0mustbeknowntodeterminek0fromtheY-interceptofthisline:

0.881=E0+˛ R×T ×n˛×F



0.78+lnD 0.5 k0 +0.5ln ˛×n˛×F R×T



. Inthisstudy,thevalue0.7Vvs.Ag/AgClnearEI=0,inagreement

withFig.4(a),waschosenasE0toestimatek0.Underthese

con-ditions,thediffusioncoefficient(Doxalicacid)canbedeterminedby

theLevichequation(3.2.1.2):

Ilim,i=0.62×n×S×F×D2/3i ×ω1/2×−1/6×Csol

i [22](3.2.1.2)

whereIlim,iistheanodiclimitingcurrent,nistheoverallnumberof

electronsinvolved,Cisolistheconcentrationofspeciesiinsolution (molm−3),ωistherotationalspeedoftheelectrode(rads−1),is

thekinematicviscosityofthesolution(m2s−1)andSisthe

geo-metricsurfaceareaoftheworkingelectrode(m2)immersedina

5mMsolutionofoxalicacid.Severallinearvoltammogramswere recordedatvariousangularvelocitiesωandthepotentialscanrate was0.005Vs−1(Fig.4(a)).

Theincreaseintheanodiclimitingcurrentwithωreflectsan increaseinthefluxoftheelectroactivespeciesattheworking elec-trodeinterface.Theplotoftheanodiclimitingcurrents(Ilim)vs.the

squarerootoftherotationalspeed(√ω)inFig.4(b)showsalinear evolutionandallowsDoxalicacidtobedetermined.UsingtheLevich equation(3.2.1.2)and consideringthat n=2e−,S=0.03cm2 and

=10−2cm2s−1,Doxalicacidwasfoundtobe2.9×10−7cm2s−1.For

comparison,chronoamperometry(Cottrellequation[22])and/or voltammetry(Randles–Sevcikequation[22])studiesconductedat

neutralpH[6,7,19]revealedvaluesofDoxalicacidintherange10−8

to10−5cm2s−1.The wide dispersionofthe Doxalicacid values is

surprisingandsuggestspossibleinteractionsbetweenoxalicacid moleculesand/orbetweenoxalicacidandnitricacidmolecules.

Consideringthediffusivity ofoxalic acid(2.9×10−7cm2s−1)

andthereportedvalueofE0 foroxalicacid,theinterceptofthe

straightline(Fig.3(c))showsthatk0

≈1.6×10−6cms−1.Thisvalue

isvery sensitivebecauseofthehighuncertaintyin the estima-tionoftheintercept(Fig.3(c)),butitverifiesthevalue10−6cms−1

obtainedwithTafel’sLawinSection3.1.1.Astudyofthesensitivity oftheoxalicaciddiffusioncoefficientdependingontheoperating conditionsisdetailedbelow.

3.2.2. Hydraziniumnitrate

Severalcyclicvoltammogramswererecordedoveraverywide range ofpotentialscan rates (20mVs−1 to27.5Vs−1)tobetter

understandthemechanismoftheanodicoxidationofhydrazinium nitrate.The potentiostat used wasnot compatible with poten-tialscanrateshigherthan27.5Vs−1.Theworkingelectrodewas

immersedina5mMsolutionofhydraziniumnitratein2Mnitric acid. The resulting cyclic voltammograms (Fig. 5) indicate an increase inthemagnitude ofthecurrent of theoxidation peak observedatE=0.4–0.5V.Thecathodicpeakwasalsoobtained dur-ingthestudyofthesupportingelectrolyteandthuswasnotdueto thehydraziniumnitrate/nitrogensystem.Forpotentialscanrates higherthan 3Vs−1,a second signalappearsat 0.8V, indicating

thattheoxidationofhydraziniumnitrateonPtinvolvesatleast twosteps,witharelativelystableintermediate.Athirdoxidation shoulderappearsat∼1.2Vwhenrexceeds20Vs−1.Hydrazinium

nitrateisoxidizedonPtintwoorthreesuccessivestepsandtends toconfirmthemechanism(3.1.2.1a)–(3.1.2.1e).

Themagnitudeof theoxidation peakcurrent Ipeak is plotted vs. √r in Fig.6(a).For potentialscan rates ranging from20 to 200mVs−1,Ipeak increases linearlywith √r, indicating that the

(6)

Fig.4.(a)InfluenceoftheangularvelocityofthePtrotatingdisk(S=0.125cm2)anodeonthelinearvoltammogramms,obtainedatthesteadystate(potentialscanrate:

0.005Vs−1).Oxalicacid5mMin2MHNO3;(1)250rpm,(2)500rpm,(3)750rpm,(4)1000rpm,(5)1250rpm,(6)2000rpm;(b)thevariationofanodiclimitingcurrentsvs.

ω1/2.

oxidationofhydraziniumnitrateonPtislimitedbydiffusion.For higherpotentialscanrates(intherange0.2–27.5Vs−1),theslope

of thestraight linedecreasestothehalfof thepreviousvalue, indicatingthatmasstransferremainsthelimitingphenomenon. Inaddition,thenumberofexchangedelectronswasdividedby2. Apossibleexplanationcouldbethatafirstbi-electronicoxidation occurs for high values of r, followed by a second bi-electronic oxidationoftheintermediateelectrogeneratedattheelectrode.

Fig.6(b)presentstheevolutionofthepeakpotentialvs.the log-arithmofthepotentialscanrate.Twodifferentevolutionscanbe observed:

Fig.5. Influenceofthepotentialscanrateontheshapeofcyclicvoltammogramms obtainedonPtrotatingdisk,immersedin5mMhydraziniumnitratein2MHNO3;

(a)(1)20mVs−1;(2)50mVs−1;(3)75mVs−1;(4)100mVs−1;(5)150mVs−1;(6) 175mVs−1;(7)200mVs−1;(b)(7)200mVs−1;(8)800mVs−1;(9)3.2Vs−1;(10) 12.8Vs−1;(11)27.5Vs−1.

(i) Forpotentialscanrateslowerthan1Vs−1,theincreaseofthe

peak potentialvs. lnrwasvery slow (Epeak(V)=0.345+0.011

ln r(Vs−1); R2=0.81), meaning that the corresponding

elec-troactivesystemis practicallyreversible undertheselected operating conditions. A similar treatment of oxalic acid (the diffusivity is discussed in next section) shows that k0

≈8×10−3cms−1 and˛×n˛≈1.Thevalueofk0 confirms theslightlyirreversibleelectrochemicalnatureofthissystem. (ii)For potential scan rates higher than 1Vs−1, Fig. 6(b)

shows a linear evolution of the peak potential vs. lnr (Epeak(V)=0.22+0.0321 lnr(Vs−1); R2=0.94). The ratio ofthe

slopesforevolutions(i)and(ii)isequalto3,whichisrelated toalowervalueof˛×n˛forthecorrespondingelectroactive

system.Consideringthatonlythefirstbi-electronicoxidationof hydraziniumnitratewasobservedforhighrvalues,thevalueof n˛in˛× n˛couldbelowerandmayprovideapossible

expla-nationfortheobservedresults.Ontheotherhand,operating athighpotentialscanratesleadstoI/Ecurvesbeingstrongly

y = 1.34.10-3.r1/2 R2 = 0.994 y = 5.69.10-4.r1/2 + 8.86.10-4 R2 = 0.995 0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5 4 3 2 1 0

r

1/2

/ (V/s)

1/2

Ip

/

A

y = 1.09.10-2.ln(r) + 0.345 R2 = 0.813 y = 3.21.10-2.ln(r) + 0.222 R2 = 0.939 0.3 0.4 0.5 0.6 10 8 6 4 2

ln (r)

E

p

(

V

)

v

s

S

C

E

(a)

(b)

Fig.6. (a)EvolutionoftheanodicpeakcurrentIpeakvs.r1/2;

(7)

Fig.7.(a)InfluenceoftheangularvelocityofthePtrotatingdiskontheshapeofcurrent–potentialcurves,obtainedwith5mMhydraziniumnitratein2MHNO3.(1)250rpm;

(2)500rpm;(3)750rpm;(4)1500rpm;(b)thevariationofanodicmaximumcurrent(1–1.1V)vs.ω0.5.

influencedbytheohmicdropcausedbythesolutionbetween theworkingandreferenceelectrodes.Toobtainthetruecurves, theohmicdrophastobecompensateddynamically; unfortu-nately,theinstrumentsthatareavailableareunabletoperform thisoperation.

Toevaluatethediffusivityofhydraziniumnitrate, voltammo-gramswereplottedatthesteadystateforvariousangularvelocities ofthePt-diskanode(Fig.7a);theworkingelectrodewasimmersed ina5mMsolutionofhydraziniumnitrateandthepotentialscan ratewas0.005Vs−1.Strongoscillations(noise)inthelimitingpart

ofthecurrentpotentialcurveswerecausedbynitrogenbubbles. Forlowangularvelocities,thecurvesshowonesignalcontaininga diffusionwaveatpotentialsrangingfrom0.5to1.5V.Forangular velocitieshigherthan750rpm,thecurvesclearlyindicateafirst sig-nal(0.2–0.6V)withaplateauat0.55V,followedbyasecondsignal forpotentialshigherthan0.7V.Evenifthemagnitudeofthissecond signaldecreasesforpotentialsabove1.2V,thisdropdoesnot irre-versiblyaffecttheelectrodesurfaceandthesecurvescanbe repro-ducedwithoutanyelectrodetreatment.Apossibleexplanationfor thecurrentdecreasecouldbethe“masking”oftheelectrodebythe largeamountofnitrogenelectrochemicallygeneratedattheanode. Thepreviously discussed acid–baseequilibrium (cf (3.1.2.1)) allowsvariousformsofhydraziniumnitratetoappearandcould explainthepresenceoftwoverydistinctsignals.Inaddition,at highstirringrates,thehighcurrentamplituderesultedinlarge nitrogenbubbles,maskingthedisksurface.Intermediateformsof hydraziniumnitratecouldthenaccumulateattheinterfaceand theiroxidationcouldbeseparatelyobserved.

Alinearevolutionofthelimitingcurrent(at0.7V)vs.thesquare rootoftheangularvelocity(Fig.7(b))wasobserved,meaningthat thecurrentwaslimitedbymass-transferphenomena.According totheLevichequation(3.2.1.2)andtakingintoaccountthatn=4, S=0.03cm2 and =10−2cm2s−1, the value of Dhydraziniumnitrate

wasfound to be5.2×10−6cm2s−1.For comparison, studies of

theoxidationofhydrazine inseveralmedia[12,15,18]reported valuesofDhydrazinerangingfrom2.5×10−6to8.2×10−6cm2s−1,

similartothevalueofDhydraziniumnitratefoundinthiswork. How-ever,hydraziniumnitrateexhibitscomplexchemistryinnitricacid media[21];astudyofthesensitivityofthisdiffusioncoefficient dependingontheoperatingconditionsisdetailedbelow.

3.3. Effectsoftheoperatingconditionsonthediffusion coefficients

The previous experiments demonstrate the high sensitivity of the measurement of the diffusion coefficients due to the

existence of molecular interactions and/or chemical equilibria, whichmaypossiblyberelatedtotheactivityofnitricacid.The approachdetailedbelowwasimplementedtostudythisinfluence inanexperimentaldesigncontext.Themethodsusedtoanalyzethe resultscanbeassociatedwithaphysical-responsemodelbasedon experimentalparameterswithaminimumnumberoftests. Var-iousexperimentaldesignswereimplementedandanalyzedwith thesoftwareprogramLumiere4.45©.

3.3.1. Influenceofoxalicacidandnitricacidconcentrationson Doxalicacid

In this study, given the number of factors (2) to be stud-iedandassumingalinearexperimentalmodel,a2pfull-factorial

experimental design was used. The factors studied were the concentrations of oxalicacidand nitricacid; theresponse was Doxalicacid determinedbychronoamperometryusingtheCottrell equationwithanappliedpotentialof1.1V.Theresultsare summa-rizedinTable1(a),whereX1istheoxalicacidcodedvariable,X2is

thenitricacidcodedvariableandK,theD(X1,X2)ratioofD(−1,−1),

isadimensionlessresponse.

Theanalysisofthisexperimentaldesignincodedvariablesand responseKprovidedthecorrelationmatrix(Table1(b)).The diago-nalof“1”showsthatthemaineffectsandsecond-orderinteractions donotoverlap.

Table1

(a)Effectofnitricacidonthediffusioncoefficientofoxalicacid;(b)correlation matrix;(c)histogramofeffects.

(a)

X1 X2 [Oxalic

acid](mM)

[Nitricacid](M) Doxalicacid(cm2s−1) K

−1 −1 1 0.2 1.7E−08 1 1 −1 10 0.2 1.2E−08 0.71 −1 1 1 2 5.3E−07 31.1 1 1 10 2 4.3E−07 25.6 (b) X1 X2 X1×X2 X1 1 X2 0 1 X1×X2 0 0 1 (c) Effects % X2 97.99 X1 1.11 X1×X2 0.9

(8)

Thecoefficientsofthepolynomialresponsevs.themaineffects andinteractionswerecalculatedbymultiplelinearregressionin theLumiere program.Table1(c)lists thecoefficientsaccording totheirmagnitudeinthepolynomial.Thistableshowsthe sig-nificantinfluenceofthenitricacidconcentrationinthemedium onDoxalicacid.Theplotofthispolynomialresponseasafunction

ofX1 andX2 indicatesthattheeffectoftheoxalicacid

concen-trationonDoxalicacid islimited atlow nitricacidconcentrations (<1M)butincreasesforhighernitricacidconcentrations(≥1M). Thisbehaviormayreflecttheexistenceofinteractions between oxalicacidmolecules,forexamplethehydrogenbond[20], depend-ingonthenitricacidconditionsinthemedium.Adeviationofless than15%betweenthemathematicalmodelandtheexperimental resultreflectsthesatisfactoryagreementbetweenthemodeland theexperiment.

3.3.2. Influenceofthehydraziniumnitrateandnitricacid concentrationsonDhydraziniumnitrate

Although Dhydraziniumnitrate was consistent with the data

reportedintheliterature,itseemed interestingwithrespectto thestudyofoxalicacidtodeterminetheinfluenceoftwofactors, theconcentrationsofhydraziniumnitrateandnitricacid,onthe Dhydraziniumnitrateresponse.

According to Moisy et al. and given the existence of two N2H5+/N2H62+chemicalequilibriumconstants(Ka=0.09[23]and

Ka=0.4[24])from1Minnitricacid,threefullexperimentaldesigns

wereimplementedinthreelevels.Thus,thepeaks,themidpoint ofeachsideand thecenterofasquare definetheexperimental matrix.

TheDhydraziniumnitrateresponsewasdeterminedby chronoam-perometrywiththeCottrellequationforanappliedpotentialof 0.75V.TheresultsaresummarizedinTable2(a)–(c),whereX1is

thehydraziniumnitratecodedvariable,X2isthenitricacidcoded

variableandK,theD(X1;X2)ratioofD(−1,−1),isadimensionless

response.ForTable2(b)and(c),thehydraziniumnitrate concen-trationswereeffective;therefore,theconcentrationofhydrazine introducedintothemediumwasdeterminedfromthedifferent equilibriumconstantssuchthatthemeanhydraziniumnitrate con-centrationwasbetween0.1mMand1M.

Theanalysisoftheseexperimentaldesignsincodedvariables andresponseKprovidedthecorrelationmatrix(Table2(d)).The diagonalof“1”showsthatthemaineffectsandsecond-orderand quadraticinteractionsdonotoverlap.

Thecoefficientsofeachpolynomialresponseasafunctionof themaineffectsandinteractionswerecalculatedbymultiplelinear regressionintheLumiereprogram.Foreachpolynomialresponse, thevaluesofthesecoefficientsdemonstratethesignificant influ-enceofthehydraziniumnitrateandnitricacidconcentrationson Dhydraziniumnitrate.Theplotsofthesepolynomialresponsesasa func-tionofX1andX2indicatethefollowing:

• For low nitric acid concentrations (< 1M), Dhydraziniumnitrate

decreasesasthenitricacidconcentrationincreases.Inthiscase, itispossibletoconcludethatthereisagoodcorrelationbetween themathematicalmodelandtheexperiment;bothrevealedthe existenceofamaximumvalueforahydraziniumnitrate concen-trationof0.55mM.

• Forhighnitricacidconcentrations(≥1M),whenKa=0.09[23],

Dhydraziniumnitrate again decreased as the HNO3 concentration

increased.However,aboveapproximately0.7mMhydrazinium nitrate,Dhydraziniumnitrateincreasedwiththenitricacid concentra-tion.Inthiscase,themathematicalmodelwaspoorlycorrelated withtheexperimentalvalues.

• For highnitricacidconcentrations(≥1M),whenKa=0.4[24],

Dhydraziniumnitrate again decreased as the HNO3

concentra-tion increased;however, above a nitricacid concentrationof

Table2

Effectofnitricacidonthediffusioncoefficientofhydraziniumnitrate:(a)with 0.2≤[nitric acid]<1M; (b) with 1≤[nitric acid]<2M and Ka=0.09; (c) with

1≤[nitricacid]<2MandKa=0.4;(d)correlationmatrix.

(a)

X1 X2 [Hydrazinium

nitrate](mM)

[Nitricacid](M) Dhydraziniumnitrate

(cm2s−1) K −1 −1 0.1 0.2 6.2E−08 1 0 −1 0.55 0.2 5.7E−06 92 1 −1 1 0.2 2.3E−06 37 −1 0 0.1 0.6 5.2E−08 0.83 0 0 0.55 0.6 4.3E−06 70 1 0 1 0.6 1.9E−06 31 −1 1 0.1 1 5.6E−08 0.9 0 1 0.55 1 3.1E−06 50 1 1 1 1 2.3E−06 37 0 0 0.55 0.6 4.0E−06 65 0 0 0.55 0.6 4.4E−06 71 0 0 0.55 0.6 4.0E−06 65 0 0 0.55 0.6 4.5E−06 73 (b) X1 X2 [Hydrazinium nitrate](mM)

[Nitricacid](M) Dhydraziniumnitrate

(cm2s−1) K −1 −1 0.1 1 6.6E−05 1 0 −1 0.55 1 4.4E−06 0.06 1 −1 1 1 2.5E−06 0.04 −1 0 0.1 1.5 5.7E−05 0.9 0 0 0.55 1.5 3.3E−06 0.05 1 0 1 1.5 1.7E−06 0.02 −1 1 0.1 2 5.0E−05 0.8 0 1 0.55 2 3.8E−06 0.06 1 1 1 2 1.4E−06 0.02 0 0 0.55 1.5 3.0E−06 0.05 0 0 0.55 1.5 3.7E−06 0.06 0 0 0.55 1.5 3.4E−06 0.05 0 0 0.55 1.5 2.9E−06 0.04 (c) X1 X2 [Hydrazinium nitrate](mM)

[Nitricacid](M) Dhydraziniumnitrate

(cm2s−1) K −1 −1 0.1 1 1.7E−07 1 0 −1 0.55 1 2.9E−06 17 1 −1 1 1 8.0E−07 4.7 −1 0 0.1 1.5 8.7E−08 0.5 0 0 0.55 1.5 1.9E−06 11.2 1 0 1 1.5 1.0E−06 5.9 −1 1 0.1 2 1.1E−07 0.6 0 1 0.55 2 2.4E−06 14.1 1 1 1 2 8.0E−07 4.7 0 0 0.55 1.5 2.0E−06 11.8 0 0 0.55 1.5 1.8E−06 10.6 0 0 0.55 1.5 2.2E−06 12.9 0 0 0.55 1.5 1.9E−06 11.2 (d) X1 X2 X1×X2 X12 X22 X1 1 X2 0 1 X1× X2 0 0 1 X2 1 0 0 0 1 X2 2 0 0 0 0 1

approximately1.5M,Dhydraziniumnitrateincreasedwiththenitric acidconcentration.In this case, there wasa goodcorrelation betweenthemathematicalmodelandtheexperimentalvalues; bothrevealedtheexistenceofamaximumvaluewhenthe con-centrationof hydrazinium nitratewas0.55mM.These results confirmedthatthevalueofKa=0.4[24]closelyapproximatesthe

(9)

Fig.8.CurrentpotentialcurvesobtainedonthePtrotatingdiskanodeimmersed withinprocesseffluentsolutioncontainingbothhydraziniumnitrateandoxalicacid at0.1Min2MHNO3.1000rpm;25◦C;potentialscanrate:0.005Vs−1.

3.4. Electrochemicalbehaviorofbothcomponentsinprocess effluent

Hydraziniumnitrateandoxalicacidwerestudiedin process effluentin0.1Mand2Mnitricacid,respectively.AsshowninFig.8, thetwosignalsobservedareattributedtohydraziniumnitrateand oxalicacid.Thefirstsignal,whichisthehydraziniumnitratesignal, showsamaximumfollowedbyaslightdecreaseincurrentcaused bynitrogenbubbles.Thesecondsignal,whichisattributedtothe oxalicacidaffectedby nitrogenbubbles,isverynoisy.Despites thesenoiseproblems,theresultsshowthat thesespeciescould bedetectedseparately and inthe case oftheircontinuous and simultaneousdetection,anoptimized electrochemicalcellmust bedesignedtoensuretherapidand continuousremovalofthe electrogeneratedbubblesandtoimprovethesensitivityofthe elec-trochemicalresponseofthesystem.

4. Conclusion

Theoxidationofoxalicacidandhydraziniumnitratewas stud-iedona Pt anodein nitricacid media.Theoxidation of oxalic acidwasobservedat0.7V(vs.Ag/AgCl)andcarbondioxide bub-bles wereobserved on thesurface of the electrode. Within an analyticalframework,theinfluenceofthisphenomenonmustbe reducedbecauseoftheeffectontheelectroactivesurfaceofthe electrode.Theelectrokineticparameters determinedcorrespond toanirreversiblesysteminwhich twoelectronsareexchanged simultaneously.Intheoxalicacidconcentrationrangefrom1mM to100mM,alinearevolutionofthelimitingcurrentvs.the con-centrationwasproposed.

The oxidation of hydrazinium nitrate begins at a potential of 0.3V (vs.Ag/AgCl) and yields a separatesignalfrom that of oxalicacid. Theformationofnitrogenbubbleswasobservedfor concentrationsabove5mM.Cyclicvoltammetrystudieswere per-formedat highscanrates totrytounderstand themechanism ofhydraziniumnitrateelectrooxidation.Forhighvaluesofr,the resultsdemonstratethattheoxidationofhydraziniumoccursin morethanonestep.Alinearevolutionofthelimitingcurrentvs. theconcentrationofhydraziniumnitratewasobservedinthe con-centrationrangebetween1mMand75mM.

The diffusion coefficients of oxalic acid and hydrazinium nitratein nitricacid mediawere determined; the values were 2.9×10−7cm2s−1and5.2×10−6cm2s−1,respectively.Aspartof

thisdetermination,theexperimentaldesignapproachesthatwere implementedrevealedtheinfluenceofthenitrateconcentration onthesediffusioncoefficients.Foroxalicacid,thisinfluencecanbe

explainedbytheexistenceofhydrogeninteractionsbetweenthe molecules.Fornitricacidconcentrationshigherthan1Minnitric acid, hydrazinium nitrate forms divalent hydrazinium cations, whosepresencestronglyinfluencesthevalueofthehydrazinium nitratediffusioncoefficient.

Inacidicmedia,thetwospeciescanbedetectedatthesame time,althoughbubblingeffectsinterferewiththewave measure-ments.Thisworkprovidesinterestingperspectiveswithrespectto theelectrochemicalanalysisofthesespecies,includingthe under-standingoftheiroxidationprocesses.

References

[1]S. Ferro, C.A. Martinez-Huitle, A. De Battisti, Electro-oxidation of oxalic acid at different electrode materials, J. Appl. Electrochem. 40 (2010) 1779–1787.

[2] M.J.Chollier-Brym,F.Epron,E.Lamy-Pitara,J.Barbier,Catalyticand electrocat-alyticoxidationofoxalicacidinaqueoussolutionsofdifferentcompositions,J. Electroanal.Chem.474(1999)147–154.

[3]Chang-ZhiZhao,NaoyoshiEgashira,YoshiakiKurauchi,KazuyaOhga, Electro-chemiluminescenceoxalicacidsensorhavingaplatinumelectrodecoatedwith chitosanmodifiedwitharuthenium(II)complex,Electrochim.Acta43(1998) 2167–2173.

[4]NaoyoshiEgashira, HirofumiKumasako,YoshiakiKurauchi,Kazuya Ohga, Selective determination ofoxalate with a ruthenium(II) complex/nafion-modifiedelectrodecombinedwithacarbondioxidesensor,Anal.Sci.10(1994) 405–408.

[5]InnocenzoG.Casellaa,CarloG.Zambonina,FabrizioPrete,Liquid chromatogra-phywithelectrocatalyticdetectionofoxalicacidbyapalladium-basedglassy carbonelectrode,J.Chromatogr.A833(1999)75–82.

[6]Biljana ˇSljuki´c,RonanBaron,RichardG.Compton,Electrochemical determi-nationofoxalateatpyrolyticgraphiteelectrodes,Electroanalysis9(2007) 918–922.

[7] FloricaManea,CiprianRadovan,IoanaCorb,AnielaPop,GeorgetaBurtica, Pla-menMalchev,StephenPicken,JoopSchoonman,Electrochemicaloxidationand determinationofoxalicacidatanexfoliatedgraphite–polystyrenecomposite electrode,Sensors7(2007)615–627.

[8] Yang Liu, Jianshe Huang, Dawei Wang, Haoqing Hou, Tianyan You, Electrochemicaldeterminationofoxalicacidusingpalladium nanoparticle-loaded carbon nanofiber modified electrode, Anal. Methods 2 (2010) 855–859.

[9] T.A.Ivandini,T.N.Rao,AkiraFujishima,YasuakiEinaga,Electrochemical oxida-tionofoxalicacidathighlyboron-dopeddiamondelectrodes,Anal.Chem.78 (2006)3467–3471.

[10] Shin-ichiYamazaki,NaokoFujiwara,KazuakiYasuda,Acatalystthatusesa rhodiumphthalocyaninforoxalicacidoxidationanditsapplicationtoanoxalic acidsensor,Electrochim.Acta55(2010)753–758.

[11]Shin-ichiYamazaki,YusukeYamada,NaokoFujiwara,TsutomuIoroi,Zyun Siroma,HiroshiSenoh,KazuakiYasuda,Electrochemicaloxidationofoxalic acidbyRhoctaethylporphyrinadsorbedoncarbonblackatlowoverpotential, J.Electroanal.Chem.602(2007)96–102.

[12]JingLi,XiangqinLin,Electrocatalyticoxidationofhydrazineandhydroxylamine atgoldnanoparticle– polypyrrolenanowiremodifiedglassycarbonelectrode, SensorsActuat.126(2007)527–535.

[13]Abdollah Salimi, Layla Miranzadeh, Rahman Hallaj, Amperometric and voltammetricdetectionofhydrazineusingglassycarbonelectrodes mod-ified with carbon nanotubes andcatechol derivatives,Talanta 75(2008) 147–156.

[14]Yogeswaran Umasankar, Tzu-Yen Huang, Shen-Ming Chen,Vitamin B12 incorporatedwithmultiwalledcarbonnanotubecompositefilmforthe deter-minationofhydrazine,Anal.Biochem.408(2011)297–303.

[15]HamidR.Zare,NavidNasirizadeh,Hematoxylinmulti-wallcarbonnanotubes modifiedglassycarbonelectrodeforelectrocatalyticoxidationofhydrazine, Electrochim.Acta52(2007)4153–4160.

[16]Jyh-Myng Len, Jen-Sen Tang, Flow injection amperometric detection of hydrazine by electrocatalytic oxidation at a perfluorosulfonated lonomer/ruthenium oxide pyrochlore chemically modified electrode, Anal.Chem.67(1995)208–211.

[17]Cuihong Zhang,Guangfeng Wang, Yulan Ji, Min Liua, Yuehua Feng, Zhi-danZhang,BinFang,Enhancementinanalyticalhydrazinebased ongold nanoparticlesdepositedonZnO–MWCNTsfilms,SensorsActuat.B150(2010) 247–253.

[18]Yuan-DiZhao,Wei-DeZhang,HongChen,Qing-MingLuo,Anodicoxidation ofhydrazineatcarbonnanotubepowdermicroelectrodeanditsdetection, Talanta58(2002)529–534.

[19]C.Bock,A.Smith,B.MacDougall,AnodicoxidationofoxalicacidusingWOx basedanodes,Electrochim.Acta48(2002)57–67.

[20] MariuszP.Mitoraj,RafałKurczab,MarekBoczar,ArturMichalak, Theoreti-caldescriptionofhydrogenbondinginoxalicaciddimerandtrimerbased onthecombinedextended-transition-stateenergydecompositionanalysisand

(10)

naturalorbitalsforchemicalvalence(ETS-NOCV),J.Mol.Model.16(2010) 1789–1795.

[21]A.C.Kappenstein,Ph.Moisy,G.Cote,P.Blanc,Contributionoftheconceptof simplesolutionstocalculationofthestoichiometricactivitycoefficientsand densityofternarymixturesofhydroxylammoniumorhydraziniumnitratewith nitricacidandwater,Phys.Chem.Chem.Phys.2(2000)2725–2730.

[22]A.J.Bard,L.R.Faulkner,Électrochimie:principes,méthodesetapplications, Masson,Paris,1983.

[23]W.E.Schimdt,HydrazineanditsDerivatives,JonhWileyandSons,NewYork, 1984.

[24]S.Kotrly,L.Sucha,HandbookofChemicalEquilibriainAnalyticalChemistry, EllisHorwood,Chichester,1985.

Figure

Fig. 1. [Ox. ac.] or oxalic acid’s concentration dependence on the current–potential curves, obtained on Pt rotating disk
Fig. 3. (a) Potential scan rate dependence on the shape of cyclic voltammogramms obtained on a Pt rotating disk electrode (S = 0.125 cm 2 ), immersed in 5 mM oxalic acid:
Fig. 4. (a) Influence of the angular velocity of the Pt rotating disk (S = 0.125 cm 2 ) anode on the linear voltammogramms, obtained at the steady state (potential scan rate:
Fig. 7. (a) Influence of the angular velocity of the Pt rotating disk on the shape of current–potential curves, obtained with 5 mM hydrazinium nitrate in 2 M HNO 3
+2

Références

Documents relatifs

The main purpose of this letter is to demonstrate that the cloud phase assumption made in previous cirrus clouds re- trievals using infrared split window signatures is not

Parmi la diversité des fluides hydrothermaux pouvant être impliqués dans la formation de gisements d’or, il semble que les fluides magmatiques soient les plus efficaces

The noise properties of the stabilized laser emission are investigated in order to evaluate the contribution of the dual frequency OP-VECSEL to the performance

past GST values as sampled by the rj-MCMC algorithm (50,000 iterations) for noisy synthetic data with 3-D forward model allowing also for the uncertainty on the basal heat flux

-9 ـِؾإج مآه ثامىلٗم ةعاضلا ةصىجلا تلماكلا : ضبلا ًم ءاكوب مآه ثامىلٗم لزاص تؿؾاالإا ذمؿٌ تب٢اغمب ثاُلمٗلا ةعىهب ةغمخؿم غٞىٍو تمىلٗالإا يف

Altogether, these data show that copper efflux is essential for LGP32 survival in hemocytes, expression of intracellular cytotoxicity, host colonization and virulence

Les modèles scientifiques, techniques et économiques à la base des politiques agricoles du 20e siècle qui ont conduit à l’intensification sont contestés ; les

10 Czech Technical University in Prague, Prague, Czech Republic 11 Center for Particle Physics, Institute of Physics,.. Academy of Sciences of the Czech Republic, Prague,