• Aucun résultat trouvé

Advanced analytical techniques to characterize materials for electrochemical capacitors

N/A
N/A
Protected

Academic year: 2021

Partager "Advanced analytical techniques to characterize materials for electrochemical capacitors"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-02020693

https://hal.archives-ouvertes.fr/hal-02020693

Submitted on 15 Feb 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Advanced analytical techniques to characterize materials

for electrochemical capacitors

Zifeng Lin, Pierre-Louis Taberna, Patrice Simon

To cite this version:

Zifeng Lin, Pierre-Louis Taberna, Patrice Simon. Advanced analytical techniques to characterize

materials for electrochemical capacitors. Current Opinion in Electrochemistry, Elsevier, 2018, 9,

pp.18-25. �10.1016/j.coelec.2018.03.004�. �hal-02020693�

(2)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

http://oatao.univ-toulouse.fr/21769

To cite this version:

Lin, Zifeng

and Taberna, Pierre-Louis

and Simon, Patrice

Advanced

analytical techniques to characterize materials for electrochemical capacitors.

(2018) Current Opinion in Electrochemistry, 9. 18-25. ISSN 2451-9103

(3)

Advanced analytical techniques to characterize

materials for electrochemical capacitors

Zifeng

Lin

1,2

,

Pierre-Louis

Taberna

1,2

and

Patrice

Simon

1,2,3,∗

Thisreviewcoversrecentdevelopmentsinadvancedanalytical techniquestocharacterizematerialsforelectrochemical capacitors.Fordoublelayercapacitors,examplesoftheuseof insituX-rayphotoelectronspectroscopy(XPS),pulsed electrochemicalmassspectrometry(PEMS)technique, temperature-programmeddesorptioncoupledwithmass spectroscopy(TPD-MS)technique,insituNMRspectroscopy, andinsitudilatometrymeasurementarepresented,for studyingcarbon/electrolyteinterfacewithafocusonto electrolyteionsconfinementinnanoporesandchangesduring ageing.Forthepseudocapacitivesystem,insituX-ray (neutron)diffractionorscattering,insitudilatometrytechnique, cavitymicro-electrode,insituRamanspectroscopy,TPD-MS technique,andelectrochemicalquartzcrystalmicrobalance (EQCM)techniquehavebeenemployedforstudyingmaterials structure,electrochemicalkinetic,interfaceinteraction,and ionsadsorption/desorption.Theseadvancedanalytical techniquesprobeinsightintochargestoragemechanisms,and guidingthefastdevelopmentofsupercapacitors.

Addresses

1 Université PaulSabatier,LaboratoireCIRIMATUMRCNRS,Toulouse 5085,France

2 RéseausurleStockageElectrochimiquedel’Energie(RS2E),FR CNRSn°3459,France

3InstitutUniversitairedeFrance,1ruedesEcoles,Paris75003,FranceCorrespondingauthor: Simon,Patrice (simon@chimie.ups-tlse.fr)

https://doi.org/10.1016/j.coelec.2018.03.004

Introduction

Duringthepast15years,majorscientificadvanceshave

been made in the field of Electrochemical Capacitors

(ECs)which ledtoa2-foldincrease oftheenergy

den-sity of carbon-based (EDLCs) or to the development

ofhigh-ratepseudocapacitivematerials.Theseadvances

havebeenmainlyachievedthankstotheuseofanalytical techniques,usedincombinationwithinsitu

electrochem-icalconventionalmethodsand/orwithmodeling.Inthis

review,someadvancedtechniques,as wellastheirroles

instudyingchargestoragemechanismsareintroduced.

Electrochemical

double

layer

capacitors

InElectricalDoubleLayerCapacitors(EDLCs),

capaci-tivestorageisachievedthroughionadsorptionofan

elec-trolyteonto high surface areaporous carbon electrodes

[1].Then,mostoftheelectrochemicalprocessinEDLCs

occursatthecarbon/electrolyteinterface.Theanalytical

techniquesusedinEDLCsmainlyfocusonthisinterface.

OneoftheimportantparametersofECsistheoperating

voltagewindow,which drivestheenergydensityof the

system.In situX-rayPhotoelectronSpectroscopy(XPS)

techniquehasbeenusedtostudythestabilityofthe car-bon/electrolyteinterfaceduringelectrochemical polariza-tionofCDCcarbonsinionicliquidelectrolyte[2,3].By

tracking the changein theC1s and N1s energy levels,

Lustandco-workers identifiedthereactionmechanism

responsiblefortheelectrolytedegradationathigh poten-tial(>3.6V),which involves theoxidative dimerization

ofthe imidazoliumcation viaN–Nbond formation [2].

Anothertechniquerecentlydevelopedformonitoringgas

evolutionduringtheoperationof supercapacitors isthe

pulsedelectrochemicalmassspectrometry(PEMS)

tech-nique[4•],aspresentedinFigure1.PEMStechnique

al-lowsforfastquantitativemeasurementoflowgas produc-tionduringsupercapacitorcyclingorageing.Batisseand

Raymundo[4•

]evidencedandquantifiedtheformation

ofCO,CO2 andH2 atthepositiveandnegativeelectrode

duringsupercapacitorcellsageingatconstantvoltagesin

aqueouselectrolytes.Furthermore,they could correlate

gas production to the change of each electrode

poten-tialversusreferenceduringageing.Ageingmechanisms

inporouscarbonelectrodesstronglydependonthe

pres-enceofsurfacefunctionalgroupsonthecarbonsurface,as wellasthecarbonstructure(presenceofdefects)and tex-ture(surfaceareaandpore sizedistribution).Herealso,

manyadvances have been achieved withinthe past 10

years.

A key technique for analyzing the carbon surface is

the temperature-programmed desorption coupled with

mass spectroscopy (TPD-MS) technique [4•–7].

TPD-MStechniqueallowsformeasuringthesurfacegroup

(4)

Figure1

Observationofgasevolutionatelectrode/electrolyteinterfacebyamodifiedpulsedelectrochemicalmassspectrometry(PEMS)method.Adapted withpermissionfromref.[4•].Copyright©2017AmericanChemicalSociety.

whichaccountsforthepresenceofcarbonactivesites: de-fectssuchasdislocations,stackingfaultsoratom vacan-ciesmainlylocatedintheedgeplanes[7].Usingcarbon

onionswithcontrolleddefectandsurfacegroupcontents

asmodelmaterials,adirectcorrelationwasreported

be-tweenthenumberofdefectsonthecarbonsurface

mea-suredbyTPD-MSandthecapacitanceinbothaqueous

andnon-aqueouselectrolytes.Surprisingly,the contribu-tionofthesurfacedefectstothecapacitancewasfoundto behigherthanthatofthefunctionalsurfacegroups,even

inaqueouselectrolytes.Theseresultsshowthatthe

sur-facedefectscontentalsoaffectsthecarboncapacitance.

Besidesthecarbonstructureand surfacegroupcontent,

theelectrochemicalperformancesof porous carbonsare

alsocontrolledbythecarbontexture:specificsurfacearea, porevolume,poresize,poresizedistribution.Backto15 yearsago,thecarbon-specificsurfaceareaSSAwasmainly calculatedfromN2 gassorption isothermsat77Kusing

theBrunauer–Emmett–Teller(BET)equation.The

evi-denceofthecapacitanceincreaseincarbonporeslessthan 1nm[8–10]highlightedtheneedforrefiningthe

charac-terizationmethodstofinelymeasuretheporousvolume

and pore size in the ultra-microporous range (<1nm).

Following recommendations of the IUPAC, the BET

equationisnotsuitableforthemeasurementofspecific

surfaceareaofmicroporouscarbons[11].Instead,for mi-croporosityassessment,CO2 sorptionat273Kshouldbe

preferredto alleviatekineticsrestrictionsobserved

dur-ing measurements at low temperature with (77K with

N2 ) [11]. In the same way, calculation of the SSA

us-ingquenchedsoliddensityfunctionaltheory(QS-DFT)

avoids the fundamental limitations of the BET theory

[12].Finally,theporousvolumeaccessibletoionsshould

beconsidered,thatistheporousvolumeofporeslarger

thanthesizeofthedesolvatedion[13].Basedonthe

pre-viousrecommendations,Jäckeletal.[13]proposetouse

CO2 gasformeasuringporousvolumebelow0.9nmand

N2 gasforpores>0.9nm.Thechangeofthecapacitance

normalizedto QS-DFTSSAversusaccessiblepore size

showsacapacitanceincreaseinporeslessthan1nmsize forvariousporouscarbonsinnon-aqueouselectrolytes(in

acetonitrile- or propylene carbonate-based electrolyte).

Initiallyreportedin2006usingaseriesofporouscarbons with controlledpore size [10],the originof the

capaci-tanceincreaseincarbonnanoporeshasbeenextensively

studiedsincethattimemainlybyusingneworadvanced

(5)

Figure2

InsituNMRspectroscopyexperimentscarriedoutatdifferentchargestatesallowquantificationofthenumberofchargesstoringspecies.Adapted withpermissionfromref.[15].Copyright©2013AmericanChemicalSociety.

workwas directedtoward theunderstanding of theion

transport and adsorption in confined carbon nanopores

(<1nm),i.e.wherethereisnoroomforthebuildingofa

diffuselayer.InsituNMRspectroscopyexperiments

dur-ingelectrochemicalpolarizationofporouscarbonsinNaF

aqueous electrolyte have shown that ions could access

subnanometerporeswithpartialaniondehydrationunder

polarization[14].Usingdedicatedelectrochemicalcell,as

shownin Figure2,insituNMRexperimentsduring

po-larizationalsoevidenceddifferentchargestorage

mech-anisms depending on the electrode polarity [15–19••].

Counter ionadsorption wasfound atthenegative

elec-trode(X=1)andionexchangeatthepositive(X=0)[18],

confirmingresultsobtainedusingelectrochemicalquartz

crystalmicrobalancetechniqueunderagravimetricmode

[20].Inaddition,theeffectiveionicdiffusioncoefficients

inside thecarbon nanoporesweredecreasedbytwo

or-dersofmagnitudecomparedwithbulkelectrolyte[19••];

thiswasexplainedbytheincreaseoftheionpopulation

inpores.Asaresult,thechargingmechanism(counterion adsorptionversusionexchange)affectstheiontransport

kineticsinconfinednanopores.

Conventional techniques have been also developed to

studyiontransferinporouscarbons.Interestingly,insitu

dilatometry measurement duringelectrochemical

polar-izationshowsalsoanasymmetricbehaviorwithrespectto theelectrodepolarization,theelectrodethicknesschange

beingmoreimportant duringnegativepolarization[21].

Recently,Presseretal. improvedthetechniqueby

cou-pling insitudilatometry togetherwith X-ray absorption

spectroscopy(XAS)[22••][21].First,theyconfirmedthe

asymmetricswellingof porouscarbon electrodesduring

electrochemicalpolarizationinaqueouselectrolytes.Also, thankstotheuseofporouscarbonwithhierarchical

micro-porous/mesoporousstructure,mostofthevolumechange

couldbeassignedtothepresenceofporeslessthan1nm

size.Theoriginoftheasymmetrywasattributedto the

increaseoftheC–Cbondsduetoelectroninjectioninto

thecarbonduringnegativepolarization.Thisechoesthe

increaseintheionpopulationreportedbyForseand

co-workers by in situ NMR spectroscopy [15], leading to

thedecreaseofthe ionicdiffusioncoefficientin carbon nanopores.

Finally,thedevelopmentofinsituX-rayorneutron

scat-tering techniques has been particularly successful for

studyingion adsorption in carbon nanopores[23••

–25]. Prehaletal.[24]usedCsClaqueouselectrolytetostudy

theionadsorptioninnanoporouscarbonsunder

polariza-tion.BycouplingSAXSandMonteCarlomodeling,they

evidencedtheionpartial desolvationwhen confinedin

carbonnanopores.Theextentofdesolvationand

confine-mentwasfoundtoincreasewiththeappliedpotential,in

agreementwithpreviousstudies[26],whichgiveshints

toexplainthecapacitanceincreaseincarbonnanopores.

Also,Futamura et al. recently showed the existence of

co-ion pairs when theionic liquid electrolyte was

con-finedinto carbonpores of0.7nmsize,thatis whenthe

ionsizeiscloseto theporesize[25].Suchanimproved

co-ionpairingwastheconsequenceofthepartial

break-ingoftheelectrostaticCoulombicrepulsioninteractions

betweenco-ionsthankstothecreationofimagecharges

inthecarbon.Theycouldconfirmthecreationofa“super

ionic” statesuchaspredictedbyKornyshevandKondrat

(6)

Figure3

Schematicofthecavitymicro-electrode.Adaptedwithpermissionfromref.[40].

Asonecansee,themoreweadvanceinthe

understand-ingoftheionconfinementeffectinnanopores,themore

thingsgetcomplex.Thereisstillalottounderstand in thisfieldandalltheseanalyticaltoolswillbeofgreathelp tokeeponmovinginthisdirection.

Pseudocapacitive

and

high

charge–discharge

rate

materials

Pseudocapacitive materials store the charge through

fast,non-diffusion-limitedredoxreactions.Also,different

fromamorphousporouscarbonmaterialsusedinEDLCs,

most of the pseudocapacitivematerials show organized

crystallinestructure.So,mostof theconventional

tech-niques based on X-ray diffraction or scattering used to

characterize batteryelectrode materials have been

em-ployed with pseudocapacitive materials. We will then

just briefly mention some examples. In situ XRD has

beenextensivelyusedtostudytheswelling/contraction

ofpseudocapacitivematerialsduringion intercalation/de-intercalation,suchasinMnO2 ,NiOx ,orMXene[28–30].

Withoutsurprise,theelectrodematerialvolumechanges

aredrivenbyelectrostatic repulsionbetweenthelayers

or the steric effects coming from ion

intercalation/de-intercalation to balance the charge [29]. In

monocrys-tallineNb2 O5 operatinginnon-aqueouselectrolytes,the

intercalation/de-intercalation process volume change is

drivenbystericeffect(swellingduringintercalation, con-traction during de de-intercalation) [31]. X-ray

absorp-tionwasusedtoevidencethechangeoftheTioxidation

state duringcharge/discharge of Ti3 C2 Tx MXene

elec-trode[32,33],aswellasinothermaterials[34,35].

Differently, micro-electrodes or cavity micro-electrodes

tools (Figure 3) are well-suited for the electrochemical characterizationof high-ratepseudocapacitivematerials.

Thankstothesmall amountof materialstested,alarge

rangeof potentialscan rates(v) canbeexplored—from

fewmVs−1 uptofewVs−1 —whichwasextremelyuseful forstudyingtheelectrochemicalkineticsof pseudocapac-itivereactions[36–38].Thedeconvolutionofthecurrent intonon-diffusionlimitedsurfaceprocess(changingwith v) anddiffusion-limited(changingwithv1/2 )hasmadeit

possibleto extract thepseudocapacitivecontributionto

thetotalcurrentateachpotential,whichhelpsin optimiz-ingthestructurestodesignhigh-ratematerials[36–39].

Another original initiative comes from Hu et al., who

usedRamanspectroscopytocharacterizethecharge

stor-age during polarization of Ti3 C2 Tx MXene electrodes

inSO4 2 − ionscontaining aqueouselectrolyte of various

cations[41••].MXenesare2-Dimensionalmaterials

pio-neeredbyBarsoumandco-workers[42],whichcontains

O- andF-surfaceterminations.Thosegroupscomefrom

thesynthesis process, thatis etching of MAX phasein

thefluorine-containingacidicsolutions[33].Itwasfound

that hydronium ions in sulfuric acid could bond with

theoxygen-containingterminationsoftheTi3 C2 Tx

MX-enenegativeelectrodeuponreduction(oxidation)while

(7)

imidazolium-basedionicliquid electrolyte [47].MXene

electrodeswellingwas measured duringnegative

polar-ization,suggesting the preferential insertion of cations. Underpositivepolarization,theelectrodecontractseven

further compared to the un-polarized sample,

suggest-inganionexchangemechanism.Similarresultswere

ob-tainedfrominsituXRDmeasurements[28]anda

molec-ulardynamicssimulation study [48],which confirm the

differenceinthechargestoragemechanismwiththe elec-trodepolarity.Also,themodestcapacitancesuggestsa ma-jorcontributionfromthedoublelayer.

Newanalyticaltoolsbasedontheelectrochemicalquartz

crystalmicrobalance(EQCM)techniquehavealsobeen

developedtostudyenergystoragematerialsthatoffer

in-terestingopportunitiesintheECarea.Differentlyfrom

thegravimetricEQCM,theEQCMwithdissipation

mon-itoring(EQCM-D)operatedwithmultipleovertones of

theresonance frequency,thus probing awide range of

penetrationdepthδn [49,50].Thestructuralparametersof

theelectrodescanbeobtainedbymeasuringthechange

in the resonance frequency 1F and thechange in the

full-widthathalf-heightoftheresonancepeak1Wover

a wide range of overtone numbers n, and fitting the

processisaccompaniedbyachangeintheoxidationstate ofTifromTi(+III)downtoTi(+II).Theredoxreaction onTiexplainstheextremelyhigh capacitanceTi3 C2 Tx

MXene canreach in acidicelectrolytes [33,43]. In

con-trast,inneutralelectrolytes,onlydoublelayeradsorption occurswithoutchargetransferonTiatoms[41••].

Broad-eningtheuseofinsituRamanspectroscopytechniqueto

othermaterialscouldbringnewinsightsinthe

pseudoca-pacitivechargestoragemechanism.

The discoveryof 2DMXenematerials hasboostedthe

research in pseudocapacitivematerials. One of the key

features of MXenes is the presence of surface oxygen

and fluorineterminationsontheirsurface.The

TPD-MS technique has been successfully used to measure

the change of the amount and the nature of these

groupsduringhydrazineintercalationintoTi3 C2 Tx

MX-ene material [44]. The capacitance of MXene in the

non-aqueouselectrolyteiswellbehindthatinthe

aque-ousacidicelectrolytes[45]andthechargestorage

mech-anism of MXenes in non-aqueous electrolytes is still

unclear [28,46]. In situ dilatometry technique,which is

well-suitedfor 2Dmaterials,hasbeenusedto measure

theswelling/expansionof Ti3 C2 Tx MXene electrodein

Figure4

Gravimetricandnon-gravimetricapplicationsofEQCM-Dforthecharacterizationofenergy-storageelectrodes.(Bottompanel)Acousticwavesfor fundamentalfrequencyandits3rdovertone.Adaptedwithpermissionfromref.[49].Copyright©2018AmericanChemicalSociety.

(8)

hydrodynamic equations.Structural parameters include electrodefilmdensityorthickness,permeabilitylength, particlesradiusandcoveragedensity(Figure4)[49].This

technique is an efficient tool for tracking in one shot

thegeometricalchangeintheelectrodes(contractionor

swelling,morphologicalchanges)aswellasthechangein reactionmechanisms(formationofpassivelayersor elec-trolytedecomposition)[51••].

Another technique derived from EQCM is called

AC-electrogravimetry or AC-EQCM [52]. The AC-EQCM

techniqueconsistsofachievinggravimetricEQCM

mea-surements at a steady state (constant potential for

in-stance) and over-impose a sinusoidal perturbation to

the bias signal such as achieved in electrochemical

impedance spectroscopy. Differently from gravimetric

EQCM,AC-EQCMallowsthedeconvolutionofaglobal

gravimetricECQMresponseintoindividualcations,

an-ions,andsolventmoleculescontributionsbyplottingthe dQ/dE(Q:charge,E:potential)ordm/dE(m:mass,E: po-tential)transferfunctions;thisisonekeyadvantageofthis techniquewhichcantracktheelectrochemicalactivityof onetypeofanion(cation)inamixtureofanions(cations)

[53].Somepapers havejust been publisheddescribing

theuseof AC-EQCM to studypseudocapacitive

mate-rials[54•].Thepossibilityfordifferentiatingtheion

con-tributions presentgreatinterestfor studyingthecharge storagereactionmechanismsinvariouselectrolytes.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview,have beenhighlightedas:

•Paperofspecialinterest. ••Paperofoutstandinginterest.

1. SimonP,GogotsiY:Materialsforelectrochemicalcapacitors. NatMater2008,7(11):845–854.

2. KruusmaJ,TõnisooA,PärnaR,NõmmisteE,KuusikI,VahtrusM, TalloI,RomannT,LustE:Theelectrochemicalbehaviorof 1-ethyl-3-methylimidazoliumtetracyanoboratevisualizedbyin situX-rayphotoelectronspectroscopyatthenegativelyand positivelypolarizedmicro-mesoporouscarbonelectrode.J ElectrochemSoc2017,164(13):A3393–A3402.

3. KruusmaJ,TõnisooA,PärnaR,NõmmisteE,TalloI,RomannT, LustE:Influenceofthenegativepotentialofmolybdenum carbidederivedcarbonelectrodeontheinsitusynchrotron radiationactivatedX-rayphotoelectronspectraof 1-ethyl-3-methylimidazoliumtetrafluoroborate.Electrochim Acta2016,206:419–426.

4. •

BatisseN,Raymundo-PiñeroE:Pulsedelectrochemicalmass spectrometryforoperandotrackingofinterfacialprocessesin small-time-constantelectrochemicaldevicessuchas supercapacitors.ACSApplMaterInterfaces2017, 9(47):41224–41232.

Inthispaper,thegasemissionsduringpolarizationofacarbon-–carbon supercapacitorcellwereanalyzedasafunctionofthecellvoltage.The datawerecorrelatedtothetexturalchangesoftheofthecarbon electrodes,givingacompletepictureoftheprocessestakingplaceat theelectrode/electrolyteinterface.

5. FigueiredoJL,PereiraMFR,FreitasMMA,ÓrfãoJJM: Modificationofthesurfacechemistryofactivatedcarbons. Carbon1999,37(9):1379–1389.

6. GhimbeuCM,GadiouR,DentzerJ,VidalL,Vix-GuterlC:A TPD-MSstudyoftheadsorptionofethanol/cyclohexane mixtureonactivatedcarbons.Adsorption2011,17(1):227– 233.

7. MoussaG,MateiGhimbeuC,TabernaP-L,SimonP,Vix-GuterlC: Relationshipbetweenthecarbonnano-onions(CNOs)surface chemistry/defectsandtheircapacitanceinaqueousand organicelectrolytes.Carbon2016,105:628–637.

8. EliadL,SalitraG,SofferA,AurbachD:Ionsievingeffectsinthe electricaldoublelayerofporouscarbonelectrodes: estimatingeffectiveionsizeinelectrolyticsolutions.JPhys ChemB2001,105(29):6880–6887.

9. EliadL,SalitraG,SofferA,AurbachD:Onthemechanismof selectiveelectroadsorptionofprotonsintheporesofcarbon molecularsieves.Langmuir2005,21(7):3198–3202.

10. ChmiolaJ,YushinG,GogotsiY,PortetC,SimonP,TabernaPL: Anomalousincreaseincarboncapacitanceatporesizesless than1nanometer.Science2006,313(5794):1760–1763.

11. ThommesM,KanekoK,NeimarkAlexanderV,OlivierJamesP, Rodriguez-ReinosoF,RouquerolJ,SingKennethSW: Physisorptionofgases,withspecialreferencetothe evaluationofsurfaceareaandporesizedistribution(IUPAC TechnicalReport).PureApplChem2015,87(9-10):1051– 1069.

12. GorGY,ThommesM,CychoszKA,NeimarkAV:Quenchedsolid densityfunctionaltheorymethodforcharacterizationof mesoporouscarbonsbynitrogenadsorption.Carbon2012, 50(4):1583–1590.

13. JäckelN,SimonP,GogotsiY,PresserV:Increaseincapacitance bysubnanometerporesincarbon.ACSEnergyLett2016, 1(6):1262–1265.

14. LuoZ-X,XingY-Z,LiuS,LingY-C,KleinhammesA,WuY: Dehydrationofionsinvoltage-gatedcarbonnanopores observedbyinsituNMR.JPhysChemLett2015, 6(24):5022–5026.

15. WangH,ForseAC,GriffinJM,TreaseNM,TrognkoL,TabernaP-L, SimonP,GreyCP:InsituNMRspectroscopyof

supercapacitors:insightintothechargestoragemechanism.J AmChemSoc2013,135(50):18968–18980.

16. DeschampsM,GilbertE,AzaisP,Raymundo-PiñeroE,

AmmarMR,SimonP,MassiotD,BéguinF:Exploringelectrolyte organizationinsupercapacitorelectrodeswithsolid-state NMR.NatMater2013,12:351.

17. GriffinJM,ForseAC,TsaiW-Y,TabernaP-L,SimonP,GreyCP:In situNMRandelectrochemicalquartzcrystalmicrobalance techniquesrevealthestructureoftheelectricaldoublelayerin supercapacitors.NatMater2015,14(8):812–819.

18. ForseAC,Merlet,GriffinC,GreyJM,NewCP:Perspectiveson thechargingmechanismsofsupercapacitors.JAmChemSoc 2016,138(18):5731–5744.

19. ••

ForseAlexanderAC,GriffinJohnJM,MerletC,

Carretero-GonzalezJ,RajiA-RahmanRO,TreaseNicoleNM, GreyClareCP:Directobservationofiondynamicsin supercapacitorelectrodesusinginsitudiffusionNMR spectroscopy.NatEnergy2017,2(3):16216Articlenumber:.

Inthispaper,in-situpulsedfieldgradientNMRspectroscopywasused tomeasureionicdiffusioninporouscarbonelectrodes.In-poreionic diffusioncoefficientswerefoundtobe2ordersofmagnitudebelow comparedtobulkelectrolyte.Ionicdiffusioncoefficientcanbeaffected bothbycarbonporesizedistributionsandtheelectrolyteconcentration inpores.

20. TsaiWY,TabernaPL,SimonP:Electrochemicalquartzcrystal microbalance(EQCM)studyofiondynamicsinnanoporous carbons.JAmChemSoc2014,136(24):8722–8728.

21. HantelMM,PresserV,KötzR,GogotsiY:Insituelectrochemical dilatometryofcarbide-derivedcarbons.ElectrochemCommun 2011,13(11):1221–1224.

(9)

22. ••

KoczwaraC,RumswinkelS,PrehalC,JäckelN,ElsässerMS, AmenitschH,PresserV,HüsingN,ParisO:Insitumeasurement ofelectrosorption-induceddeformationrevealsthe

importanceofmicroporesinhierarchicalcarbons.ACSAppl MaterInterfaces2017,9(28):23319–23324.

Inthispaper,nanometerscaleandmacroscopicscaledimensional changesincarbon-basedsupercapacitorelectrodeswereinvestigated usingacombinationofelectrochemicaldilatometryandinsitu small-angleX-rayscattering.

23. ••

BoukhalfaS,GordonD,HeL,MelnichenkoYB,NittaN, MagasinskiA,YushinG:Insitusmallangleneutronscattering revealingionsorptioninmicroporouscarbonelectricaldouble layercapacitors.ACSNano2014,8(3):2495–2503.

Forthefirsttimethatin-situsmallangleneutronscattering(SANS)was utilizedtorevealtheelectroadsorptionoforganicelectrolyteionsin carbonporesofdifferentsizes.Enhancedionsorptioninsubnanometer poresundertheappliedpotentialwasobserved.

24. PrehalC,KoczwaraC,JackelN,SchreiberA,BurianM,

AmenitschH,HartmannMA,PresserV,ParisO:Quantificationof ionconfinementanddesolvationinnanoporouscarbon supercapacitorswithmodellingandin-situX-rayscattering. NatEnergy2017,2(3):16215Articlenumber.

25. FutamuraR,IiyamaT,TakasakiY,GogotsiY,BiggsMJ,

SalanneM,SégaliniJ,SimonP,KanekoK:Partialbreakingofthe Coulombicorderingofionicliquidsconfinedincarbon nanopores.NatMater2017,16(12):1225–1232.

26. MerletC,PeanC,RotenbergB,MaddenPA,DaffosB,TabernaPL, SimonP,SalanneM:Highlyconfinedionsstorechargemore efficientlyinsupercapacitors.NatCommun2013,4:2701Article number:.

27. KondratS,KornyshevA:Superionicstateindouble-layer capacitorswithnanoporouselectrodes.JPhys,vol232011 022201Articlenumber:.

28. LinZ,RozierP,DuployerB,TabernaP-L,AnasoriB,GogotsiY, SimonP:Electrochemicalandin-situX-raydiffractionstudies ofTi3C2TxMXeneinionicliquidelectrolyte.Electrochem

Commun2016,72:50–53.

29. GhodbaneO,AtaherianF,WuN-L,FavierF:Insitu

crystallographicinvestigationsofchargestoragemechanisms inMnO2-basedelectrochemicalcapacitors.JPowerSources

2012,206:454–462.

30. ChengJ,CaoG-P,YangY-S:Characterizationof

sol–gel-derivedNiOxxerogelsassupercapacitors.JPower

Sources2006,159(1):734–741.

31. ComeJ,AugustynV,KimJW,RozierP,TabernaP-L,GogotsiP, LongJW,DunnB,SimonP:Electrochemicalkineticsof nanostructuredNb2O5electrodes.JElectrochemSoc2014,

161(5):A718–A725.

32. LukatskayaMR,BakS-M,YuX,YangX-Q,BarsoumMW, GogotsiY:Probingthemechanismofhighcapacitancein2D titaniumcarbideusinginsituX-rayabsorptionspectroscopy. AdvEnergyMater,vol520151500589Ariclenumber:.

33. AnasoriB,LukatskayaMR,GogotsiY:2Dmetalcarbidesand nitrides(MXenes)forenergystorage.NatRevMater2017, 2(2):16098Articlenumber:.

34. PandeP,DebA,SleightholmeAES,DjireA,RasmussenPG, Penner-HahnJ,ThompsonLT:Pseudocapacitivechargestorage viahydrogeninsertionformolybdenumnitrides.JPower Sources2015,289:154–159.

35. YeagerMP,SuD,Marinkovi´cNS,TengX:PseudocapacitiveNiO finenanoparticlesforsupercapacitorreactions.JElectrochem Soc2012,159(10):A1598–A1603.

36. AugustynV,ComeJ,LoweMA,KimJW,TabernaP-L,TolbertSH, AbruñaHD,SimonP,DunnB:High-rateelectrochemicalenergy storagethroughLi+intercalationpseudocapacitance.Nat

Mater2013,12(6):518–522.

37. KimH-S,CookJB,LinH,KoJS,TolbertSH,OzolinsV,DunnB: Oxygenvacanciesenhancepseudocapacitivechargestorage propertiesofMoO3-x.NatMater2017,16(4):454–460.

38. HanJ,LinY-C,ChenL,TsaiY-C,ItoY,GuoX,HirataA,FujitaT, EsashiM,GessnerT,ChenM:On-chipmicro-pseudocapacitors forultrahighenergyandpowerdelivery.AdvSci,vol22015 1500067Articlenumber:.

39. KimJW,AugustynV,DunnB:Theeffectofcrystallinityonthe rapidpseudocapacitiveresponseofNb2O5.AdvEnergyMater

2012,2(1):141–148.

40. BozlarM,MiomandreF,BaiJ:Electrochemicalsynthesisand characterizationofcarbonnanotube/modifiedpolypyrrole hybridsusingacavitymicroelectrode.Carbon2009, 47(1):80–84.

41. ••

HuM,LiZ,HuT,ZhuS,ZhangC,WangX:High-capacitance mechanismforTi3C2TxMXenebyinsituelectrochemical

Ramanspectroscopyinvestigation.ACSNano2016, 10(12):11344–11350.

Inthispaper,authorsinvestigatedthechargestoragemechanismof Ti3C2TxMXenebyin-situRamantechnique.It’sItisshownthat hydroniuminH2SO4electrolytereversiblebonding/debondingwith OterminalsaccountforthehighcapacitanceMXeneinacidic electrolytes.

42. NaguibM,KurtogluM,PresserV,LuJ,NiuJ,HeonM,HultmanL, GogotsiY,BarsoumMW:Two-dimensionalnanocrystals producedbyexfoliationofTi3AlC2.AdvMater2011,

23(37):4248–4253.

43. LukatskayaMR,KotaS,LinZ,ZhaoM-Q,ShpigelN,LeviMD, HalimJ,TabernaP-L,BarsoumMW,SimonP,GogotsiY: Ultra-high-ratepseudocapacitiveenergystoragein two-dimensionaltransitionmetalcarbides.NatEnergy2017, 2(8):17105Articlenumber:.

44. MashtalirO,LukatskayaMR,KolesnikovAI,Raymundo-PineroE, NaguibM,BarsoumMW,GogotsiY:Theeffectofhydrazine intercalationonthestructureandcapacitanceof2Dtitanium carbide(MXene).Nanoscale2016,8(17):9128–9133.

45. LinZ,BarbaraD,TabernaP-L,VanAkenKL,AnasoriB,GogotsiY, SimonP:CapacitanceofTi3C2TxMXeneinionicliquid

electrolyte.JPowerSources2016,326:575–579.

46. Dall’AgneseY,RozierP,TabernaP-L,GogotsiY,SimonP: Capacitanceoftwo-dimensionaltitaniumcarbide(MXene)and MXene/carbonnanotubecompositesinorganicelectrolytes.J PowerSources2016,306:510–515.

47. JäckelN,KrünerB,VanAkenKL,AlhabebM,AnasoriB,KaasikF, GogotsiY,PresserV:Electrochemicalinsitutrackingof volumetricchangesintwo-dimensionalmetalcarbides (MXenes)inionicliquids.ACSApplMaterInterfaces2016, 8(47):32089–32093.

48. XuK,LinZ,MerletC,TabernaPL,MiaoL,JiangJ,SimonP: Trackingionicrearrangementsandinterpretingdynamic volumetricchangesintwo-dimensionalmetalcarbide supercapacitors:amoleculardynamicssimulationstudy. ChemSusChem2017.https://doi.org/10.1002/cssc.201702068.

49. ShpigelN,LeviMD,SigalovS,DaikhinL,AurbachD:Insitu real-timemechanicalandmorphologicalcharacterizationof electrodesforelectrochemicalenergystorageandconversion byelectrochemicalquartzcrystalmicrobalancewith

dissipationmonitoring.AccChemRes2018,51(1):69– 79.

50. LeviMD,DaikhinL,AurbachD,PresserV:Quartzcrystal microbalancewithdissipationmonitoring(EQCM-D)forin-situ studiesofelectrodesforsupercapacitorsandbatteries:a mini-review.ElectrochemCommun2016,67:16–21.

51. ••

DargelV,ShpigelN,SigalovS,NayakP,LeviMD,DaikhinL, AurbachD:Insitureal-timegravimetricandviscoelastic probingofsurfacefilmsformationonlithiumbatteries electrodes.NatCommun2017,8(1):1389Articlenumber:.

Inthispaper,Electrochemicalelectrochemicalquartz-crystal microbalancewithdissipation(EQCM-D)monitoringmeasurements wereperformedtoprobetheformationofsurfacefilmsoncomposite Li4 Ti5 O12 electrodecoupledwithlithiumionsintercalationintothis electrode.

(10)

52. GabrielliC,KeddamM,PerrotH,PhamMC,TorresiR:Separation ofionicandsolventtransportduringchargecompensation processesinelectroactivepolymersbya.c.electrogravimetry. ElectrochimActa1999,44(24):4217–4225.

53. Escobar-TeranF,ArnauA,GarciaJV,JiménezY,PerrotH,SelO: GravimetricanddynamicdeconvolutionofglobalEQCM responseofcarbonnanotubebasedelectrodesby Ac-electrogravimetry.ElectrochemCommun.2016,70(Suppl. C):73–77.

54. •

AriasCR,Debiemme-ChouvyC,GabrielliC,Laberty-RobertC, PailleretA,PerrotH,SelO:Newinsightsintopseudocapacitive charge-storagemechanismsinLi-birnessitetypeMnO2

monitoredbyfastquartzcrystalmicrobalancemethods. J PhysChemC2014,118(46):26551–26559.

AC-electrogravimetry(ac-EQCM)wasusedforthefirsttimefor studyingpseudocapacitivechargestoragemechanism.Resultsclearly evidencethede-hydrationofdifferentcationswhentransfertothe electrode/electrolyteinterfaces.Thereactionkineticsandresistanceof chargedandnonchargedspeciestransferredatthe

electrode/electrolyteinterfacesandthenumberofwatermoleculesin thehydrationshelloftheionswereestimatedaswellasthefluxoffree warer.

Références

Documents relatifs

Displayed is (A, E) the Bi film thickness (given as average number of monolayers per pixel), obtained from the intensity, (B, F) the tensile lattice strain, obtained from the in-

Peripheral blood smear yielded a diagnosis in 60/ 86 (69.8%) of patients with Gambian trypanosomiasis during the colonial period, and 24/ 30 (80%) during the post-colonial era (p,

Raman and Brillouin scattering implemented with common pump lasers in the classical BOXCARS geometry (Figure 2a). Basically, temperature and density measurements are

For some classes of polycrystalline materials, the concepts of 3D X-ray diffraction microscopy and tomographic imaging can be merged: the combined methodology, termed X-ray

We present an in situ study of the thermal decomposition of Mg(BH 4 ) 2 in a hydrogen atmosphere of up to 4 bar and up to 500 1C using X-ray Raman scattering spectroscopy at the

Thermal evolution of the cell volume of the ThMn 12 (top, black line); mass fraction of the secondary phase α–(Fe,Mo) (center, blue line) and occupancy of nitrogen atoms (bottom,

Laboratoire de Photochimie Solaire du C.N.B.S., 2, vue Henri Vunant, 94320 Thiais, France. Résume - Dans ce papier on présente une méthode rapide pour l'étude in situ des

2(a) and 2(b) that in both the Al(111) single crystal and Al 6060 alloy cases the thick- ness of the aluminum oxide films on both surfaces increases with increasing