• Aucun résultat trouvé

Computing the derivatives of the mean and amplitude of physiological variables with respect to the parameters of a mathematical model

N/A
N/A
Protected

Academic year: 2021

Partager "Computing the derivatives of the mean and amplitude of physiological variables with respect to the parameters of a mathematical model"

Copied!
23
0
0

Texte intégral

(1)

Compu&ng  the  deriva&ves  of  

 the  mean  and  amplitude  of  

physiological  variables    

with  respect  to  the  parameters  

of  a  mathema&cal  model  

A.  Pironet,  P.  C.  Dauby,  J.  A.  Revie,     J.  G.  Chase,  T.  Desaive  

(2)

Lumped-­‐parameter  models  

•  In  medicine,  only  the  mean  and  amplitude  of  

physiological  variables  are  usually  available   (e.g.  aor&c  pressure).  

(3)

Lumped-­‐parameter  models  

•  The  models  have  to  serve  as    

•  diagnosis,    

•  monitoring  and    

•  simula&on  tools.  

•  Consequently,  they  have  to  

•  require  few  computa&on  &me  

•  be  simple.  

(4)

Lumped-­‐parameter  models  

•  Lumped-­‐parameter  models  cannot  represent  

all  the  various  features  of  physiological   waveforms.   0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 Pulmonary     vein   Vena     cava   Mitral  valve   Aor&c  valve   Capillaries  

LeS  

ventricle   Aorta  

Simula&on  

(5)

Lumped-­‐parameter  models  

•  We  would  like  the  model  to  correctly  

reproduce  the  measured  mean  and  

amplitude  of  the  physiological  waveform.  

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 Pulmonary     vein   Vena     cava   Mitral  valve   Aor&c  valve   Capillaries  

LeS  

ventricle   Aorta  

Simula&on  

(6)

Parameter  iden&fica&on  

•  To  do  so,  a  parameter  iden3fica3on  step  is  

necessary,  which  aims  to  find  the  best  values   for  all  model  parameters          .      

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 Pulmonary     vein   Vena     cava   Mitral  valve   Aor&c  valve   Capillaries  

LeS  

ventricle   Aorta  

Simula&on  

Measurement  

(7)

Parameter  iden&fica&on  

•  To  do  so,  a  parameter  iden3fica3on  step  is  

necessary,  which  aims  to  find  the  best  values   for  all  model  parameters          .      

Pulmonary     vein  

Vena     cava   Mitral  valve   Aor&c  valve   Capillaries  

LeS   ventricle   Aorta   pk 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 85 90 95 100 105 110 115 120 125 130 135 Simula&on   Measurement  

(8)

•  To  adjust  some  parameter            ,  one  must  

know  how  the  means            and  amplitudes                     of  simulated  variables                      will  change  if             is  increased  (or  decreased).  

•  In  mathema&cal  terms,  one  would  like  to  

compute:  

Parameter  iden&fica&on  

pk pk ¯ yi yi yi(t) and   @ ¯yi @pk @ yi @pk

(9)

Lumped-­‐parameter  models  

•  To  ID  the  model  parameters          ,  we  rather   rely  on  the  mean            and  amplitude                    of  

physiological  variables                    than  on  their   whole  &mecourse.  

•  Thus,  we  would  like  to  compute    

 to  know  if  the  parameter  value              has  to  be    increased  or  decreased.  

yi(t) ¯ yi yi and   @ ¯yi @pk @ yi @pk pk pk

(10)

Lumped-­‐parameter  models  

“Brute  force”  approach:  finite  difference   approxima&on  

 

•  One-­‐sided:  

(1  more  model  simula&on  per  deriva&ve)  

 

•  Central:  

(2  more  model  simula&ons  per  deriva&ve)  

  @ ¯yi @pk ⇡ ¯ yi(pk + ") y¯i(pk) " @ ¯yi @pk ⇡ ¯ yi(pk + ") y¯i(pk ") 2"

(11)

Lumped-­‐parameter  models  

New  approach:     Compute  the   par&al   deriva&ves   Fourier  analysis   to  get   and   @ ¯yi @pk @ yi @pk @yi(t) @pk

(12)

Different  methods  (Carmichael  et  al.,  1997):  

•  Solve  the  varia&onal  equa&ons    

(1  more  equa&on  per  deriva&ve)  

•  Adjoint  model  

(1  adjoint  model  simula&on)  

•  Automa&c  differen&a&on  

•  Green’s  func&on  

•  ...  

(13)

Step  2:  Fourier  analysis  

•  To  get                                      ,  we  take  the  mean  of  the  

par&al  deriva&ve  over  one  signal  period  

@ ¯yi @pk = @ @pk 1 T Z T 0 yi(t) dt ! = 1 T Z T 0 @yi(t) @pk dt = @yi @pk @ ¯yi/@pk

(14)

Step  2:  Fourier  analysis  

•  To  get                                          ,  we  use  the  1st  order  

Fourier  approxima&on  of                    :  

 with   yi(t) ˆ yi,0 = Z T 0 yi(t) dt ˆ yi,1 = Z T 0 yi(t)e j 2⇡T t dt yi(t) 1 T yˆi,0 + 2 T yˆi,1e j 2⇡T t @ yi/@pk

(15)

Step  2:  Fourier  analysis  

•  Hence,  the  amplitude  of                      can  be   approximated  by:  

 and  its  deriva&ve  w.r.t.          :  

yi(t) yi 2 T |ˆyi,1| 2 T @ @pk (|ˆyi,1|) = 2 T @ @pk ✓q

R(ˆyi,1)2 + I(ˆyi,1)2

(16)

Step  2:  Fourier  analysis  

•  ASer  some  computa&on:  

 where                                              is  the  1st  order  Fourier    

 coefficient  of                                            .   @ yi @pk ⇡ 2 T |ˆyi,1|  R(ˆyi,1)R ✓⌧ @yi @pk 1 ◆ + I(ˆyi,1)I ✓⌧ @yi @pk 1 ◆ @ yi @pk ⇡ 2 T |ˆyi,1|  R(ˆyi,1)R ✓⌧ @yi @pk 1 ◆ + I(ˆyi,1)I ✓⌧ @yi @pk 1 ◆ h@yi/@pki1 @yi(t)/@pk

(17)

Results  

•  At  least  as  fast  as  the  brute-­‐force  method  

(depending  on  the  method  used  to  get                                            ).  

•  Exact  computa&on  of                                  .   •  Approxima&on  of                                            

(gives  the  sign,  which  is  needed  for   parameter  iden&fica&on).  

@yi(t)/@pk

@ ¯yi/@pk

(18)

Results  

Test  on  a  2-­‐chamber  CVS  model:           7  parameters:   •  2  venous  pressures   •  3  resistances   •  2  compliances   Pulmonary     vein   Vena     cava   Mitral  valve   Aor&c  valve   Capillaries  

LeS  

ventricle   Aorta  

2  state  variables:  

•  LV  volume  

(19)

Results:  mean  

Step  size  (%  of  parameter  value)   Selected    

sensi&vity        

Rav$ref 0,0206 mean$Vlv$ref 105,948202 Fourier$value 196,410244

Centered Forward

Step$size Rav1 Rav2 mean$Vlv1 mean$Vlv2 Rav mean$Vlv

0,3162 0,01734314 0,02385686 105,323971 106,600774 196,017573 0,02711372 107,2756 203,784878 0,1 0,01957 0,02163 105,747409 106,151915 196,362269 0,02266 106,3581 198,979433 0,0316 0,02027452 0,02092548 105,884433 106,012298 196,425765 0,02125096 106,0765 197,089887 0,01 0,020497 0,020703 106 105,96845 196,34128 0,020806 105,9886 196,105015 0,00316 0,02056745 0,02063255 105,941759 105,954569 196,794831 0,0206651 105,961 196,596304 0,001 0,0205897 0,0206103 105,946175 105,950123 191,642545 0,0206206 105,952196 193,881063 190$ 192$ 194$ 196$ 198$ 200$ 202$ 204$ 206$ 0,001$ 0,01$ 0,1$ Central$ OneDsided$ Fourier$ ✓ @ ¯Vlv @Rav ◆ (ml2.mmHg–1.s–1)  

(20)

Results:  amplitude  (worst)  

Step  size  (%  of  parameter  value)   Selected     sensi&vity         ✓ @ Vao @Rav ◆ (ml2.mmHg–1.s–1)  

Rav$ref 0,0206 DVao$ref 20,4195827 Fourier$value 97,3358032

Centered Forward

Step$size Rav1 Rav2 DVao1 DVao2 Rav Dvao

0,3162 0,01734314 0,02385686 20,507701 20,3319016 926,989102 0,02711372 20,2473398 926,443095 0,1 0,01957 0,02163 20,4475233 20,3915891 927,152479 0,02266 20 927,063717 0,0316 0,02027452 0,02092548 20,4282338 20,4109681 926,523485 0,02125096 20,4020818 926,884709 0,01 0,020497 0,020703 20 20,4168941 926,110265 0,020806 20,4141122 926,55595 0,00316 0,02056745 0,02063255 20,4204297 20,418705 926,494379 0,0206651 20,4178809 926,142901 0,001 0,0205897 0,0206103 20,4198658 20,4192691 928,96327 0,0206206 20,4190575 925,493113 935$ 930$ 925$ 920$ 915$ 910$ 95$ 0$ 0,001$ 0,01$ 0,1$ Central$ One9sided$ Fourier$

(21)

Results:  amplitude  (best)  

Step  size  (%  of  parameter  value)   Selected     sensi&vity         (ml.mmHg–1)   ✓ @SV @Ppv ◆

Ppu$ref 5 SVlv$ref 25,8261399 Fourier$value 5,45118282

Centered Forward

Step$size Ppu1 Ppu2 SVlv1 SVlv2 Ppu SVlv

0,3162 4,2095 5,7905 21,7101602 29,9424657 5,20702438 6,581 34,058985 5,20736566 0,1 4,75 5,25 24,5243736 27,1279836 5,2072201 5,5 28,4297296 5,20717931 0,0316 4,921 5,079 25,4147978 26,2374963 5,20695272 5,158 26,6488555 5,20706079 0,01 4,975 5,025 26 25,9563152 5,20649194 5,05 26,0864849 5,20689904 0,00316 4,9921 5,0079 25,7849596 25,8672917 5,2108935 5,0158 25,9084152 5,20729357 0,001 4,9975 5,0025 25,8131172 25,8391299 5,20253119 5,005 25,8521674 5,20548826 5,15$ 5,2$ 5,25$ 5,3$ 5,35$ 5,4$ 5,45$ 5,5$ 0,001$ 0,01$ 0,1$ Central$ OneCsided$ Fourier$

(22)

Conclusion  

•  Faster  than  the  “brute  force”  method.  

•  Exact  value  for  the  deriva&ve  of  the  mean.  

•  Gives  only  the  sign  for  the  deriva&ve  of  the   amplitude.  

•  Uses:  

•  to  fasten  parameter  iden&fica&on  process    

•  to  perform  a  sensi&vity  analysis  

(23)

Références

Documents relatifs

Écris la solution de chaque équation sous forme d'une fraction

works of Seleznjev (1996) (linear interpolation) , Seleznjev (2000) (Hermite interpolation splines, optimal designs), Seleznjev and Buslaev (1998) (best approximation order).. For

Der Band verfolgt das Ziel, die Originalität des Philostorg im Kontext der unter- schiedlichen Gattungen der spätantiken Historiographie herauszuarbeiten (S.9f.). Er besteht aus

We have enlightened the fact that Sobol indices are compatible with the stochastic orders theory, and more precisely with the excess wealth order, or the dispersive order, provided

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Avec l’analyse des poches en PVC par spectrométrie infrarouge, 22 spectres sont obtenus : 3 spectres pour chaque anticancéreux reconstitué et un spectre de référence obtenu

model for determining the pressure on players with varying roles and skill levels in a team, as well as look more deeply in to the interaction of the number of players, excitement

The shapes obtained following the combination of the genetic algorithm reported in [20] and the topological optimization by the mixed relaxation/level set method are presented