• Aucun résultat trouvé

Post-invasion evolution of an invasive plant : altitudinal differenciation in germination and growth

N/A
N/A
Protected

Academic year: 2021

Partager "Post-invasion evolution of an invasive plant : altitudinal differenciation in germination and growth"

Copied!
47
0
0

Texte intégral

(1)

Post-invasion evolution of an invasive plant :

altitudinal differenciation in germination, phenology

and growth

Arnaud Monty

Grégory Mahy

Laboratory of Ecology, Gembloux Agricultural

University, Passage des Déportés 2, 5030

(2)
(3)

Studied taxon:

Senecio inaequidens DC.

Perrenial herbaceous shrub from South Africa and Lesotho

Numerous yellow capitulae; Plumed wind-dispersed achenes

Rapid germination, no dormancy

Early flowering (1st Year), long flowering period

(4)

Studied taxon:

Senecio inaequidens DC.

In the indigeneous range:

diploid

and

tetraploid

populations

In the introduction range:

tetraploids

only

Introduction history:

 Wool alien at the end of the 19th century

Verviers (Belgium) : 1892

Bremen (Germany) : 1896

Mazamet (France) : 1936

Verona (Italy) : >1940

 Lag time: populations only found in wool industry areas

 1950-1970: Rapid spread through western Europe

(5)

Senecio inaequidens DC.:

…an appropriate model for evolutionary studies!

Invasion history precisely known

Independant introduction spots (link between all populations of a country)

Spread, from these spots, through climate contrasted areas

Climate = potentially the main selection agent :

 Few natural ennemies altering fitness

 Little variability in invaded soils

 Anemochorous dispersion

 Little competition (pioneer species)

 Generalist pollination system

Appropriate model for evolutionary studies

considering climate as a selection agent

(6)

Invasion process:

…two main evolutionary phases

Primary evolution phase:

(More studied)

Introduction  Naturalisation  Primary invasion

Secondary evolution phase:

(Less studied)

(7)

Objectives of the study:

Using common garden experiment to assess the species differenciation :

1) Between cytotypes

2) Between continents

(Primary evolution phase)

3) Along climatic gradients in Europe

(Secondary evolution phase)

… considering 1) Germination

2) Flowering phenology

3) Plant size

(8)
(9)

South Africa:

Tetraploid « control » zone

 2 populations x 10 individuals

Diploid zone

 2 populations x 10 individuals

Seed collection:

(10)

Europe:

2 altitudinal/climatic transects

South Africa:

Tetraploid « control » zone

 2 populations x 10 individuals

Diploid zone

 2 populations x 10 individuals

Seed collection:

(11)

Europe:

2 altitudinal/climatic transects

France:

 5 zones x 2 populations x 10

individuals

South Africa:

Tetraploid « control » zone

 2 populations x 10 individuals

Diploid zone

 2 populations x 10 individuals

Seed collection:

Topography:

0 – 1700 m

100 km

(12)

Europe:

2 altitudinal/climatic transects

France:

 5 zones x 2 populations x 10

individuals

Belgium:

 4 zones x 2 populations x 10

individuals

Seed collection:

Topography:

0 – 500 m

South Africa:

Tetraploid « control » zone

 2 populations x 10 individuals

Diploid zone

(13)

Total : 240 parent individuals

Seed collection:

Europe:

2 altitudinal/climatic transects

France:

 5 zones x 2 populations x 10

individuals

Belgium:

 4 zones x 2 populations x 10

individuals

South Africa:

Tetraploid « control » zone

 2 populations x 10 individuals

Diploid zone

(14)

Elimination of maternal effects:

Parent

individual

Capitulae

collected

Sorting of

achenes

10 biggest achenes

without anomaly

(15)

Sowing and measurements:

Sown in one pot

10 biggest achenes

without anomaly

1 plant was kept (6 months)

One plant

per parent

(16)

Sowing and measurements:

Sown in one pot

10 bigger achenes

without anomaly

1 plant was kept (6 months)

One plant

per parent

individual

Germination study

(n = 2400)

Phenology and growth study

(n = 240)

(17)

Sowing and measurements:

Sown in one pot

10 bigger achenes

without anomaly

1 plant was kept (6 months)

One plant

per parent

individual

• Germination delay (2 days)

• Germination window (2 days)

• Germination rate (2 days)

• Flowering delay (since germination) (everyday)

• Flowering delay (since sowing) (everyday)

• Plant height (every 25 days)

• Plant volume (every 25 days)

4

(18)
(19)

Statistical analysis:

(20)

Statistical analysis:

Comparison:

3 way - ANOVAs

(21)

Statistical analysis:

Comparison:

3 way - ANOVAs

• Between cytotypes

Between African control and

introduction areas (Verviers &

(22)

Statistical analysis:

Comparison:

3 way - ANOVAs

• Between cytotypes

Between African control and

introduction areas (Verviers &

Mazamet) (Primary evolution phase)

• Between zones of each gradient

(Secondary evolution phase)

(23)

Statistical analysis:

Comparison:

3 way - ANOVAs

• Between cytotypes

Between African control and

introduction areas (Verviers &

Mazamet) (Primary evolution phase)

• Between zones of each gradient

(Secondary evolution phase)

Correlation analysis:

Pearson’s r (linear), Spearman’s R (non-parametric)

(Secondary evolution phase)

For each gradients:

Population means vs Altitude

(24)
(25)

Results presentation:

r Pearson R Spearman

p p

p p

Correlation with altitude ( p value)

r Pearson R Spearman

p p

p p

Correlation with transect zones ( p value)

Significant result

For each trait:

Comparison (ANOVA) N p value Cytotypes 60 p

Primary evolution phase 80 p Zones of French transect 100 p

(26)

Germination delay

Germination window

Germination rate

Germination

Comparison (ANOVA) N p value Cytotypes 60 0,913

Primary evolution phase 80 0,445 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,313 0,165 0,046 0,059 0,086

Zones of Belgian transect 80 0,179 0,169 0,091 0,166 0,073

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,913

Primary evolution phase 80 0,889 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,897 0,591 0,476 0,5 0,561

Zones of Belgian transect 80 0,758 0,486 0,736 0,82 0,818

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,348

Primary evolution phase 80 0,611 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,213 0,532 0,7 0,683 0,683

Zones of Belgian transect 80 0,65 0,148 0,126 0,177 0,145

Correlation with altitude Correlation with transect zones ( p value) ( p value)

(27)

Germination delay

Germination

10 11 12 13 14 15 0 200 400 600 800 1000 1200 1400 1600 1800 Altitude (m) D él ai de pre m re ge rm ina ti on (

j)

Non-linear increase with altitude

French transect

Comparison (ANOVA) N p value

Cytotypes 60 0,913

Primary evolution phase 80 0,445 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,313 0,165 0,046 0,059 0,086

Zones of Belgian transect 80 0,179 0,169 0,091 0,166 0,073

Correlation with altitude Correlation with transect zones ( p value) ( p value)

(28)

Germination delay

Germination window

Germination rate

Germination

Comparison (ANOVA) N p value Cytotypes 60 0,913

Primary evolution phase 80 0,445 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,313 0,165 0,046 0,059 0,086

Zones of Belgian transect 80 0,179 0,169 0,091 0,166 0,073

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,913

Primary evolution phase 80 0,889 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,897 0,591 0,476 0,5 0,561

Zones of Belgian transect 80 0,758 0,486 0,736 0,82 0,818

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,348

Primary evolution phase 80 0,611 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,213 0,532 0,7 0,683 0,683

Zones of Belgian transect 80 0,65 0,148 0,126 0,177 0,145

Correlation with altitude Correlation with transect zones ( p value) ( p value)

(29)

Flowering delay (since germination)

Flowering delay (since sowing)

Flowering phenology

Comparison (ANOVA) N p value Cytotypes 60 0,15

Primary evolution phase 80 0,662 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,226 0,04 0,08 0,019 0,051

Zones of Belgian transect 80 0,716 0,17 0,57 0,218 0,643

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,061

Primary evolution phase 80 0,657 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,589 0,123 0,192 0,116 0,125

Zones of Belgian transect 80 0,285 0,227 0,217 0,156 0,217

( p value) ( p value)

(30)

Flowering delay (since germination)

Flowering phenology

82 83 84 85 86 87 88 89 90 0 200 400 600 800 1000 1200 1400 1600 1800 Altitude (m) D é la i de f lora is on de pu is ge rm ina ti on ( j)

Linear decrease with altitude and zones

French transect

Comparison (ANOVA) N p value

Cytotypes 60 0,15

Primary evolution phase 80 0,662 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,226 0,04 0,08 0,019 0,051

Zones of Belgian transect 80 0,716 0,17 0,57 0,218 0,643

( p value) ( p value)

(31)

Flowering delay (since germination)

Flowering delay (since sowing)

Flowering phenology

Comparison (ANOVA) N p value Cytotypes 60 0,15

Primary evolution phase 80 0,662 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,226 0,04 0,08 0,019 0,051

Zones of Belgian transect 80 0,716 0,17 0,57 0,218 0,643

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,061

Primary evolution phase 80 0,657 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,589 0,123 0,192 0,116 0,125

Zones of Belgian transect 80 0,285 0,227 0,217 0,156 0,217

( p value) ( p value)

(32)

Height (date 1)

Height (date 2)

Height (date 3)

Height (date 4)

Plant height

Comparison (ANOVA) N p value Cytotypes 60 0,527

Primary evolution phase 80 0,46 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,128 0,13 0,008 0,028 0,01 Zones of Belgian transect 80 0,171 0,231 0,289 0,333 0,482

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,439

Primary evolution phase 80 0,077 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,172 0,321 0,041 0,084 0,044 Zones of Belgian transect 80 0,04 0,096 0,07 0,078 0,062

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,493

Primary evolution phase 80 0,622 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,01 0,006 0,003 0,003 0,003 Zones of Belgian transect 80 0,562 0,872 1 0,897 1

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,443

Primary evolution phase 80 0,901 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,058 0,027 0,039 0,004 0,017 Zones of Belgian transect 80 0,394 0,097 0,071 0,076 0,062

( p value) ( p value)

(33)

Height (date 1)

Height (date 2)

Height (date 3)

Height (date 4)

Plant height

Comparison (ANOVA) N p value Cytotypes 60 0,527

Primary evolution phase 80 0,46 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,128 0,13 0,008 0,028 0,01 Zones of Belgian transect 80 0,171 0,231 0,289 0,333 0,482

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,439

Primary evolution phase 80 0,077 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,172 0,321 0,041 0,084 0,044 Zones of Belgian transect 80 0,04 0,096 0,07 0,078 0,062

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,493

Primary evolution phase 80 0,622 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,01 0,006 0,003 0,003 0,003 Zones of Belgian transect 80 0,562 0,872 1 0,897 1

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,443

Primary evolution phase 80 0,901 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,058 0,027 0,039 0,004 0,017 Zones of Belgian transect 80 0,394 0,097 0,071 0,076 0,062

( p value) ( p value)

(34)

Height (date 1)

Height (date 2)

Height (date 3)

Height (date 4)

Plant height

Comparison (ANOVA) N p value Cytotypes 60 0,527

Primary evolution phase 80 0,46 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,128 0,13 0,008 0,028 0,01 Zones of Belgian transect 80 0,171 0,231 0,289 0,333 0,482

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,439

Primary evolution phase 80 0,077 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,172 0,321 0,041 0,084 0,044 Zones of Belgian transect 80 0,04 0,096 0,07 0,078 0,062

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,493

Primary evolution phase 80 0,622 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,01 0,006 0,003 0,003 0,003 Zones of Belgian transect 80 0,562 0,872 1 0,897 1

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,443

Primary evolution phase 80 0,901 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,058 0,027 0,039 0,004 0,017 Zones of Belgian transect 80 0,394 0,097 0,071 0,076 0,062

( p value) ( p value)

(35)

Plant height

0 10 20 30 40 50 60 70 80 1 2 3 4 5 Zone climatique H a u te u r d u p la n t (c m ) 12-mai 06-juin 03-juil 26-juil

Decrease with altitude and zones

for each measurement date

French transect

Plant height

(cm

)

(36)

Plant height

0 10 20 30 40 50 60 70 80 1 2 3 4 5 Zone climatique H a u te u r d u p la n t (c m ) 12-mai 06-juin 03-juil 26-juil

Decrease with altitude and zones

for each measurement date

French transect

Plant height

(cm

)

(37)

Volume (date 1)

Volume (date 2)

Volume (date 3)

Volume (date 4)

Plant volume

Comparison (ANOVA) N p value Cytotypes 60 0,345

Primary evolution phase 80 0,579 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,055 0,249 0,098 0,05 0,106

Zones of Belgian transect 80 0,648 0,343 0,736 0,755 1

( p value)

Correlation with altitude Correlation with transect zones ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,008

Primary evolution phase 80 0,024 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,242 0,205 0,074 0,083 0,106

Zones of Belgian transect 80 0,058 0,648 0,61 0,676 0,729

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,084

Primary evolution phase 80 0,178 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,039 0,014 0,001 0,001 0,001 Zones of Belgian transect 80 0,836 0,614 0,867 0,82 0,909

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,379

Primary evolution phase 80 0,233 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,001 0,016 0,001 0 0

Zones of Belgian transect 80 0,537 0,131 0,233 0,157 0,22

( p value) ( p value)

(38)

Volume (date 1)

Volume (date 2)

Volume (date 3)

Volume (date 4)

Plant volume

Comparison (ANOVA) N p value Cytotypes 60 0,345

Primary evolution phase 80 0,579 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,055 0,249 0,098 0,05 0,106

Zones of Belgian transect 80 0,648 0,343 0,736 0,755 1

( p value)

Correlation with altitude Correlation with transect zones ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,008

Primary evolution phase 80 0,024 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,242 0,205 0,074 0,083 0,106

Zones of Belgian transect 80 0,058 0,648 0,61 0,676 0,729

Correlation with altitude Correlation with transect zones ( p value) ( p value)

Comparison (ANOVA) N p value Cytotypes 60 0,084

Primary evolution phase 80 0,178 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,039 0,014 0,001 0,001 0,001 Zones of Belgian transect 80 0,836 0,614 0,867 0,82 0,909

( p value) ( p value)

Correlation with altitude Correlation with transect zones

Comparison (ANOVA) N p value Cytotypes 60 0,379

Primary evolution phase 80 0,233 r Pearson R Spearman r Pearson R Spearman Zones of French transect 100 0,001 0,016 0,001 0 0

Zones of Belgian transect 80 0,537 0,131 0,233 0,157 0,22

( p value) ( p value)

(39)

Plant volume

0 50000 100000 150000 200000 250000 1 2 3 4 5 Zone climatique V ol um e du pl a nt ( c m ³) 12-mai 06-juin 03-juil 26-juil

Linear decrease with altitude and

zones

French transect

Plant vo

lum

e

(cm

³)

Transect zones

(40)

Plant volume

0 50000 100000 150000 200000 250000 1 2 3 4 5 Zone climatique V ol um e du pl a nt ( c m ³) 12-mai 06-juin 03-juil 26-juil

Linear decrease with altitude and

zones

French transect

Plant vo

lum

e

(cm

³)

Transect zones

(41)
(42)

Discussion: differences between cytotypes

Almost no differences between cytotypes

(43)

Discussion: primary evolution phase

Almost no differences between (a) African tetraploid control populations and

(b) Introduction areas populations

These results don’t support the hypothesis of a primary evolution phase…

 Phenotypic plasticity ?

… further data is needed (about reproductive success, winter survival,

biomass, …) to fully characterise the primary invasion.

(44)

Discussion: secondary evolution phase

Almost no differences along belgian transect…

…But clear differenciation along the French transect (more contrasted) !

Secondary evolution phase (rapid evolution) correlated with altitude

In France, plants originating from high elevations:

-

Germinate later : already shown for non-alien species

-

Bloom at a lower age : adaptation to shorter vegetation period ?

-

Remain smaller : harsher conditions, difference in trade-off between

reproduction and growth ?

(45)

5. Conclusion and

perspectives

(46)

• Difference between cytotypes

• Primary evolution phase

• Clinal evolution along altitudinal and climatic transect:

 Rapid evolution phenomenon in a secondary evolution phase

 In the future:

• Finer analysis: correlation with direct meteorological data

(real selection agent)

• Reciprocal transplants along the french gradient

 Understanding the adaptative benefit of the evolution

Collaboration needed…. ?!

Conclusion and perspectives

(47)

Thank you for your

attention !

Références

Documents relatifs

One is to trace the presence of these groves and of their dangerous inhabitants to religious ideas found in Kerala about land and deities, and about forests as

Other papers of this special issue cover various subjects: the retrieval algorithms (Kyr¨ol¨a et al., 2010a), the data characterization and error estimation (Tamminen et al., 2010),

N Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to

To link those localized plastic events to the global plastic deformation of the material, we do now creep experiments fixing the applied shear stress and monitoring both the

Initially, intelligence officers were intended to support police officers in the use of predictive policing technology, by helping them to make sense of algorithmic

europaeus (the common gorse) to test both physical dormancy and germination capacity within the range of temperatures found in the native and invasive regions.. To comprehend

The goals of this study were (i) to test whether larval type explains patterns of connectivity at different scales; (ii) to identify the locations of genetic breaks at a small

The UHIs are calculated as the temperature difference between urban and rural areas by using the daily minimum and maximum 2-m air temperatures simulated by... 5 Distribution of