• Aucun résultat trouvé

Influence of the hydrocarbon chain length of imidazolium-based ionic liquid on the dispersion and stabilization of double-walled carbon nanotubes in water

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of the hydrocarbon chain length of imidazolium-based ionic liquid on the dispersion and stabilization of double-walled carbon nanotubes in water"

Copied!
11
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16786

To link to this article : DOI : 10.1016/j.colsurfa.2015.01.015

URL :

http://dx.doi.org/10.1016/j.colsurfa.2015.01.015

To cite this version :

Raiah, Kenza and Djalab, Abdelkader and

Hadj-Ziane-Zafour, Amel and Soula, Brigitte and Galibert,

Anne-Marie and Flahaut, Emmanuel Influence of the hydrocarbon chain

length of imidazolium-based ionic liquid on the dispersion and

stabilization of double-walled carbon nanotubes in water. (2015)

Colloids and Surfaces A: Physicochemical and Engineering Aspects,

vol. 469. pp. 107-116. ISSN 0927-7757

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Influence

of

the

hydrocarbon

chain

length

of

imidazolium-based

ionic

liquid

on

the

dispersion

and

stabilization

of

double-walled

carbon

nanotubes

in

water

Kenza

Raiah

a

,

Abdelkader

Djalab

a

,

Amel

Hadj-Ziane-Zafour

a

,

Brigitte

Soula

b

,

Anne-Marie

Galibert

b

,

Emmanuel

Flahaut

b,c,∗

aLaboratoiredeGénieChimique,UniversitéSaadDahlab,RoutedeSoumaa,B.P.270Blida,Algeria

bUniversitédeToulouse,UPS,INP,InstitutCarnotCirimat,118,RoutedeNarbonne,F-31062Toulousecedex9,France cCNRS,InstitutCarnotCirimat,F-31062Toulouse,France

h

i

g

h

l

i

g

h

t

s

•Synthesisofimidazolium-basedionic

liquids from natural compounds

(fattyacids).

•Stabilization of 50mg/L double

walledcarbonnanotubesinwaterup

to20days.

•Dispersibilityincreasedwith

increas-ing the length of the hydrocarbon

chain.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

Keywords:

Carbonnanotubes

Imidazolium-basedionicliquids Aqueoussuspensions Stabilization

a

b

s

t

r

a

c

t

Imidazolium-based ionic liquids with a long hydrocarbon chain

1-methyl-1-ethanol-2-alkyl-imidazoliumiodide([M-E-Cn-Im]I,n=13,15and17)wereusedforthedispersionofDWCNTsinwater.

DWCNTssuspensionsobtainedwerestableformorethanamonth,andnosedimentationwasobserved.

Thestabilityofthesuspensionswasinvestigated(measurementofopticaldensity,zetapotential,

parti-clesize,viscosity,andTEMimages).MonitoringoftheabsorbancebyUV/visspectrophotometryfor20

daysshowedthatatlowconcentration(1mM),thebestsuspensionwasobtainedwiththeionicliquid

([M-E-C15-Im]I).Athigherconcentration(10mM),thedispersionefficiencyincreasedwiththelengthof

thehydrocarbonchain.Thiscouldbeexplainedbythehydrophobicinteractionbetweenthehydrophobic

moietiesoftheionicliquidandtheCNTs.Therefore,wewereabletostabilizeDWCNTsusingalow

con-centration(1mM)ofimidazolium-basedionicliquidssynthesizedfromnaturalcompounds.Thiswork

highlightsthepotentialofimidazolium-basedionicliquidsforthepreparationofaqueoussuspensions

ofDWCNTsathighconcentrationwithalimitedamountofaddedsurfactant(50mg/LofDWCNTswith

50mg/Lofionicliquid).

∗ Correspondingauthorat:CNRS,InstitutCarnotCirimat,F-31062Toulouse, France.Tel.:+33561556280.

E-mailaddress:flahaut@chimie.ups-tlse.fr(E.Flahaut).

1. Introduction

Carbonnanotubes(CNTs),describedassuchforthefirsttime in 1991, are still of great interest for thescientific community duetotheirexceptionalintrinsicproperties(electrical,mechanical andthermal),openingaverywidefieldofapplicationsforthese

(3)

nanomaterials [1–3]. Though carbonnanotubes have promising applications, their insolubility in water and most organic sol-ventsischallenging.Thisinsolubilityisexplainedbybothintrinsic hydrophobicityandtheirstrongagglomerationcausedbyvander Waalsinteractionsandentanglement[4].Severalstudieshavetried tosolvethisproblembycovalentfunctionalizationmethods[5–7]

orbyadsorptionofamphiphilicagents[8–12].Covalent function-alizationusingoxidizingacidsathightemperaturecausesdefects onthewallsofthecarbonnanotubesandtheirlengthdecreases, thereforetheirelectricalandmechanicalpropertiesaredegraded

[13,14].Non-covalentfunctionalizationbyadsorptionofsurfactant orpolymersanduseofmildultrasonictreatments,centrifugation andfiltrationdoesnotdisturbthep–pstackingorthelengthsof CNTs,thus,maintainingintrinsicpropertiesoftheCNTs[15–17].

Differentkindsofsurfactantshavebeenusedsuccessfullyfor thedispersionofCNTs,suchastheanionicSDS(sodiumdodecyl sulphate)[18,19],cationicCTAB(cetyltrimethylammonium bro-mide)[20,21]andnon-ionicTritonX-100[22].Howeverthenature ofthesurfactantanditsconcentrationhaveanimportantroleinthe dispersionofCNTsinwaterandorganicmedia[23,24].Previous workhasshownthationicliquidshaveabetterdispersing effi-ciencycomparedtoconventionalsurfactants[25–28].Somestudies have been conducted on imidazolium-based ionic liquids: Kim etal.[29]preparedstablesuspensionsusinganimidazolium-based ionicliquid(1-butyl-3-methylimidazoliumtetrafluoroborate)and SWCNTs.SWCNTssuspendedbyimidazolium-basedionicliquid formagel,calledBuckygel[30].Non-covalentfunctionalization ofoxidizedsingle-walledcarbonnanotubesbypoly imidazolium-basedionicliquidswasalsousedfor thesynthesis ofgels[31]. SWCNTsdispersedin imidazolium-basedionicliquids[32]have beenusedascathodeinhigh-powerlithiumbatteries.AMWCNTs suspensionwith1-ethyl-3methylimidazoliumtetrafluoroboratein dimethlformamidewasusedas animmunosensorof myeloper-oxidasedetectioninhumanserum[33].Amagneticallysensitive materialwaspreparedwithSWCNTsandamagneticionicliquid (1-butyl-3-methylimdazolium[FeCl4]),whichfindsapplicationsin

biomedicalresearch(suchastargeteddrugdeliveryandcontrolled release,proteinseparation,cancertreatment)[34].Amethodwas developedtodecorateMWCNTswithnoblemetalparticles(gold) by themeansof ionicliquid 1-hexadecyl-3-methylimidazolium bromide[27].Yang etal.[35] performeda quantitative charac-terizationbyUV/visspectrophotometryofSWCNTssuspensions prepared inionic liquid 1-N-butylmethylimidazolium hexafluo-rophosphate.

DiCrescenzoetal.[26]haveshownthattheionicliquidwith alonghydrocarbonchain1-hexadecyl-3-vinyl-imidazolium bro-mide formed a stable homogeneous aqueous dispersions with SWCNTsabove its critical micelleconcentration. Liu et al. [25]

reportedthattheyobtainedstableaqueoussuspensionsof MWC-NTswithionicliquid-typeGeminiimidazolium([Cn-C4-Cn-Im]Br2, n=12,14)evenatlowconcentration(1mM).Thebinarymixture of 1-tetradecyl-3-methylimidazolium chloride/ethylammonium nitratesuccessfullydispersedMWCNTs[36].Theionicliquidwith polycyclicaromaticfractionandalonghydrocarbonchain– [n-(N-carbazole)alkyl]-3-methylimidazoliumbromideyieldedgood CNTssuspensionsinwater(10months,at1mM),showingthe com-binedeffectsofbothahydrocarbonchainandacarbazolemoiety

[37].Theadsorptionoftheimidazolium-basedionicliquidonto SWCNTswasexplainedbytheirinteractionwithlowvanderWalls forces. Therefore,the electronicpropertiesof SWCNTremained unmodified[38].Madriaetal.[39]haveshownthat 1-methyl-3-alkoxyalkyland1-methyl-3-fluoroalkylimidazoliumarerelatively nontoxictohumanhealth.Riduanetal.[40]investigatedtheuse ofimidazoliumsaltsinseveralareasofbio-applications,including antitumor, antimicrobial,antioxidant and bioengineering. Imid-azolium ionic liquids can be regarded as chemical compounds

exhibitingapotential,slighttoxicitytothegrowthand develop-mentoftheearlydevelopmentalstagesofhigherlandplants[41]. Ionicliquidsproducedfromthebiocompoundscholineandamino acidswerefoundtohavelowtoxicitytohumansandtothe envi-ronment[42].

Inthiscontext,thegoalofthisworkwastodisperseand sta-bilize DWCNTsin water, using imidazolium-basedionic liquids synthesizedfromnaturalmaterialnamelyfattyacids.We investi-gatedtheabilityof1-methyl-1-ethanol-2-alkyl-imidazolineiodide todispersetheDWCNT,aswellastheeffectofthelengthofthe hydrocarbonchainandconcentration.Inordertocomparethe effi-ciencyof thethree synthesizedionic liquidswe monitoredthe concentrationofCNTsversustime(opticaldensitymeasurements); wemeasuredthevaluesofzetapotentialandviscosityandalso used staticlight diffusiontoestimatethesize ofagglomerates. Finally,transmissionelectronmicroscopyobservationswerealso performedinordertoevidencede-bundlinginthepresenceof sur-factant.

2. Materialsandmethods 2.1. Materials

Double-walledcarbonnanotubes(DWCNT)weresynthesized attheCIRIMATby catalyticchemical vapourdeposition(CCVD)

[43].AfterextractionbytreatmentwithaconcentratedHCl aque-oussolution(removalofcatalystsupportandunprotectedmetal nanoparticles),theCNTwererecovered,washedandkeptinasmall volumeofdeionizedwater.TheDWCNTthuspreparedarecalled “rawwettubes”.Myristicacid(99%),palmiticacid(99%)andstearic acid(99%),N(2-hydroxyethyl)ethylenediamine,ethyliodide,were purchasedfromSigma–Aldrich.

2.2. Synthesisandcharacterizationofionicliquids

Imidazolium-basedionicliquids([M-E-Cn-Im]I,n=13,15or17)

weresynthesizedbythereactionbetweenthecorresponding nat-uralfattyacidwithN(2-hydroxyethyl)ethylenediamine(Fig.1). Allthereagentswereinthesamemolarratio.Themixturewas heatedintoluenefor8hwithstirringandthewaterformedwas removedazeotropicallyusingaDean–Starkapparatus.Resulting productwascooledandfilteredandthesolventevaporated.The solidwasprecipitatedbyadding1-butanolandthenrecrystallized fromethanol.Theprecipitatedsolidandethyliodidewereheated byrefluxinginisopropanolfor4h,theresultingproductwas fil-teredandthesolventevaporated.Thesolid wasprecipitatedby addingpetroleumether[44,45].Weobtainedagoodyield(91.5%)in agreementwiththosealreadypublished((89%)[46],(92.1%)[44]). Thecharacterizationofthesynthesizedproductswascarriedoutby FT-IR,GC–MS,1HNMRand13CNMRanalysis,andbymeasurement

ofCMC(criticalmicelleconcentration).

TheFouriertransmissioninfra-red(FT-IR)measurementswere madeonPerkinElmerSpectrometeroperatingwithUATR (Univer-salattenuationtotalreflectance),spectralrangebetween4000and 650cm−1,at4cm−1ofresolution.Thegaschromatographycoupled

withmassspectrometry(GC–MS)analysiswasperformedwitha PerkinElmerClarus500,RTX-5MSequippedwithacapillaryGC column(60m,0.25mm,0.25mm),andthesystemwasheatedfrom 100to290◦Cwithaheatingrateof8◦C/minandkeptat290◦Cfor

10min.Thetemperatureoftheinjectoranddetectorwere250◦C

and200◦C,respectively.Thecharacterizationsby1HNMRand13C

NMRwerecarriedoutusingaBrükeradvance(500MHz)equipped with a TCI probe type (Triple CryoprobeInverse); the samples weredissolvedinCDCl3.Thedeterminationofthecriticalmicellar

(4)

Fig.1. Generalschemeforthesynthesisreactionsoftheionicliquids.

concentration (CMC) was performed by conductivity measure-ments(Hannainstruments,EC215).

TheFT-IRspectraofthethreeionicliquidsareshowninFig.2. Thepresenceofthebandat2922cm−1 correspondstoCH3 and

CH2groups.Thepresenceofastrongbandat3392cm−1indicates

theformationofprimaryamine.Inaddition,theappearanceofa bandat1642cm−1indicatestheformationoftheamide(C N)and

isanevidenceoftheformationoftheimidazolinering[46].Mass spectradatawereanalysedusingtheNISTMSSearchlibrary,and thefollowingspectralprofileswereobtainedwithMS(m/z%):74 (99),84(92),87(77),43(61),56(58),44(45),128(43),41(39),55 (32)and141(26)(Fig.3)[46].

Thecharacterizationby1H NMRhasgiventhespectrashow

in Fig. 4. Identification of the peaks is: ı 3.04ppm (t, 2H, C N C CH2 N ),ı3.38ppm(t,2H, CH2 C OH),ı3.71ppm

(t,2H, C N CH2 ),ı2.21ppm(t,2H, N C CH2 ).InFig.5are

shown the13CNMR spectra,indicatingthepresenceofpeaksı

173.80ppm( N C N )andı60.48ppm( C OH).Themain dif-ferencebetweenthethreespectraisaround3ppmandcorresponds toimpurities(residuesofreactants);thesignalsexpectedforour compoundsarewellidentified,although1HNMRdoesnotgiveany

informationaboutthealiphaticchainlength.

Fig.6showsthevariationoftheelectricalconductivityasa func-tionoftheconcentrationforthethreeionicliquids.Thesecurves allowedustodeterminethevaluesoftheCMCforeachionicliquid. TheCMCwascloseto0.8mMforthethreecompounds(theCMC istheconcentrationatwhichtheslopechanges,itwasdetermined usingthefirstderivative).

2.3. Dispersionofcarbonnanotubes

DWCNTsuspensionswerepreparedindeionizedwateralone. Foreachionicliquid,astocksolutionwasalsopreparedin deion-izedwater,undermagneticstirringfor4h,inordertoensurethe dissolutionofeachsurfactant.Themixtureofthetwostock dis-persion/solution(DWCNTandsurfactant)wasdesignedtoobtain 10mlsuspensionsofDWCNTataconcentrationof50mg/L,and thethreeionicliquidsatconcentrationsequalto1,1.5and10mM. DWCNTsuspensions obtainedweremixedinanultrasonicbath (BioblockT570,35KHz,160W)for10min,thenusinganultrasonic probe(VibraCellModel75042,20kHz,500W)for30minat25% amplitudewithapulseof5sonand5soff,inordertoavoid over-heating.Ourchoiceofahighconcentrationof50mg/Lisjustified byfurtherworkrelatedtotheenvironmentalimpactassessmentof suchsuspensionswhichwillberequiredinordertocomparethe performanceoftheseImidazolium-baseddispersingagentswith

ourearlierworkwithDWCNTsinvolvingcellulosederivativessuch ascarboxymethylcellulose[47,48]orxanthanderivatives[17]. 2.4. Characterizationofsuspensions

DWCNTsuspensionswerecharacterizedbyUV/visabsorption (Varian,Cary300).Theabsorbancemeasurementswereperformed from400to900nm,immediatelyafterpreparationandfollowing 20-day sedimentation. Zetapotential measurements were per-formedwithzetasizer (ModelZEN3691,MalvernInstruments), usingsuspensionscentrifugedat1600rpmfor30min.The super-natant wasseparated andthen lefttosettledown for24h.No sedimentationcouldbeobservedwithin24h.Therateofviscosity versusshearratewasdeterminedwitharheometer(AntonPaar Physica,Germany),operatingwithaconcentriccylinder,and con-nectedtoawaterbathinordertoensureaconstanttemperature of25◦C.Sizemeasurementsofdispersedcolloidswereperformed

bythetechnique ofstaticlight diffusion(SZ-100,Horiba Scien-tific),thesizesweremeasuredfor48hatregulartimeintervals. DWCNTsuspensionswerealsocharacterizedbytransmission elec-tronmicroscopy(JEOL1400TEM),operatedat120kV.Thesamples werepreparedbypipettinganddroppingafewdropsof suspen-sionon400meshLaceyCarboncoppergrids,purchasedfromAgar Scientific.

3. Resultsanddiscussion

Characterization of DWCNT suspensions was performed by UV/vis spectrophotometry. Although individual CNTs may be UV–visactiveinthemeasurementrange(400–900nm),thereis noabsorptionbandforbundledCNTs[12,25].Fig.7representsthe absorbanceoftheDWCNTsuspensionsat50mg/Lwiththethree ionicliquids([M-E-Cn-Im]I,n=13,15and17)ataconcentrationof

10mM,aswellaspreparedindeionizedwateronly(nosurfactant). Althoughwedidnotdeserveanymaximumabsorbanceband cor-respondingtoCNTs,theeffectoftheadditionofasurfactantwas ratherclearintermsofincreasedabsorbance.Astheionicliquids donothaveanyabsorptionbandwithintheanalysedrange,the absorptioncanonlybeattributedtoCNTs.

Thevariationoftheabsorbanceasafunctionoftime(20days) fortheDWCNTsuspensionspreparedwiththethreeionicliquids atamolarconcentrationof1mM,1.5mMand10mMisshownin

Fig.8.Theabsorbancemeasurementswereperformedat500nm

[22,49].Accordingtoourdata,at1and1.5mMconcentrations,we obtainedanalmostidenticalabsorbancewiththetwoionicliquids [M-E-C15-Im]Iand[M-E-C17-Im]I.Thelowconcentrations(1mM

(5)

Fig.2.FT-IRspectraof(A)[M-E-C13-Im]I,(B)[M-E-C15-Im]Iand(C)[M-E-C17-Im]I.

Fig.3.Massspectraof(a)[M-E-C15-Im]I,comparedto(b)datafromNISTMSSearchlibrary(asanexample).

(6)

Fig.5.13CNMRspectraof[M-E-C

15-Im]I(asanexample).

Fig.6. Variationoftheelectricalconductivityasafunctionoftheconcentrationofionicliquid.

Fig.7.UV/visspectraofionicliquids[M-E-C13-Im]I,[M-E-C15-Im]I,[M-E-C17-Im]Iat10mMandDWCNTsuspensionswithionicliquids[M-E-C13-Im]I,[M-E-C15-Im]I,

(7)

Fig.8. UV/visabsorbanceintensityversustimeofDWCNTs(50mg/L)inionicliquids(a)[M-E-C13-Im]I,(b)[M-E-C15-Im]I,(c)[M-E-C17-Im]Iand(d)deionizedwateralone

ataconcentrationof(A)10mM,(B)1.5mMand(C)1mM,upto20days.

and1.5mM)arejust abovethecritical micelleconcentrationof thethreeionicliquids(CMCisequaltoca.0.8mM,evaluatedfrom electricalconductivitymeasurements)anddidnotleadtogood dis-persionandstability.Thisphenomenoncanbeexplainedbythefact thatthedispersionofthenanotubeswiththeamphiphilesisonly

possibleabovethelimitoftheCMC[50,51].Thus,thedispersing poweroftheionicliquidsclosetotheCMCwaslowcomparedto theconcentrationof10mM(10timesmore).

Attheconcentrationof10mMofionicliquid,theabsorbance of suspensions increased with increasing the length of the

(8)

Fig.9. Variationoftheviscosityversusshearrateforthethreeionicliquidsof1mMandDWCNT(50mg/L)suspensionswiththethreeionicliquids.

hydrophobicchain. Thebestvalue wasobtainedwiththeionic liquid[M-E-C17-Im]I.Similarlytheabsorbanceofthesuspension

preparedwith[ME-C15-Im]Iwashigherthantheoneprepared with[ME-C13-Im]I.Thethree ionicliquidshavea homologous structure.Theonlydifferenceliesinthelengthofthehydrocarbon chain(C=13,15and17).Theincreaseindispersingefficiencywith increasingthelengthofthehydrocarbonchaincanbeexplained bytheincreaseinhydrophobicinteractionbetweenthe hydrocar-bonchainsofionicliquidsandDWCNTs[25,52](generally,because CNTshaveaveryhydrophobicsurface,thehydrocarbonchainstend tobestronglyadsorbed[53,54]).Abetterinterfacebetweenthe hydrophobicchainandthenanotubesmeansahigherstabilityof theadsorptionandlesspossibleexchangeswiththesurrounding solvent.Inthiscomparison,thereisprobablynomodificationof thesterichindranceduetothesmalldifferencesintermsofcarbon atomsinthealkylchain.Takingintoaccountthefactthatthecharge iscomingfromexactlythesamechemicalgroupfortheseriesof ionicliquids,theelectrostaticrepulsionisnotexpectedtobe differ-ent.Ifthedifferenceinchainlengthwasenoughtoleadtodifferent ratesofcoverageontothenanotubes,thisshouldfinallyleadtoa

differentnumberofchargesandthiswouldfinallybeinfavourof theshorteralkylchainionicliquid(C13).Consequently,weassume thatthekeyparameteristhestabilityoftheinteractionbetween theadsorbedionicliquidandthenanotubes,whichisinfavourof thelongestalkylchain.

Themeasurementofzetapotentialisimportanttoexplainthe stabilityofthecolloidalparticlesinaqueoussuspension[28,55].WE measuredthezetapotentialofDWCNTsuspensionusingthethree ionicliquidsattheconcentrationof1mMandobtainedzeta poten-tialvalues largerthan40mV.AccordingtoDong etal.[37] the particleswithazetapotentiallargerthan15mVinabsolutevalue areconsideredtobestabilizedbyelectrostaticrepulsions.Ahigh positivevalueofzetapotentialindicatesthestrongadsorptionof theionicliquidtothesurfaceofDWCNTs,leadingtostable suspen-sionsduetoCoulombforcebetweentheCNTs[25].Therefore,ahigh stabilityofDWCNTsuspensionswasevidenced.Table1illustrates thevaluesofzetapotentialoftheDWCNTsuspensionswiththe threeionicliquids.Thelargestvalueofzetapotentialwasobtained withtheDWCNTssuspensionpreparedwiththeionicliquid [M-E-C15-Im]I,althoughitisquitesimilartothevalueobtainedfor

(9)

Fig.11.TEMmicrographofDWCNTsuspensionsindeionizedwaterat50mg/Lwithionicliquidat1mM(a)[M-E-C13-Im]I,(b)[M-E-C15-Im]I,(c)[M-E-C17-Im]Iand(d)

deionizedwateralone.Thescalebar(50nm)isidenticalforallfourimages(samemagnification).

Table1

ZetapotentialofDWCNTsuspensionsforthethreeionicliquids(1mM).

DWCNTsuspensionswithionicliquid Zetapotential(mV)

[M-E-C17-Im]I 60.6

[M-E-C15-Im]I 66.0

[M-E-C13-Im]I 45.0

[M-E-C17-Im]I.Thesevaluesarehoweversignificantlyhigherthan thezetapotentialmeasuredfor[M-E-C13-Im]Iinthesame

exper-imentalconditions.

Wewereabletostabilize50mg/LofDWCNTsusinga50mg/L ofimidazolium-basedionicliquidscomparedtousing1000mg/L ofionicliquid-typeGeminiimidazoliumforsuspending200mg/L ofMWCNTs[25].

Thevariationof theviscosityversus shearrateforthethree ionicliquidsandtheDWCNTsuspensionswiththethreeionic liq-uidsisshowninFig.9.Wehaveobservedalowviscosityofthe DWCNTsuspensionswiththethreeionicliquids;thislowviscosity canbeexplainedbybetterchargerepulsionbetweenhydrophobic groups(thehydrocarbonchains)orientedalongCNTs,whenthe hydrophilicheadsaredirectedtowardstheaqueousphase,which preventstheagglomerationoftheCNT[17,56,57].

InordertodemonstratethestabilitythroughtimeoftheDWCNT suspensions,sizemeasurementsofdispersedcolloidswere per-formedbythetechniqueofstaticlightdiffusion.Forthispurpose, suspensionsof carbonnanotubeswerepreparedwiththethree

ionicliquidsat1mMasstabilizers.Thesizesweremeasuredfor 48hatregulartimeintervals(Fig.10).

Measurementsofparticlesizeforthethreesuspensionsof DWC-NTswitheachionicliquidclearlyshowthatCNTsareintheform ofverysmallagglomerateswithanaveragediameterbetween150 and250nm.Wemeasuredmonomodalparticlesizedistributions andapolydispersityindexof0.068(thevalueofthisindexgives information about monodisperse systems, for which the index shouldbebetween0.05 and0.08).Thesizeoftheagglomerates inthesuspensions ofDWCNTswaspracticallystableduringthe 48hofmeasurementandespeciallyafter20h.

Transmissionelectronmicroscope(JEOL1400)imagesof DWC-NTssuspensionspreparedwiththreeionicliquids,aswellasthe onespreparedwithdeionizedwateralone,areshowninFig.11. These images showthat thethree DWCNTs samplesstabilized byionicliquidsformedsmallerbundlescomparedtoDWCNTsin deionizedwateralone.Therefore,theuseofionicliquidslimited theagglomerationofDWCNTs.However,it isimportanttonote thatTEMobservationswereperformedafterdryingthesamples onTEMgrids,sotheimagesareprobablynotshowingthereal sit-uationinthesuspensionsinthepresenceofliquid(agglomeration upondryingduringsamplepreparation).

Finally,DWCNTshaveamorphologyveryclosetoSWCNTsand sharewiththemtheabilitytofromlongandflexiblebundles.In ourDWCNTssamples,thebundles are notvery large(typically 20–30nmmaximum)andthesamplescontainmanyindividual(or atleastindividualpartoftheirlength).However,theyarethefirst

(10)

multi-walledcarbonnanotubesoftheseriesandthusalsoshare withlargerMWCNTsthefactthattheouterwallprotectsallthe innerones.Astheinteractionwithasurfactantmoleculeistaking placeonlyattheinterface,theouterwallistheonlytobeconcerned. DWCNTsarethusatthefrontierbetweenSWCNTsandMWCNTs ingeneralandforthisreasonwecanexpectthattheresultsofthis studycanextrapolatedtoallotherkindsofCNTs,aslongasthey frombundles(whichisstillthecaseformanykindsofMWCNTs). However,itisclearthatresultsmaynotbeextrapolatedtomuch shorterandindividualCNTs,whichcouldoccureitherintentionally ifcuttingproceduresareapplied(SWCNTs)orevenunintentionally inthecaseoftoostrongsonicationconditionsformostMWCNTs. 4. Conclusion

Imidazolium-basedionicliquids 1-methyl-(1-ethanol)-2-alkyl-imidazoline([M-E-Cn-Im]I,n=13,15and 17)weresynthesized

fromthecorrespondingnaturalfattyacidsandshowntobeable toeffectively suspend carbonnanotubes inwater, even atvery low concentration (1mM), for a period ofmore than a month. Quality of suspension was evidenced by optical density mea-surement,ofzetapotential,particlesizeandTEM.Theresultsof these analyses evidenced that we obtained stable suspensions, andalsomanagedtopartiallyde-bundletheDWCNTs. Compar-ingthedispersing strengthof thethreeionicliquids,we found thatthedispersibilityincreasedwithincreasingthelengthofthe hydrocarbonchain,whichisexplainedbytheincreased hydropho-bicinteractionsbetweenthehydrocarbonchainandDWCNTs.In addition,thesuspensionsofDWCNTswithionicliquidshada vis-cositysimilartothatof water,which is suitablefor interaction withbiologicalenvironments.Moreover,theseresultsencourage the suspension of DWCNTs using imidazolium-basedionic liq-uids,forpossibleapplicationinthestudyof toxicity/ecotoxicity ofcarbonnanotubes,thankstotheirexpectedlowintrinsic toxic-ity(whichishoweverstilltobemeasuredforourseriesofnew compounds).Acknowledgments

TheauthorsexpresstheirsincerethankstotheMinistryofHigh EducationandScientificResearch(Algeria)andtheFrenchMinistry ofForeignandEuropeanAffairsforfinancialsupportofPHC-TASSILI 10MDU797project.

References

[1]S.Iijima,Helicalmicrotubulesofgraphiticcarbon,Nature354(1991)56–58.

[2]A.Peigney,C.Laurent,E.Flahaut,R.R.Bacsa,A.Rousset,Specificsurfacearea ofcarbon nanotubesandbundlesofcarbonnanotubes,Carbon39(2001) 507–514.

[3]S.Roche,Carbonnanotubes:exceptionalmechanicalandelectronicproperties, Ann.Chim.Sci.Matér.25(2000)529–532.

[4]L.A.Girifalco,M.Hodak,R.S.Lee,Carbonnanotubes,buckyballs,ropes,anda universalgraphiticpotential,Phys.Rev.B62(2000)13104–13110.

[5]E.V.Basiuk,V.A.Basiuk,V.Meza-Laguna,F.F.Contreras-Torres,M.Martínez,A. Rojas-Aguilar,M.Salerno,G.Zavala,A.Falqui,R.Brescia,Solvent-freecovalent functionalizationofmulti-walledcarbonnanotubesandnanodiamondwith diamines:lookingforcross-linkingeffects,Appl.Surf.Sci.259(2012)465–476.

[6]B.A.Kakade,V.K.Pillai,Anefficientroutetowardsthecovalentfunctionalization ofsinglewalledcarbonnanotubes,Appl.Surf.Sci.254(2008)4936–4943.

[7]G.Xu,B.Zhu,Y.Han,Z.Bo,Covalentfunctionalizationofmulti-walledcarbon nanotubesurfacesbyconjugatedpolyfluorenes,Polymer48(2007)7510–7515.

[8]C.Hu,H.Liao,F.Li,J.Xiang,W.Li,S.Duo,M.Li,Noncovalentfunctionalization ofmulti-walledcarbonnanotubeswithsiloxanepolyethercopolymer,Mater. Lett.62(2008)2585–2588.

[9]A.Zhang,M.Tang,J.Luan,J.Li,Noncovalentfunctionalizationofmulti-walled carbonnanotubeswithamphiphilicpolymerscontainingpyrenependants, Mater.Lett.67(2012)283–285.

[10]L.Vaisman,H.D.Wagner,G.Marom,Theroleofsurfactantsindispersionof carbonnanotubes,Adv.ColloidInterfaceSci.128–130(2006)37–46.

[11]M.Zhang,L.Su,L.Mao,Surfactantfunctionalizationofcarbonnanotubes(CNTs) forlayer-by-layerassemblingofCNTmulti-layerfilmsandfabricationofgold nanoparticle/CNTnanohybrid,Carbon44(2006)276–283.

[12]A.L.Alpatova,W.Shan,P.Babica,B.L.Upham,A.R.Rogensues,S.J.Masten,E. Drown,A.K.Mohanty,E.C.Alocilja,V.V.Tarabara,Single-walledcarbon nano-tubesdispersedinaqueousmediavianon-covalentfunctionalization:effect

ofdispersantonthestability,cytotoxicity,andepigenetictoxicityofnanotube suspensions,WaterRes.44(2010)505–520.

[13]D.Tasis,N.Tagmatarchis,V.Georgakilas,M.Prato,Solublecarbonnanotubes, Chem.Eur.J.9(2003)4001–4008.

[14]L.Liu,K.C.Etika,K.-S.Liao,L.A.Hess,D.E.Bergbreiter,J.C.Grunlan,Comparison ofcovalentlyandnoncovalentlyfunctionalizedcarbonnanotubesinepoxy, Macromol.RapidCommun.30(2009)627–632.

[15]H.Wang,Dispersingcarbonnanotubesusingsurfactants,Curr.Opin.Colloid InterfaceSci.14(2009)364–371.

[16]M.Bassiouk,V.A.Basiuk,E.V.Basiuk,E.Álvarez-Zauco,M.Martínez-Herrera, A.Rojas-Aguilar,I.Puente-Lee,Noncovalentfunctionalizationofsingle-walled carbonnanotubeswithporphyrins,Appl.Surf.Sci.275(2013)168–177.

[17]A.Skender,A.Hadj-Ziane-Zafour,E.Flahaut,Chemicalfunctionalizationof Xan-thangumforthedispersionofdouble-walledcarbonnanotubesinwater, Carbon62(2013)149–156.

[18]H.Sato,M.Sano,Characteristicsofultrasonicdispersionofcarbonnanotubes aidedbyantifoam,ColloidsSurf.A:Physicochem.Eng.Asp.322(2008)103–107.

[19]I.Schwyzer,R.Kaegi,L.Sigg,A.Magrez,B.Nowack,Influenceoftheinitial stateofcarbonnanotubesontheircolloidalstabilityundernaturalconditions, Environ.Pollut.159(2011)1641–1648.

[20]C.Hu,C.Yang,S.Hu,Hydrophobicadsorptionofsurfactantsonwater-soluble carbonnanotubes:asimpleapproachtoimprovesensitivityand antifoul-ingcapacityofcarbonnanotubes-basedelectrochemicalsensors,Electrochem. Commun.9(2007)128–134.

[21]P.S.Goh,B.C.Ng,A.F.Ismail,M.Aziz,S.M.Sanip,Surfactantdispersed multi-walled carbon nanotube/polyetherimidenanocomposite membrane, Solid StateSci.12(2010)2155–2162.

[22]R.Rastogi,R.Kaushal,S.K.Tripathi,A.L.Sharma,I.Kaur,L.M.Bharadwaj, Com-parativestudyofcarbonnanotubedispersionusingsurfactants,J. Colloid InterfaceSci.328(2008)421–428.

[23]H.T.Ham,Y.S.Choi,I.J.Chung,Anexplanationofdispersionstatesof single-walledcarbonnanotubesinsolventsandaqueoussurfactantsolutionsusing solubilityparameters,J.ColloidInterfaceSci.286(2005)216–223.

[24]I.Madni,C.-Y.Hwang,S.-D.Park,Y.-H.Choa,H.-T.Kim,Mixedsurfactant sys-temforstablesuspensionofmultiwalledcarbonnanotubes,ColloidsSurf.A: Physicochem.Eng.Asp.358(2010)101–107.

[25]Y.Liu,L.Yu,S.Zhang,J.Yuan,L.Shi,L.Zheng,Dispersionofmultiwalled car-bonnanotubesbyionicliquid-typeGeminiimidazoliumsurfactantsinaqueous solution,ColloidsSurf.A:Physicochem.Eng.Asp.359(2010)66–70.

[26]A.DiCrescenzo,D.Demurtas,A.Renzetti,G.Siani,P.DeMaria,M.Meneghetti, M. Prato,A. Fontana, Disaggregation of single-walled carbon nanotubes (SWNTs)promotedbytheionicliquid-basedsurfactant 1-hexadecyl-3-vinyl-imidazoliumbromideinaqueoussolution,SoftMatter5(2009)62–66.

[27]J.Jiao,H.Zhang,L.Yu,X.Wang,R.Wang,Decoratingmulti-walledcarbon nano-tubeswithAunanoparticlesbyamphiphilicionicliquidself-assembly,Colloids Surf.A:Physicochem.Eng.Asp.408(2012)1–7.

[28]F.Lu,S.Zhang,L.Zheng,Dispersionofmulti-walledcarbonnanotubes (MWC-NTs)byionicliquid-basedphosphoniumsurfactantsinaqueoussolution,J.Mol. Liq.173(2012)42–46.

[29]H.B.Kim,J.S.Choi,S.T.Lim,H.J.Choi,H.S.Kim,Preparationandnanoscopic inter-nalstructureofsingle-walledcarbonnanotube-ionicliquidgel,Synth.Met.154 (2005)189–192.

[30]T.Aida,T.Fukushima,Softmaterialswithgraphiticnanostructures,Philos. Trans.R.Soc.A:Math.Phys.Eng.Sci.365(2007)1539–1552.

[31]S.H.Hong,T.T.Tung,L.K.H.Trang,T.Y.Kim,K.S.Suh,Preparationofsingle-walled carbonnanotube(SWNT)gelcompositesusingpoly(ionicliquids),Colloid Polym.Sci.288(2010)1013–1018.

[32]C.Li,L.Gu,J.Tong,J.Maier,Carbonnanotubewiringofelectrodesfor high-ratelithiumbatteriesusinganimidazolium-basedionicliquidprecursoras dispersantandbinder:acasestudyonironfluoridenanoparticles,ACSNano5 (2011)2930–2938.

[33]L.Lu,B.Liu,C.Liu,G.Xie,Amperometricimmunosensorformyeloperoxidase inhumanserumbasedonamulti-wallcarbonnanotubes-ionicliquid-cerium dioxidefilm-modifiedelectrode,Bull.Kor.Chem.Soc.31(2010)3259–3264.

[34]X.Pei,Y.H.Yan,L.Yan,P.Yang,J.Wang,R.Xu,M.B.Chan-Park,A magnet-icallyresponsivematerialofsingle-walledcarbonnanotubesfunctionalized withmagneticionicliquid,Carbon48(2010)2501–2505.

[35]J.Yang,Z.Zhang,D.Zhang,Y.Li,Quantitativeanalysisofthe(n,m)abundanceof single-walledcarbonnanotubesdispersedinionicliquidsbyopticalabsorption spectra,Mater.Chem.Phys.139(2013)233–240.

[36]M.Zhao,Y.Gao,L.Zheng,Lyotropicliquidcrystallinephasesformedinbinary mixture of 1-tetradecyl-3-methylimidazolium chloride/ethylammonium nitrateanditsapplicationinthedispersionofmulti-walledcarbonnanotubes, ColloidsSurf.A:Physicochem.Eng.Asp.369(2010)95–100.

[37]B.Dong,Y.Su,Y.Liu,J.Yuan,J.Xu,L.Zheng,Dispersionofcarbonnanotubesby carbazole-tailedamphiphilicimidazoliumionicliquidsinaqueoussolutions,J. ColloidInterfaceSci.356(2011)190–195.

[38]J.Wang,H.Chu,Y.Li,Whysingle-walledcarbonnanotubescanbedispersedin imidazolium-basedionicliquids,ACSNano2(2008)2540–2546.

[39]N.Madria,T.A.Arunkumar,N.G.Nair,A.Vadapalli,Y.-W.Huang,S.C.Jones,V.P. Reddy,Ionicliquidelectrolytesforlithiumbatteries:synthesis, electrochemi-cal,andcytotoxicitystudies,J.PowerSources234(2013)277–284.

[40]S.N.Riduan,Y.Zhang,Imidazoliumsaltsandtheirpolymericmaterialsfor bio-logicalapplications,Chem.Soc.Rev.42(2013)9055–9070.

[41]R.Biczak,B.Pawłowska,P.Bałczewski,P.Rychter,Theroleoftheanioninthe toxicityofimidazoliumionicliquids,J.Hazard.Mater.274(2014)181–190.

(11)

[42]W.Gouveia,T.F.Jorge,S.Martins,M.Meireles,M.Carolino,C.Cruz,T.V.Almeida, M.E.M.Araújo,Toxicityofionicliquidspreparedfrombiomaterials, Chemo-sphere104(2014)51–56.

[43]E.Flahaut,R.Bacsa,A.Peigney,C.Laurent, Gram-scaleCCVDsynthesisof double-walledcarbonnanotubes,Chem.Commun.9(2003)1442–1443.

[44]S.-H.Yoo,Y.-W.Kim,K.Chung,S.-Y.Baik,J.-S.Kim,Synthesisandcorrosion inhibitionbehaviorofimidazolinederivativesbasedonvegetableoil,Corros. Sci.59(2012)42–54.

[45]S.F. Wang, T. Furuno, Z. Cheng, Synthesis of 1-hydroxyethyl-2-alkyl-2-imidazolineanditsderivativesulfonateamphotericsurfactantfromtalloil fattyacid,J.WoodSci.49(2003)371–376.

[46]S. Sharma,S. Gangal,A. Rauf,Convenient one-pot synthesisof novel 2-substitutedbenzimidazoles,tetrahydrobenzimidazoles andimidazolesand evaluationoftheirinvitroantibacterialandantifungalactivities,Eur.J.Med. Chem.44(2009)1751–1757.

[47]F.Mouchet,P.Landois,E.Sarremejean,G.Bernard,P.Puech,E.Pinelli,E.Flahaut, L.Gauthier,Characterisationandinvivoecotoxicityevaluationofdouble-wall carbonnanotubesinlarvaeoftheamphibianXenopuslaevis,Aquat.Toxicol.87 (2008)127–137.

[48]F.Bourdiol,F.Mouchet,A.Perrault,I.Fourquaux,L.Datas,C.Gancet,J.-C. Boutonnet,E.Pinelli,L.Gauthier,E.Flahaut,Biocompatiblepolymer-assisted dispersionofmultiwalledcarbonnanotubesinwater,applicationtothe inves-tigationoftheirecotoxicityusingXenopuslaevisamphibianlarvae,Carbon54 (2013)175–191.

[49]S.Azoubel,S.Magdassi,Theformationofcarbonnanotubedispersionsbyhigh pressurehomogenizationandtheirrapidcharacterizationbyanalytical cen-trifuge,Carbon48(2010)3346–3352.

[50]C.Richard,F.Balavoine,P.Schultz,T.W.Ebbesen,C.Mioskowski, Supramolecu-larself-assemblyoflipidderivativesoncarbonnanotubes,Science300(2003) 775–778.

[51]S.Utsumi,M.Kanamaru,H.Honda,H.Kanoh,H.Tanaka,T.Ohkubo,H.Sakai, M.Abe,K.Kaneko,RBMbandshift-evidenceddispersionmechanismof single-wallcarbonnanotubebundleswithNaDDBS,J.ColloidInterfaceSci.308(2007) 276–284.

[52]Y.Bai,D.Lin,F.Wu,Z.Wang,B.Xing,AdsorptionofTritonX-series surfac-tantsanditsroleinstabilizingmulti-walledcarbonnanotubesuspensions, Chemosphere79(2010)362–367.

[53]M.F.Islam,E.Rojas,D.M.Bergey,A.T.Johnson,A.G.Yodh,Highweightfraction surfactantsolubilizationofsingle-wallcarbonnanotubesinwater,NanoLett. 3(2003)269–273.

[54]B.Yu,F.Zhou,G.Liu,Y.Liang,W.T.S.Huck,W.Liu,Theelectrolyteswitchable solubilityofmulti-walledcarbonnanotube/ionicliquid(MWCNT/IL)hybrids, Chem.Commun.(2006)2356–2358.

[55]J.Rausch,R.-C.Zhuang,E.Mäder,Surfactantassisteddispersionof functional-izedmulti-walledcarbonnanotubesinaqueousmedia,Compos.A:Appl.Sci. Manuf.41(2010)1038–1046.

[56]O.Osazuwa,K.Petrie,M.Kontopoulou,P.Xiang,Z.Ye,A.Docoslis, Charac-terizationofnon-covalently,non-specificallyfunctionalizedmulti-wallcarbon nanotubesandtheirmeltcompoundedcompositeswithanethylene–octene copolymer,Compos.Sci.Technol.73(2012)27–33.

[57]F.-C.Li,J.-C.Yang,W.-W.Zhou,Y.-R.He,Y.-M.Huang,B.-C.Jiang, Experimen-talstudyonthecharacteristicsofthermalconductivityandshearviscosityof viscoelastic-fluid-basednanofluidscontainingmultiwalledcarbonnanotubes, Thermochim.Acta556(2013)47–53.

Figure

Fig. 1. General scheme for the synthesis reactions of the ionic liquids.
Fig. 2. FT-IR spectra of (A) [M-E-C 13 -Im] I, (B) [M-E-C 15 -Im] I and (C) [M-E-C 17 -Im] I.
Fig. 7. UV/vis spectra of ionic liquids [M-E-C 13 -Im] I, [M-E-C 15 -Im] I, [M-E-C 17 -Im] I at 10 mM and DWCNT suspensions with ionic liquids [M-E-C 13 -Im] I, [M-E-C 15 -Im] I, [M-E-C 17 -Im] I and water only (immediately after preparation).
Fig. 8. UV/vis absorbance intensity versus time of DWCNTs (50 mg/L) in ionic liquids (a) [M-E-C 13 -Im] I, (b) [M-E-C 15 -Im] I, (c) [M-E-C 17 -Im] I and (d) deionized water alone at a concentration of (A) 10 mM, (B) 1.5 mM and (C) 1 mM, up to 20 days.
+3

Références

Documents relatifs

De même que l’ensemble des entreprises ayant connu une grève en 2016, les entreprises indus- trielles évoquent plus souvent qu’en 2015 des motifs de mobilisation

In summary, combining optical absorption and Raman scat- tering on individual index identified DWNTs allows us to analyze and understand the effects of the quantum interference

All together, using both in  vitro and in  vivo models, this study clearly reveals that the surface charge density of a cationic carbon NP rather than the absolute value of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Techniques for managing preventive grinding programs are reviewed, and methods to optimize the preventive-gradual strategy through rail profile design, grinding pattern

Paul Bertrand (Université catholique de Louvain), dans trois publications sur son carnet de recherche7, n'est pas moins critique notamment sur la manière dont les auteurs

Weak models admit concurrent updates to the same data item, and include Causal Consistency (CC), Strong Eventual Consistency (SEC) and Eventual Consistency (EC) (see Table 1)..

four tests and those obtained from the second test were used to determine the airtightness values for the unbalanced building component using the same method as described for