• Aucun résultat trouvé

Effect of compaction on multi-physical properties of hemp-black liquor composites

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of compaction on multi-physical properties of hemp-black liquor composites"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-02562384

https://hal-univ-rennes1.archives-ouvertes.fr/hal-02562384

Submitted on 16 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Effect of compaction on multi-physical properties of

hemp-black liquor composites

Marie Viel, Florence Collet, Christophe Lanos

To cite this version:

Marie Viel, Florence Collet, Christophe Lanos. Effect of compaction on multi-physical properties of

hemp-black liquor composites. Journal of Materials Research and Technology, Elsevier, 2020, 9 (2),

pp.2487-2494. �10.1016/j.jmrt.2019.12.079�. �hal-02562384�

(2)

w w w . j m r t . c o m . b r

Availableonlineatwww.sciencedirect.com

Original

Article

Effect

of

compaction

on

multi-physical

properties

of

hemp-black

liquor

composites

Marie

Viel

a,b,

,

Florence

Collet

a

,

Christophe

Lanos

a

aUniversitédeRennes,LaboratoireGénieCiviletGénieMécanique,BP90422,Rennes,France bUniversitédeNantes,InstitutdeRechercheenGénieCiviletMécanique,BP92208,Nantes,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8September2019

Accepted24December2019

Availableonline27January2020

Keywords:

Sustainablebuildingmaterials

Hempshiv

Thermalproperties

Mechanicalproperties

Moisturebuffervalue

a

b

s

t

r

a

c

t

Thisstudyaimstodevelopfullyagro-basedinsulatingbuildingmaterials.Previousstudies

investigatedseveraltypesofaggregatesandbinderstodevelopcomposites.Thethermal

conductivityofsuchcompositeappearsmainlyimpactedbythedensity.Thispaperaimsto

investigatetheeffectofdensityonvariousmulti-physicalpropertiesofcomposites,using

thesameformulationandadjustingtheformingstep.Thus,specimensareproducedwith

thesamehempshivtoblackliquorratiobutdifferentcompactionstress.Theeffectof

com-pactiononbulkdensity,porosity,mechanicalresistance,thermalconductivityandMoisture

BufferValue(MBV)isanalyzed.Itisshownthatitispossibletoreachthermalconductivity

thatislowenoughtobeconsideredasbuildinginsulatingmaterial.Thankstothisstudy,the

requiredcompactionstresstoensuretargetedvaluesofdensity,thenthermalconductivity

andMBV,isidentified.

©2020TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe

CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Theagriculturalwastevaluationisoneofthecurrent

chal-lengesinthefieldofgreenbuildingmaterial[1–3].Agricultural

wastecanbeusedtoproducebio-basedpanelswithlow

envi-ronmental impact(embodied energy and carbon footprint)

andhighhygrothermalefficiency[2,4–6].Aspartofthe

ISO-BIOproject[7],thedevelopedthermalinsulatingpanelsare

ecofriendlycompositesmadeofaggregatescomingfromlocal

agricultureandgreenbinders.Thegluingeffectisobtainedby

couplingthermalandmechanicaltreatment.

Correspondingauthor.

E-mails:marie.viel@univ-nantes.fr(M.Viel),florence.collet@univ-rennes1.fr(F.Collet),christophe.lanos@univ-rennes1.fr(C.Lanos).

In a previous study, presented in [8], various

compos-iteswereinvestigatedwithBiofibat® hempshivorcorncob

residuesasaggregates,andcorncobextract,flaxfinesextract,

blackliquor,BioChoice® ligninorPLAasbinders.Aftermixing,

thecompositesareproducedbycompactingandthen

heat-ingleadingtothegluingoftheaggregates.Thisstudyshowed

thatthedevelopedcompositeshadlowthermalconductivity

(rangingfrom0.067to0.148W/(m.K))andexcellentmoisture

bufferingability(MBV>2g/(m2.%RH)).More,thethermal

con-ductivityincreasedlinearlywithdensity,whateverthekindof

aggregateandofbinder.

https://doi.org/10.1016/j.jmrt.2019.12.079

2238-7854/©2020 The Authors. Publishedby Elsevier B.V. This isan open access articleunder the CC BY-NC-ND license (http://

(3)

2488

j mater res technol.2020;9(2):2487–2494

Thedensityofcompositesismostlyimpliedbythe

com-pactionstressappliedduringtheirproduction,amongother

factors.Theinfluenceofcompactiononphysicalproperties

(density,thermalconductivityandcompressivestressin

par-ticular)ofcompositeshasbeenhighlightedbyBalciunas[9]

inthecaseofhemp-sapropel composites(sedimentrichin

organicmatter)compactedat20,40and60%oftheirinitial

volume.

Thisstudyfocusesonthecompositesobtainedwithhemp

shivandblackliquor.

Hemp shiv are lightweight aggregates withhigh

poros-ityandinterestinghygrothermalproperties[10].Thismakes

themperfectlysuitedforthedevelopmentofbio-based

insu-latingmaterials.Theyarethemostcommonlyusedaggregates

intheliteraturefortheproductionofbuildingmaterials[2].

Blackliquorisarenewablebinderfromlocalindustry,is

betterfortheenvironment(lessCO2emissionand

preserva-tionoffossilresources)thanusingpetroleum-basedbinder

(urea-formaldehyderesin orphenolic resin). More, the use

ofblackliquorleadstoabetterhygrothermalpropertiesof

bio-basedcompositesthantheuseofpetroleum-basedbinder

(polyvinylacetate)ashighlightedinpreviousstudy[11].Black

liquorisreadilyavailablecomponentsincetentonnesofblack

liquorareproducedpertonneofpulpusingtheKraftpulping

process[12,13].Currently,blackliquorismainlyusedforthe

productionofenergy.However,efficientenergyproductionis

cumbersomeandexpensive[12,14,15].Itistherefore

impor-tanttoseektoenhancethisco-productinadifferentway.Due

toitschemicalcomposition(Kraftlignin,polysaccharides,

aro-maticsandaliphaticscomponents),blackliquorrepresentsan

interestingalternativeforthesynthesisofsustainable

chem-icals[16–18].

Forthisstudy,thecompositesareproducedwiththesame

hempshivtoblackliquorratiobutsevendifferentcompaction

stressesappliedduringformingstep(15.6,31.2,62.5,125,250,

500and1000kPa).

Thus, this study investigates the effect of compaction

conditions on density, porosity, mechanical, thermal and

hygricperformancesofcomposites.Itwillthenbepossible

todefine productioncompaction regardingtarget valuesof

multi-physicalproperties.

2.

Materials

and

method

2.1. Rawmaterials

Thecompositesare producedwithBiofibat® hemp shiv as

aggregatesandblackliquorasbinder.

TheBiofibat® hempshivwere producedin2016yearby

CAVAC(Sainte-Gemme-la-Plaine,France).Itsparticlesize

dis-tributionwasdeterminedbyimageanalysisasdescribedby

Amzianeetal[19].Thelengthofhempshivrangesfroml10

=5.5mmtol90=19.4mm,withanmediumvaluel50of11.5

mm(Fig.1).Thewidthrangesfromrangesfromw10=1.7mm

tow90=4.8mm,withanmediumvaluew50of2.9mm.The

elongationratio(length/width)rangesfrom2.2to6.5.

Bulkhempshivhaveinterestingthermalproperties(with

athermalconductivitybetween48and59mW/(m.K)[9,20,10])

due to their low bulk density. They also show excellent

Fig.1–ParticlesizedistributionofBiofibat® hempshiv.

Table1–Chemicalcompositionofkraftblackliquor accordingtothesafetydatasheet.

Components Content(%inweight)

Alkalilignin 14.1 Carboxylicacid 1.1 Aceticacid 4 Formicacid 10 Hydroxideacid 2.8 Polysaccharides 5.4 Sulfate 3.4 Sulfur 8.3 Sodium 15.9 Othercomponents 35

abilitytoregulateambientrelativehumidity(MBVabout2.31 g/(m2.%RH)[10]).

Theblackliquorisalowcostby-productfrom thekraft

paperindustry[18].Itiscomposedofabout70%drymatter.

Itschemicalcompositionmainlyincludesligninandinorganic

componentswhichmainlycomefromthepaperindustry

pro-cess.Italsoincludesfewpolysaccharidesandsomearomatic

andaliphaticcomponents(Table1)[16,21].Fig.2isa

diagram-maticillustrationoftheblackliquorstructure.Durmazetal

andNayerietalalsoobservedthattheblackliquorprotectthe

ligno-cellulosicresourcesfromfungaldevelopment[17,22].

2.2. Composites

Foreachkindofcomposites,sixspecimens(10×10×10cm3)

areproduced.Threeofthemareusedforthermalandhygric

characterization,thethreeothersformechanical

characteri-zationandmeasurementofskeletondensity.Thesameblack

liquortohempshivdrymassratioof15%isused.Thisvalue

ischoseninordertoensureagoodcohesion[23].

Forpreparation,thehempshivaremixedwiththeblack

liquorinamixerwithaflatpaddleduring5minutes.Themix

issplitinto threepartstoproducethreespecimens.

Speci-mensare moldedandcompacted5timesusinganInstron

5988testingmachinefittedwithaupperplunger,toensurea

goodparticlesarrangement.Theyaremaintainedunder

com-pressionandheated(for2hoursat190◦C),cooledtoroom

(4)

Fig.2–Diagrammaticillustrationoftheblackliquor

structure[21].

Tostudytheeffectofcompactiononmulti-physical

prop-erties,sevencompactionlevelsareconsidered:15.6,31.2,62.5,

125,250,500and1000kPa.

2.3. Characterizationmethods

2.3.1. Densitiesandporosity

Thedensityistheratiooftheweighttothesizeofthe

speci-men(whichisapproximately10×10×10cm3).Theweightis

obtainedwithananalyticalbalance(SartoriusLP8200S,

Göt-tingen,Germany).Eachdimension(length,width,height)is

theaverageoffourvaluesmeasuredwithanelectroniccaliper

(readabilityof0.1mm).Itismeasuredonthesixspecimensof

eachkindofcomposite.

Theskeletondensity s istheratio oftheweighttothe

skeletonvolumeofthespecimen.Thismeasurementis

car-riedoutusingapycnometeraccordingtothestandardASTM

D854[24].Aknownmassmsampleofdryandcrumbled

com-posites(foravolumeofabout 200ml) isintroduced into a

pycnometerofabout600ml.Then,thepycnometerisfilled

withtoluene.Itisregularlyshakentoremoveairbubbles.After

ensuringthatnoairbubblesaretrappedbetweenthe

parti-cles,thepycnometeriscompletelyfilledwithtolueneandthe

volumeoftoluenedisplacedbythecrumblesampleVsampleis

determinedfollowingtheequation(1).Threemeasurements

areperformedforeachcomposite.

s= msample Vsample = msample Vpycno−Vtoluene = m2−m1 m4 water−m3−m2toluene (1) with:

• m1:massoftheemptypycnometerwithground-glass

stop-per;

• m2:massofthepycnometerwithground-glassstopperand

sample;

• m3:massofthepycnometercompletelyfilledwithtoluene

withground-glassstopperandsample;

• m4:massofthepycnometercompletelyfilledwithwater

withground-glassstopper;

• toluene:densityofthetolueneatthetemperatureofthe

mea-surement;

• water:densityofwateratthetemperatureofthe

measure-ment.

Thetotalporosityntofacompositeisthevolumeratioof

theporositytothetotalvolumeofthespecimen.Itisthen

relatedtoapperentandskeletondensityofcomposite

follow-ing(Equation(2)).

nt=

s−app

s (2)

with:

• s:densityoftheskeletonofthesample;

• app:densityofapparentdensityofthesample.

2.3.2. Mechanicalcharacterization

Foreachcomposite,acompressiontestisperformedonthree

specimensto determinethe averagecompressive strength.

The test is carried out on a testing machine (Zwick/Roell

(5)

2490

j mater res technol.2020;9(2):2487–2494

ProLine,Metz,France)fittedwitha20kNloadcell(Zwick/Roell

XForce,Metz,France).Theloadisappliedonthespecimen,by

themonotonousdisplacementoftheuppersteelplatewith

cross-headspeedof0.05mms−1.

FollowingtherecommendationsoftheNFEN826standard

[25],the resultsofthe compressiontests arestudiedusing

stress-straincurvesasdescribedbyVieletal[8].

2.3.3. Thermalcharacterization

For each composite,the thermalconductivity ismeasured

three times on three pairs of specimensobtained by

cou-plingthreespecimens,withthehotwiretransientmethod[26]

usingcommercial “CTmeter”device (SMEE,Voiron,France).

Theheatingpowerandtimeare 142mWand 120seconds.

Previouslytothemeasurement,specimensarestabilizedat

(23◦C;drystate)andat(23C;50%RH).

Thedrystateisreachedafterthedryingofcompositesin

anovenat60◦Cuntiltheirmassstabilization(thevariation

mustbelowerthan0.1%betweentwoconsecutiveweighing

forthreeconsecutive weighingwitha 24-hourstime step).

Then,thecompositesareplacedindesiccatorat23◦C.The

measurementsareperformedoncetheweightstabilizationof

compositesisreached(samestabilizationcriterionas

previ-ously).Thestabilizationat(23◦C;50%RH)isperformedina

climatechamber.

2.3.4. Hygriccharacterization

Foreach composite,the moisturebuffervalueismeasured

onthreespecimens,accordingtotheNordtestprotocol[27].

Itrelates the amount ofmoistureuptakeor release tothe

exchangeareaasafunctionofrelativehumidity(Equation(3)).

MBV= m

A.(RHhigh−RHlow)

(3) with:

• MBV:moisturebuffervalue(g/(m2.%RH));

• m:moistureuptake/releaseduringtheperiod(g);

• A:opensurfacearea(m2);

• RHhigh/low:high/lowrelativehumiditylevel(%).

Specimens are sealed on all their surfaces except one.

Afterstabilizationat(23◦C;50%RH),therelativehumidityis

submittedtodailycyclicvariations:8/16hoursat75/33%RH

(absorption/desorption period), during 5 days in a climate

chamber(VötschVC4060,Balingen,Germany).

3.

Results

3.1. Densitiesandporosity

Table 2gives the physicalproperties of compositesversus

compactionstress.

Theapparentdensityofdevelopedcomposites,atdrystate,

rangesfrom128to247kg/m3.Itincreaseswiththecompaction

pressurefollowingthe equationgiveninFig.4withahigh

correlationcoefficient.So,itispossibletoidentifythe

com-pactionpressuretoapplyforatargetdensity.Thenon-linear

curvegivenbyFig.4isduetothemechanismsofcompaction

Table2–Effectofcompactiononapparentdensitiesat (23◦C;50%RH)and23C;drypoint),skeletondensity andporosityofcomposites.

p 23◦C−50%RH 23◦C−dry s ntot (kPa) (kg/m3) (kg/m3) (kg/m3) (%) 15.6 135.8±3.7 127.6±3.7 1345.2±46.4 90.5 31.2 144.4±3.8 135.3±3.6 1325.2±11.4 89.8 62.5 155.0±2.8 144.9±2.7 1294.2±5.4 88.8 125 171.6±1.2 160.3±1.2 1282.9±6.7 87.5 250 191.4±0.9 180.7±0.9 1211.0±7.2 85.1 500 229.4±3.3 213.7±3.1 1269.9±2.1 83.2 1000 265.9±1.3 247.0±1.6 1283.0±11.0 80.7

Fig.4–Apparentdensityofcompositesat(23◦C;drypoint) versusthepressureapplied(p)duringthecomposites process.

that take placeduring thecomposites production:(i) grain rearrangementand(ii)elasticandplasticdeformationsof par-ticles[28].TheCooper-Eatonmodelmakesitpossibletoclearly

distinguishthesetwophenomena[29].

Furthermore,the densityofcompositesincreases by7%

fromthedrypointtothewetpointat(23◦C;50%RH).

Thedevelopedcompositeshaveverysimilarskeleton

den-sitiesrangingfrom1211to1345kg/m3.Theaverageofthese

valuesis1300kg/m3withavariationof±3.33%.The

formula-tionsofthesevencompositesdevelopedinthispaperarethe

same,soitisconsistenttohavethesameskeletondensity.

Moreover,thehemp-starchcompositesdevelopedby

Bour-dotetal,haveaskeletondensityclosetothisvalue.Indeed,

theyhaveaskeletondensityof1249kg/m3withavariationof

±1.02%[30].

Sincetheskeletondensityisthesameforallcomposites,

thetotalporosityofthecompositesevolveslinearlywiththeir

apparentdensity,followingtherelationshipbetweenthese3

valuesgivenEquation(2),andashighlightedinFig.5.Atthe

drypointanditrangesfrom80.7%to90.5%.

3.2. Mechanicalresistance

Thedevelopedcompositesmadewithhempshivshow

com-pactingbehavior(continuousstressincreasedversusstrain

-Fig.6).Thus,themechanicalperformanceisgivenbythe

com-pressivestrengthobtainedforthelongitudinaldeformation

(6)

Fig.5–Porosityofthedevelopedcompositesversustheir

apparentdensityat(23◦C;drypoint).

Fig.6–Stress-straincurveofthecompositescompressedat

31.2kPaduringtheproductionprocess.

Table3–Stressat10%deformationforeachcomposites.

p(kPa) 23◦C−50%RH(kg/m3) 10%(kPa) h=3m(%) 15.6 134.7±3.0 54.6±10.8 0.50 31.2 144.9±1.2 87.7±0.1 0.28 62.5 150.6±0.4 105.7±6.2 0.24 125 169.1±1.4 194.8±12.9 0.19 250 203.2±1.1 230.1±6.5 0.22 500 221.8±3.8 613.3±7.8 0.09 1000 270.8±16.7 802.7±131.2 0.09

Table3and Fig.7showthemechanicalproperties

mea-suredoncomposites.

Foragivencompactionpressure(between15.6and500kPa)

duringthe productionofcomposites, theexperimental

val-uesareveryclosetoeachotherbetweenthethreespecimens.

Incontrast,thecompositescompressedat1000kPaduring

theproductionprocesshaveexperimentalvalueswithalarger

measurementdeviation(coefficientofvariationofabout16%)

duetoasignificantvariationinapparentdensitiesbetween

thethreespecimens.Thecompressivestrengthrangesfrom

55to803kPa.Thecompositecompressedat1000kPaduring

theproductionprocesshasthehighestcompressivestrength

and thecomposite compressedat15.6 kPahasthe lowest.

Fig.7underlinesthatcompressivestrength evolveslinearly

withbulkdensity.

Fig.7–Stressat10%deformationofthedeveloped

compositesversustheirapparentdensity.

Table4–Effectofcompactionandhumidity(dryand 50%RH)onthermalconductivityofhemp-blackliquor compositesat23◦C. p dry dry 50%RH 50%RH kPa (kg/m3) (mW/(m.K)) (kg/m3) (mW/(m.K)) 15.6 127.6 62.8 134.6 71.0 ±3.7 ±1.1 ±3.4 ±1.1 31.2 135.3 65.7 143.3 73.1 ±3.6 ±1.9 ±3.9 ±1.8 62.5 144.9 65.6 153.7 72.7 ±2.7 ±1.3 ±2.7 ±1.0 125 160.3 68.9 170.1 77.8 ±1.2 ±0.9 ±1.1 ±1.0 250 180.7 71.1 190.4 78.2 ±3.1 ±1.5 ±1.0 ±3.0 500 213.7 79.8 225.4 91 ±0.9 ±2.8 ±3.4 ±1.9 1000 247.0 93.2 258.8 101.5 ±1.6 ±1.9 ±1.6 ±1.8

For3metershighwall,thestressinducedbythe compos-itesdensityleadstoh=3mdeformationslowerthan0.50%.The mechanicalpropertiesmeettherequirementstobeusedas buildinginsulatingpanelswithoutcompactionrisk.

Balciunas et al[9] also noticedon hemp-saprobel

com-posites that the compressive strength (from broken before

measurementto2080kPa)increaseswiththeapparentdensity

ofcomposites(from157to401kg/m3).

3.3. Thermalconductivity

Thethermalconductivityofhemp-blackliquorcomposites

rangesfrom62.8to93.2mW/(m.K)atdrypointandfrom71.0to

101.5mW/(m.K)atwetpoint(Table4).Thecompositewiththe

lowestcompactionpressure(15.6kPa)meetstherequirements

tobeclassifiedasinsulatingbuildingmaterialsregardingthe

NFP75-101standard(<65mW/(m.K))[31].

Fig.8underlinesthatthethermalconductivityincreases

linearlywithdensitywithahighcorrelationcoefficient.More,

Fig.8alsohighlightsthattheslopeistwicetheslopeobtained

foragro-resources[10].Thismaybeattributedtotheaddition

ofbinderandthecompactionwhichreducesinter-particular

(7)

2492

j mater res technol.2020;9(2):2487–2494

Fig.8–Thermalconductivityofhemp-blackliquor

compositesversustheirapparentdensity:(a)Comparison

betweenthecomposites(yellowcurve)andthe

agro-resourcesinbulk(greencurve[10])atdrypointand(b)

Comparisonofthermalconductivityvaluesbetweendry

point(yellowcurve)andwetpoint(orangecurve).

Table5–EffectofcompactiononMBVofcomposites (averagevalueandstandarddeviation).

p MBVabs MBVdes MBVav (kPa) (g/(m2.%RH)) (g/(m2.%RH)) (g/(m2.%RH)) 15.6 2.50±0.03 2.77±0.02 2.63±0.02 31.2 2.60±0.09 2.86±0.09 2.73±0.09 62.5 2.82±0.11 3.06±0.11 2.94±0.11 125 2.63±0.07 2.87±0.06 2.75±0.06 500 2.31±0.01 2.49±0.01 2.40±0.01 1000 2.31±0.12 2.49±0.10 2.40±0.11

regression,it ispossibletoidentifythe requireddensity to reachatargetthermalconductivity.

Thethermalconductivityatwetpointisabout10%higher thanthethermalconductivityatdrypoint.Theslopeversus densityremainsthesame.

Balciunasetal[9]hadthesamefindingsonhemp-saprobel

compositesthatthethermalconductivityincreaseswiththe

apparentdensityofcomposite(=53to73mW/(m.K)for=

147to401kg/m3).

3.4. Moisturebuffervalue(MBV)

Following Table 5, the MBV ranges from 2.40 to 2.94

g/(m2.%RH).Allthecompositesareexcellenthygricregulators

accordingtotheNordtestclassification(MBV>2g/(m2.%RH))

[27].

Fig.9–MBVofhemp-blackliquorcompositesversus

density.

ThelowestMBVisobtainedforthetwocompositeswiththe

highestdensities(compactedat500and1000kPa).Thehighest

MBVisobtainedforthecompositecompactedat62.5kPa.Fig.9

givestheMBVversustheapparentdensityofcomposites.

Inafirsttime, theMBVincreasesupto2.94g/(m2.%RH)

foradensityof170kg/m3.Then,itdecreases downto2.40

g/(m2.%RH)fordensityof200kg/m3.Finally,theMBVremains

constant.Suchevolutionmaybeexplained:

• Inafirsttime,bytheincreaseinspecificsurfaceareawith

densitywhichleadstohighersorptionandthushigherMBV;

• Then, bythe decrease in vapor permeability induced by

lower inter-particular porosity which reduces the vapor

penetrationinthecomposite,andthustheMBV.

Thecombinationofthesetwoparametersleadsto

iden-tify anoptimumvalue ofdensity,and thus of compaction

pressure.Inordertovalidatethesehypothesis,

complemen-taryinvestigationsregardingvaporpermeabilityandspecific

surfaceareaarerequired.

BourdotetalfindthesameMBVwithhemp-starch

com-posites.Indeed,thesecompositeshaveanaverageMBVof2.63

g/(m2.%RH)foranaveragedensityof136kg/m3[30].However,

MaaloufetalfindaslightlylowerMBVwithalsohemp-starch

composites.ThesecompositeshaveanaverageMBVof2.46

g/(m2.%RH)foranaveragedensityof170kg/m3[32].

ColletandalfindalowerMBVrangingfrom1.94to2.15

g/(m2.%RH)forthehempconcreteswhichhaveadensity

rang-ingfrom430to460kg/m3[33].Thisdifferencecanbeexplained

bytheuseoflessbinderinthecaseofthecomposites

devel-opedinthispaper.

4.

Conclusion

Thedevelopedcompositesareproducedwithhempshivand

blackliquorwithseveralcompactionpressures.

Thecompositesdensityrangesfrom128to347kg/m3at

drystate.Thedensityiscorrelatedtothecompactionpressure

appliedduringtheproduction.Regardingthetotalporosityof

thecomposites,itisinverselyproportionaltotheirapparent

(8)

Thethermalconductivityincreaseslinearlywithdensity

between62.8and93.2mW/(m.K)atdrystate(23◦C;0%RH)and

between71.0to101.5mW/(m.K)atwetpoint(23◦C;50%RH).

Allthedevelopedcompositesareexcellenthygric

regula-torsastheirMBVranges from2.40to2.94g/(m2.%RH). The

MBVevolves with densityand shows anoptimalvalue for

densityaround170kg/m3.

Amongdevelopedcomposites,thecompositewiththe

low-estdensityshowshighthermalandhygricperformances.On

the one hand,its thermal conductivity meets the

require-mentstomakeitconsideredasinsulatingbuildingmaterial.

Ontheotherhand,itisanexcellenthygricregulator,withMBV

of2.77g/(m2.%RH)andhassufficientmechanicalproperties

foritsuse(selfbearingmaterials).

Acknowledgments

ThisprojecthasreceivedfundingfromtheEuropeanUnion’s

Horizon2020researchand innovationprogramundergrant

agreementNo.636835–Theauthorswouldliketothankthem.

CAVAC,industrialpartneroftheISOBIOproject,is

grate-fullyacknowledgedbytheauthorsforprovidingrawmaterials.

ThanksareduetoTonyHautecoeurforhisparticipationin

thecompletionofthiswork.ThanksareduetoYannLecieux

(Mechanicaltests).ThanksarealsoduetoCélineLeutellierfor

havingreviewedtheEnglishlanguage.

r

e

f

e

r

e

n

c

e

s

[1]SchiavoniS,D’AlessandroF,BianchiF,AsdrubaliF.Insulation

materialsforthebuildingsector:Areviewandcomparative

analysis.RenewSustainEnergyRev2016;62:988–1011,

http://dx.doi.org/10.1016/j.rser.2016.05.045.

[2]LiuL,LiH,LazzarettoA,ManenteG,TongC,LiuQ,LiN.The

developmenthistoryandprospectsofbiomass-based

insulationmaterialsforbuildings.RenewSustainEnergyRev

2017;69:912–32,http://dx.doi.org/10.1016/j.rser.2016.11.140.

[3]Sierra-PérezJ,García-PérezS,BlancS,Boschmonart-RivesJ,

GabarrellX.Theuseofforest-basedmaterialsforthe

efficientenergyofcities:Environmentalandeconomic

implicationsofcorkasinsulationmaterial.SustainCitiesSoc

2018;37:628–36,http://dx.doi.org/10.1016/j.scs.2017.12.008.

[4]AdamczykJ,DylewskiR.Theimpactofthermalinsulation

investmentsonsustainabilityintheconstructionsector.

RenewSustainEnergyRev2017;80:421–9,

http://dx.doi.org/10.1016/j.rser.2017.05.173.

[5]PapadopoulosAM.Stateoftheartinthermalinsulation

materialsandaimsforfuturedevelopments.EnergyBuild

2005;37(1):77–86,

http://dx.doi.org/10.1016/j.enbuild.2004.05.006.

[6]Torres-RivasA,PalumboM,HaddadA,CabezaLF,JiménezL,

BoerD.Multi-objectiveoptimisationofbio-basedthermal

insulationmaterialsinbuildingenvelopesconsidering

condensationrisk.ApplEnergy2018;224:602–14,

http://dx.doi.org/10.1016/j.apenergy.2018.04.079.

[7]ISOBIO,Naturallyhighperformanceinsulation(2015).URL

http://isobioproject.com/.

[8]VielM,ColletF,LanosC.Developmentandcharacterization

ofthermalinsulationmaterialsfromrenewableresources.

ConstrBuildMater2019;214:685–97,

http://dx.doi.org/10.1016/j.conbuildmat.2019.04.139.

[9]BalciunasG, ˇZvironaiteJ,VejelisS,JagniatinskisA,Gaiducis

S.Ecological,thermalandacousticalinsulatingcomposite

fromhempshivesandsapropelbinder.IndCropsProd

2016;91:286–94,

http://dx.doi.org/10.1016/j.indcrop.2016.06.034.

[10]VielM,ColletF,LanosC.Chemicalandmulti-physical

characterizationofagro-resources’by-productasapossible

rawbuildingmaterial.IndCropsProd2018;120:214–37,

http://dx.doi.org/10.1016/j.indcrop.2018.04.025.

[11]M.Viel,;1;Développementdecompositesbio-sourcés

destinésàl’isolationdesbâtiments,Thesis,Universityof

Rennes1,Rennes(Nov.2018).URL

http://www.theses.fr/2018REN1S122.

[12]Al-KaabiZ,PradhanR,ThevathasanN,GordonA,Chiang

YW,DuttaA.Bio-carbonproductionbyoxidationand

hydrothermalcarbonizationofpaperrecyclingblackliquor.J

CleanProd2019;213:332–41,

http://dx.doi.org/10.1016/j.jclepro.2018.12.175.

[13]TranH,VakkilainnenE.TheKraftchemicalrecoveryprocess. TAPPIKraftRecoveryCourse;2012.p.1–8.

[14]BhattacharyaP,ParthibanV,KunzruD.Pyrolysisofblack

liquorsolids.IndEngChemProcessDesignDevelop

1986;25(2):420–6,http://dx.doi.org/10.1021/i200033a012.

[15]GosselinkR,DeJongE,GuranB,AbächerliA.Co-ordination

networkforlignin-standardisation,productionand

applicationsadaptedtomarketrequirements(EUROLIGNIN).

IndCropsProd2004;20(2):121–9,

http://dx.doi.org/10.1016/j.indcrop.2004.04.015.

[16]Al-KaabiZ,PradhanRR,ThevathasanN,ChiangYW,Gordon

A,DuttaA.Potentialvalueaddedapplicationsofblackliquor

generatedatpapermanufacturingindustryusingrecycled

fibers.JCleanProd2017;149:156–63,

http://dx.doi.org/10.1016/j.jclepro.2017.02.074.

[17]DurmazS,ErisirE,YildizUC,KurtulusOC.Usingkraftblack

liquorasawoodpreservative.Procedia-SocialBehavSci

2015;195:2177–80,

http://dx.doi.org/10.1016/j.sbspro.2015.06.291.

[18]El-MekkawiSA,IsmailIM,El-AttarMM,FahmyAA,

MohammedSS.Utilizationofblackliquorasconcrete

admixtureandsetretarderaid.JAdvRes2011;2(2):163–9,

http://dx.doi.org/10.1016/j.jare.2011.01.005.

[19]AmzianeS,ColletF,LawrenceM,MagniontC,PicandetV,

SonebiM.RecommendationoftheRILEMTC236-BBM:

characterisationtestingofhempshivtodeterminethe

initialwatercontent,waterabsorption,drydensity,particle

sizedistributionandthermalconductivity.MaterStruct

2017;50(3):167

https://link.springer.com/article/10.1617/s11527-017-1029-3.

[20]V.Cérézo,;1;Propriétésmécaniques,thermiqueset

acoustiquesd’unmatériauàbasedeparticulesvégétales:

approcheexpérimentaleetmodélisationthéorique,Ph.D.

thesis(2005).URLhttp://www.theses.fr/2005ISAL0037.

[21]CardosoM,deOliveiraED,PassosML.Chemicalcomposition

andphysicalpropertiesofblackliquorsandtheireffectson

liquorrecoveryoperationinbrazilianpulpmills.Fuel

2009;88(4):756–63,http://dx.doi.org/10.1016/j.fuel.2008.10.016.

[22]H.R.Nayeri,A.Tarmian,A.Abdulkhani,G.Ebrahimi,Decay

resistanceofwoodimpregnatedwithmonoethanolamine

andsodiumbisulfitepulpingblackliquors,Maderas.Ciencia

ytecnología(ahead)(2017)0-0.

doi:10.4067/S0718-221X2017005001001.URL

http://www.scielo.cl/scielo.php?script=sci

arttext&pid=S0718-221X2017005001001&lng=en&nrm=iso&tlng=en.

[23]ColletF,PrétotS,LanosC.Hemp-StrawComposites:Thermal

AndHygricPerformances.EnergyProcedia2017;139:294–300,

http://dx.doi.org/10.1016/j.egypro.2017.11.211.

[24]ASTMD854,Standardtestmethodsforspecificgravityofsoil

(9)

2494

j mater res technol.2020;9(2):2487–2494

[25]BSIEN826:2013,Thermalinsulatingproductsforbuilding

applications-Determinationofcompressionbehaviour(May

2013).

[26]ColletF,PretotS.Thermalconductivityofhempconcretes:

Variationwithformulation,densityandwatercontent.

ConstrBuildMater2014;65:612–9,

http://dx.doi.org/10.1016/j.conbuildmat.2014.05.039. [27]RodeC,PeuhkuriRH,MortensenLH,HansenKK,TimeB,

GustavsenA,OjanenT,AhonenJ,SvennbergK,ArfvidssonJ, etal.Moisturebufferingofbuildingmaterials,Tech.rep. TechnicalUniversityofDenmark,DepartmentofCivil Engineering;2005.

[28]S.Amziane,F.Collet,M.Lawrence,V.Picandet,C.Lanos,S.

Marceau,S.Pavia,;1;Bio-aggregatesBasedBuilding

Materials,springernetherlandsEdition,no.23inRILEM

State-of-the-ArtReports,AmzianeSofianeandCollet

Florence,2017.URL

http://www.springer.com/la/book/9789402410303.

[29]TronetP,LecompteT,PicandetV,BaleyC.Studyoflime

hempcompositeprecastingbycompactionoffreshmix-An

instrumenteddietomeasurefrictionandstressstate.

PowderTechnol2014;258:285–96,

http://dx.doi.org/10.1016/j.powtec.2014.03.002.

[30]BourdotA,MoussaT,GacoinA,MaaloufC,VazquezP,

Thomachot-SchneiderC,BliardC,MerabtineA,LachiM,

DouzaneO,KarakyH,PolidoriG.Characterizationofa

hemp-basedagro-material:Influenceofstarchratioand

hempshivesizeonphysical,mechanical,andhygrothermal

properties.EnergyBuild2017;153:501–12,

http://dx.doi.org/10.1016/j.enbuild.2017.08.022.

[31]AFNORNFP75-101,Isolantsthermiquesdestinésau

bâtiment-Définition(October1983).

[32]MaaloufC,UmurigirwaBS,ViensN,LachiM,MaiTH.Study

ofthehygricbehaviourandmoisturebufferingperformance

ofahemp-starchcompositepanelforbuildings.

BioResources2014;10(1):336–47,

http://dx.doi.org/10.15376/biores.10.1.336-347.

[33]ColletF,ChamoinJ,PretotS,LanosC.Comparisonofthe

hygricbehaviourofthreehempconcretes.EnergyBuild

2013;62:294–303,

Figure

Table 1 – Chemical composition of kraft black liquor according to the safety data sheet.
Fig. 3 – Flow chart of composites production.
Table 2 gives the physical properties of composites versus compaction stress.
Fig. 8 – Thermal conductivity of hemp - black liquor composites versus their apparent density: (a) Comparison between the composites (yellow curve) and the

Références

Documents relatifs

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

Whereas Arnt2 gene expression, established by Northern blotting and in situ hybridization histochemistry, occurred selectively in brain and kidney, that of Arnt1 was ubiquitous,

Les premières simulations réalisées montrent les gains spectaculaires sur la précision des profils atmosphériques dans les basses couches et aussi les gains pour la chimie

Ce document est le preprint de l’article publi´ e sous sa forme finale comme : Pierre Ladev` eze et David Dureisseix, Une nouvelle strat´ egie de calcul micro/macro en m´ ecanique

(Cette propriété permet de calculer vite le déterminant dans un corps. C'est un peu plus problématique dans un anneau).. Jusqu'ici on a listé quelques propriétés calculatoires

L’importance de la température comme paramètre de contrôle est l’indice que les transitions de phase sont des transitions entre une phase ordonnée (à T &lt; T c ) et une

(i) In the example of deterministic scale-free graph proposed in [ 2 ], the minimal scaling that we predict in equation ( 3.42 ) is indeed realized and the transience of the random

On la remplace ici par celle d’alg`ebre de r´ealisabilit´e, plus simple, et beaucoup plus utilisable du point de vue informatique. Il s’agit d’une variante de la notion